切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2018, Vol. 07 ›› Issue (03) : 126 -130. doi: 10.3877/cma.j.issn.2095-3216.2018.03.007

所属专题: 文献

论著

Wnt信号调控骨髓源巨噬细胞参与肾脏纤维化的作用及机制
冯晓剑1, 杨莹1, 王利华1,(), 袁瑞霞1   
  1. 1. 030000 山西医科大学第二医院肾内科
  • 收稿日期:2018-01-09 出版日期:2018-06-28
  • 通信作者: 王利华

The role and mechanism of Wnt signaling in the regulation of bone marrow-derived macrophages involved in renal fibrosis

Xiaojian Feng1, Ying Yang1, Lihua Wang1,(), Ruixia Yuan1   

  1. 1. Second Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi Province, China
  • Received:2018-01-09 Published:2018-06-28
  • Corresponding author: Lihua Wang
  • About author:
    Corresponding author: Wang Lihua, Email:
引用本文:

冯晓剑, 杨莹, 王利华, 袁瑞霞. Wnt信号调控骨髓源巨噬细胞参与肾脏纤维化的作用及机制[J]. 中华肾病研究电子杂志, 2018, 07(03): 126-130.

Xiaojian Feng, Ying Yang, Lihua Wang, Ruixia Yuan. The role and mechanism of Wnt signaling in the regulation of bone marrow-derived macrophages involved in renal fibrosis[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2018, 07(03): 126-130.

目的

观察转化生长因子β1(TGF-β1)对骨髓来源巨噬细胞(BMDM)的影响,探讨Wnt信号调控该过程的作用与机制。

方法

无菌分离获取小鼠BMDM,以集落刺激因子(M-CSF)作为刺激因素,于37℃、5%CO2培养箱中培养7d,倒置相差显微镜观察细胞形态改变,流式细胞仪鉴定BMDM纯度。后以TGF-β1作为干预因素,分别设立对照组(A组:a-MEM高糖培养基+M-CSF)、实验组(B组:a-MEM高糖培养基+M-CSF+TGF-β1),M-CSF浓度为60 ng/ml,TGF-β1浓度为5 ng/ml。以α-SMA作为肌成纤维细胞表面标志物,以F4/80作为巨噬细胞表面标志物,3 d后流式检测α-SMAF4/80细胞比例、Western blot测定各组Wnt3a、DVL(dishevelled蛋白)、β-catenin蛋白的表达。应用SPSS 19.0统计软件进行数据处理。

结果

M-CSF刺激骨髓细胞7 d后流式检测BMDM比例最高,纯度达(94.44±6.11)%。以M-CSF诱导7d为分组时间点,与对照组相比较,3 d后实验组α-SMAF4/80细胞比例明显升高(t=6.365,P=0.0007),Wnt3a、DVL、β-catenin的蛋白表达也显著增高(tWnt3a=12.06,P<0.0001;tDVL=8.168,P=0.0002,tβ-catenin=6.752,P=0.0005)。

结论

TGF-β1可刺激BMDM向肌成纤维细胞转化;Wnt信号通路可能参与调控BMDM的纤维化过程;通过降低巨噬细胞Wnt信号通路的活性可能成为延缓纤维化发生的潜在治疗思路。

Objective

To observe the impact of transforming growth factor (TGF-β1) on bone marrow-derived macrophages (BMDM), and explore whether Wnt signaling could play a regulative role in the process of fibrosis or not.

Methods

Mouse BMDM was obtained by aseptic isolation, and colony stimulating factor (M-CSF) was used as a stimulating factor. The cells were cultured in a 5% CO2 incubator for 7 days at 37 ℃. The morphology of the cells was observed by inverted phase contrast microscope. The purity of BMDM was identified by flow cytometry. TGF-β1 was used as an intervention factor to establish a control group (group A: high glucose complete medium+ M-CSF) and an experimental group (group B: high glucose complete medium+ M-CSF+ TGF-β1), with the M-CSF concentration of 60 ng/ml and the TGF-β1 concentration of 5 ng/ml. α-SMA was used as a surface marker of myofibroblasts, and F4/80 was used as a surface marker of macrophages. After 3 days, the ratio of α-SMA+ F4/80+ cells was detected by flow cytometry, and expression of Wnt3a, disheveled protein (DVL), and β-catenin of each group was determined by Western blot. Data processing was performed with SPSS19.0 statistical software.

Results

After 7 days of M-CSF stimulation, the ratio of BMDM was the highest by flow cytometry, and the purity was (94.44±6.11)%. Compared with the control group, after 3 days, the ratio of α-SMA+ F4/80+ cells was significantly increased (t=6.365, P=0.0007), and the protein expression of Wnt3a, DVL, and β-catenin was also significantly increased (tWnt3a=12.06, P<0.0001; tDVL=8.168, P=0.0002, tβ-catenin=6.752, P=0.0005) in the experimental group.

Conclusions

TGF-β1 could stimulate the transformation of BMDM into myofibroblasts. Wnt signaling pathway might be involved in the regulation of BMDM fibrosis. Decreasing the activity of Wnt signaling pathway in macrophages might be a potential therapeutic approach to delaying fibrosis.

图1 集落刺激因子诱导骨髓来源细胞向巨噬细胞转化(倒置显微镜)
图2 骨髓来源巨噬细胞纯度检测(流式细胞术)
图3 实验组TGF-β1作用于骨髓来源巨噬细胞后形态变化(倒置相差显微镜×800)
图4 对照组及实验组α-SMAF4/80共表达细胞比
图5 各组Wnt3a、DVL、β-catenin蛋白表达量(western blot)
[1]
Jha V, Garcia-Garcia G, Iseki K, et al. Chronic kidney disease: global dimension and perspectives [J]. Lancet, 2013, 382(9888): 260-272.
[2]
Woroniecka KI, Park AS, Mohtat D, et al. Transcriptome analysis of human diabetic kidney disease [J]. Diabetes, 2011, 60(9): 2354-2369.
[3]
Lin SL, Li B, Rao S, et al. Macrophage Wnt7b is critical for kidney repair and regeneration [J]. Proc Natl Acad Sci USA, 2010, 107(9): 4194-4199.
[4]
LeBleu VS, Taduri G, O'Connell J, et al. Origin and function of myofibroblasts in kidney fibrosis [J]. Nat Med, 2013, 19(8): 1047-1053.
[5]
Iwano M, Plieth D, Danoff TM, et al. Evidence that fibroblasts derive from epithelium during tissue fibrosis [J]. J Clin Invest, 2002, 110(3): 341-350.
[6]
杨莹,冯晓剑,刘新艳,等. 肾脏纤维化中转化生长因子β1对骨髓源巨噬细胞向肌成纤维细胞转化的调控机制[J]. 中华内科杂志,2017, 56(8): 610-613.
[7]
Shuang W, Meng XM, Ng YY, et al. TGF-β/Smad3 signalling regulates the transition of bone marrow-derived macrophages into myofibroblasts during tissue fibrosis [J]. Oncotarget, 2016, 7(8): 8809-8822.
[8]
Vasandan AB, Jahnavi S, Shashank C, et al. Human mesenchymal stem cells program macrophage plasticity by altering their metabolic status via a PGE2-dependent mechanism [J]. Sci Rep, 2016, 6: 38308.
[9]
Lu J, Cao Q, Zheng D, et al. Discrete functions of M2a and M2c macrophage subsets determine their relative efficacy in treating chronic kidney disease [J].Kidney Int, 2013, 84(4): 745-755.
[10]
Lin SL, Kisseleva T, Brenner DA, et al. Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney [J]. Am J Pathol, 2008, 173(6):1617-1627.
[11]
Tan RJ, Zhou D, Zhou L, et al. Wnt/β-catenin signaling and kidney fibrosis [J]. Kidney Int Suppl, 2014, 4(1): 84-90.
[12]
Akhmetshina A, Palumbo K, Dees C, et al. Activation of canonical Wnt signalling is required for TGF-β-mediated fibrosis [J]. Nat Commun, 2012, 3: 735.
[1] 万文凯, 徐一宏, 徐卫东. 强直性脊柱炎的骨化研究进展[J]. 中华关节外科杂志(电子版), 2019, 13(03): 348-352.
[2] 向龙, 唐艺玮, 毛萌, 周晖. Wnt信号通路GSK-3β和β-catenin mRNA在胎鼠围生期脑缺血再灌注损伤中的变化[J]. 中华妇幼临床医学杂志(电子版), 2015, 11(05): 579-583.
[3] 胡雯辉, 于力, 温跃强, 张瑶, 郝志宏, 陈蓉燕. 转化生长因子-β1诱导下肾小球系膜细胞Smad2的表达与Ⅳ型胶原分泌的相关性研究及来氟米特的干预作用[J]. 中华妇幼临床医学杂志(电子版), 2013, 09(04): 438-445.
[4] 邱虹, 韩焱福, 陶然. Wnt/β- catenin信号介导脐带间充质干细胞修复糖尿病创面的应用前景[J]. 中华损伤与修复杂志(电子版), 2016, 11(02): 144-146.
[5] 黄艳玲, 郑健茂, 凌均棨. 大鼠骨髓间充质干细胞成牙本质向分化中Wnt信号通路磷酸化抗体芯片分析[J]. 中华口腔医学研究杂志(电子版), 2017, 11(02): 65-72.
[6] 邝世航, 黄双艺, 乐有为, 冯建华. 慢性前列腺炎TGF-β1、CTGF的表达水平及其与症状指数的关系[J]. 中华腔镜泌尿外科杂志(电子版), 2018, 12(02): 125-128.
[7] 刘先勇. 胃Lgr5+干细胞、Mist1+干细胞和Cck2r+干细胞癌变的分子机制[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 183-188.
[8] 蒋梦洁, 钱治军, 徐思, 梁伟. 低强度脉冲超声波治疗冻结肩模型兔的实验研究[J]. 中华肩肘外科电子杂志, 2023, 11(01): 30-34.
[9] 刘一, 文旖旎, 吴映辉. 过敏性紫癜患儿外周血辅助性T细胞、调节性T细胞细胞因子与肾损害的相关性分析[J]. 中华肾病研究电子杂志, 2023, 12(05): 271-275.
[10] 吴震宇, 胡亚芬, 董晓芬, 马远方. 血清CTGF、TGF-β1、MMP2水平对糖尿病肾病肾间质纤维化的预测分析[J]. 中华肾病研究电子杂志, 2022, 11(06): 332-337.
[11] 尚春晓, 李纳琦. 白细胞介素-11在慢性肾脏病中的作用研究进展[J]. 中华肾病研究电子杂志, 2022, 11(03): 156-160.
[12] 刘思梦, 陈思, 周梦, 李青, 吴琳, 袁杨刚, 张波, 王宁宁, 张莉, 毛慧娟, 邢昌赢. 2021年肾脏病学基础研究进展[J]. 中华肾病研究电子杂志, 2022, 11(02): 79-83.
[13] 李青, 袁杨刚, 张波, 毛慧娟, 邢昌赢. 2020年肾脏病学基础研究进展[J]. 中华肾病研究电子杂志, 2021, 10(01): 25-30.
[14] 彭志强, 乔晞, 王利华. Intermedin通过抑制氧化应激减轻单侧输尿管梗阻大鼠肾脏间质纤维化[J]. 中华肾病研究电子杂志, 2017, 06(01): 25-30.
[15] 乔晞, 赵宁, 王利华, 张瑞婧, 韩伟霞. 上调肾组织intermedin表达抑制单侧输尿管梗阻大鼠肾间质纤维化[J]. 中华肾病研究电子杂志, 2015, 04(01): 29-36.
阅读次数
全文


摘要