切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2022, Vol. 11 ›› Issue (02) : 79 -83. doi: 10.3877/cma.j.issn.2095-3216.2022.02.005

综述

2021年肾脏病学基础研究进展
刘思梦1, 陈思1, 周梦1, 李青1, 吴琳1, 袁杨刚1, 张波1, 王宁宁1, 张莉1, 毛慧娟1, 邢昌赢1,()   
  1. 1. 210029 南京,江苏省人民医院(南京医科大学第一附属医院)肾内科
  • 收稿日期:2022-01-21 出版日期:2022-04-28
  • 通信作者: 邢昌赢
  • 基金资助:
    国家自然科学基金面上项目(82170699); 江苏省医学创新团队项目(CXTDA2017011)

Advances in basic research on nephrology in 2021

Simeng Liu1, Si Chen1, Meng Zhou1, Qing Li1, Lin Wu1, Yanggang Yuan1, Bo Zhang1, Ningning Wang1, Li Zhang1, Huijuan Mao1, Changying Xing1,()   

  1. 1. Department of Nephrology, Jiangsu Provincial People′s Hospital, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
  • Received:2022-01-21 Published:2022-04-28
  • Corresponding author: Changying Xing
引用本文:

刘思梦, 陈思, 周梦, 李青, 吴琳, 袁杨刚, 张波, 王宁宁, 张莉, 毛慧娟, 邢昌赢. 2021年肾脏病学基础研究进展[J]. 中华肾病研究电子杂志, 2022, 11(02): 79-83.

Simeng Liu, Si Chen, Meng Zhou, Qing Li, Lin Wu, Yanggang Yuan, Bo Zhang, Ningning Wang, Li Zhang, Huijuan Mao, Changying Xing. Advances in basic research on nephrology in 2021[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2022, 11(02): 79-83.

2021年度肾脏病学基础研究领域取得了诸多重要研究进展。本文将从原发性肾小球疾病、继发性肾小球疾病、急性肾损伤、肾脏纤维化以及矿物质和骨代谢紊乱等5个方面,概括相关发病机制、生物标志物及潜在的新药靶标方面的最新进展,为肾脏疾病后续的基础研究和临床治疗提供新思路。

In 2021, many important research advances have been made in the field of basic research on nephrology. This article focused on five topics: primary glomerular disease, secondary glomerular disease, acute kidney injury, renal fibrosis, and mineral and bone disorder, summarizing recent advances in the pathogenesis, biomarkers, and potential targets for new drugs, in order to provide new ideas for further basic research and clinical treatment of renal diseases.

[1]
Kalantar-Zadeh K, Jafar TH, Nitsch D, et al. Chronic kidney disease [J]. Lancet, 2021, 398(10302): 786-802.
[2]
Ronco P, Beck L, Debiec H, et al. Membranous nephropathy [J]. Nat Rev Dis Primers, 2021, 7(1): 69.
[3]
Sethi S, Madden B, Debiec H, et al. Protocadherin 7-associated membranous nephropathy [J]. J Am Soc Nephrol, 2021, 32(5): 1249-1261.
[4]
Al-Rabadi LF, Caza T, Trivin-Avillach C, et al. Serine protease HTRA1 as a novel target antigen in primary membranous nephropathy [J]. J Am Soc Nephrol, 2021, 32(7): 1666-1681.
[5]
Sethi S. New 'antigens’ in membranous nephropathy [J]. J Am Soc Nephrol, 2021, 32(2): 268-278.
[6]
Lomax-Browne HJ, Visconti A, Pusey CD, et al. IgA1 glycosylation is heritable in healthy twins [J]. J Am Soc Nephrol, 2017, 28(1): 64-68.
[7]
Wang YN, Zhou XJ, Chen P, et al. Interaction between GALNT12 and C1GALT1 associates with galactose-deficient IgA1 and IgA nephropathy [J]. J Am Soc Nephrol, 2021, 32(3): 545-552.
[8]
Farrar CA, Tran D, Li K, et al. Collectin-11 detects stress-induced L-fucose pattern to trigger renal epithelial injury [J]. J Clin Invest, 2016, 126(5): 1911-1925.
[9]
Allison SJ. Acute kidney injury: collectin-11: a signal for complement activation [J]. Nat Rev Nephrol, 2016, 12(7): 378.
[10]
Wei M, Guo WY, Xu BY, et al. Collectin11 and complement activation in IgA nephropathy [J]. Clin J Am Soc Nephrol, 2021, 16(12): 1840-1850.
[11]
Tang R, Meng T, Lin W, et al. A partial picture of the single-cell transcriptomics of human IgA nephropathy [J]. Front Immunol, 2021, 12: 645988.
[12]
Dotz V, Visconti A, Lomax-Browne HJ, et al. O- and N-glycosylation of serum immunoglobulin A is associated with IgA nephropathy and glomerular function [J]. J Am Soc Nephrol, 2021, 32(10): 2455-2465.
[13]
Xie D, Zhao H, Xu X, et al. Intensity of macrophage infiltration in glomeruli predicts response to immunosuppressive therapy in patients with IgA nephropathy [J]. J Am Soc Nephrol, 2021, 32(12): 3187-3196.
[14]
Han WK, Alinani A, Wu CL, et al. Human kidney injury molecule-1 is a tissue and urinary tumor marker of renal cell carcinoma [J]. J Am Soc Nephrol, 2005, 16(4): 1126-1134.
[15]
Greenberg JH, Abraham AG, Xu Y, et al. Urine biomarkers of kidney tubule health, injury, and inflammation are associated with progression of CKD in children [J]. J Am Soc Nephrol, 2021, 32(10): 2664-2677.
[16]
Mori Y, Ajay AK, Chang JH, et al. KIM-1 mediates fatty acid uptake by renal tubular cells to promote progressive diabetic kidney disease [J]. Cell Metab, 2021, 33(5): 1042-1061.
[17]
Doke T, Huang S, Qiu C, et al. Transcriptome-wide association analysis identifies DACH1 as a kidney disease risk gene that contributes to fibrosis [J]. J Clin Invest, 2021, 131(10): e141801.
[18]
Cao A, Li J, Asadi M, et al. DACH1 protects podocytes from experimental diabetic injury and modulates PTIP-H3K4Me3 activity [J]. J Clin Invest, 2021, 131(10): e141279.
[19]
Caza TN, Hassen SI, Kuperman M, et al. Neural cell adhesion molecule 1 is a novel autoantigen in membranous lupus nephritis [J]. Kidney Int, 2021, 100(1): 171-181.
[20]
Fava A, Rao DA, Mohan C, et al. Urine proteomics and renal single cell transcriptomics implicate IL-16 in lupus nephritis [J]. Arthritis Rheumatol, 2021, Epub ahead of print.
[21]
Amo L, Kole HK, Scott B, et al. CCL17-producing cDC2s are essential in end-stage lupus nephritis and averted by a parasitic infection [J]. J Clin Invest, 2021, 131(11): e148000.
[22]
Gan PY, Dick J, O'Sullivan KM, et al. Anti-CD20 mAb-induced B cell apoptosis generates T cell regulation of experimental myeloperoxidase ANCA-associated vasculitis [J]. J Am Soc Nephrol, 2021, 32(5): 1071-1083.
[23]
Moller-Hackbarth K, Dabaghie D, Charrin E, et al. Retinoic acid receptor responder1 promotes development of glomerular diseases via the nuclear factor-κB signaling pathway [J]. Kidney Int, 2021, 100(4): 809-823.
[24]
Moran SM, Scott J, Clarkson MR, et al. The clinical application of urine soluble CD163 in ANCA-associated vasculitis [J]. J Am Soc Nephrol, 2021, 32(11): 2920-2932.
[25]
Scholz H, Boivin FJ, Schmidt-Ott KM, et al. Kidney physiology and susceptibility to acute kidney injury: implications for renoprotection [J]. Nat Rev Nephrol, 2021, 17(5): 335-349.
[26]
Tang C, Cai J, Yin XM, et al. Mitochondrial quality control in kidney injury and repair [J]. Nat Rev Nephrol, 2021, 17(5): 299-318.
[27]
Tonnus W, Meyer C, Steinebach C, et al. Dysfunction of the key ferroptosis-surveilling systems hypersensitizes mice to tubular necrosis during acute kidney injury [J]. Nat Commun, 2021, 12(1): 4402.
[28]
Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease [J]. Nat Rev Mol Cell Biol, 2021, 22(4): 266-282.
[29]
Zhu H, Cao C, Wu Z, et al. The probiotic L. casei Zhang slows the progression of acute and chronic kidney disease [J]. Cell Metab, 2021, 33(10): 2091-2093.
[30]
Radhakrishnan K, Kim YH, Jung YS, et al. Orphan nuclear receptor ERR-γ regulates hepatic FGF23 production in acute kidney injury [J]. Proc Natl Acad Sci USA, 2021, 118(16): e2022841118.
[31]
Li W, Wang C, Lv H, et al. A DNA nanoraft-based cytokine delivery platform for alleviation of acute kidney injury [J]. ACS Nano, 2021, Epub ahead of print.
[32]
Kim MG, Yun D, Kang CL, et al. Kidney VISTA prevents IFN-γ/IL-9 axis-mediated tubulointerstitial fibrosis after acute glomerular injury [J]. J Clin Invest, 2022, 132(1): e151189.
[33]
Sasaki K, Terker AS, Pan Y, et al. Deletion of myeloid interferon regulatory factor 4 (Irf4) in mouse model protects against kidney fibrosis after ischemic injury by decreased macrophage recruitment and activation [J]. J Am Soc Nephrol, 2021, 32(5): 1037-1052.
[34]
Peng F, Gong W, Li S, et al. circRNA_010383 acts as a sponge for miR-135a, and its downregulated expression contributes to renal fibrosis in diabetic nephropathy [J]. Diabetes, 2021, 70(2): 603-615.
[35]
van Zonneveld AJ, Kolling M, Bijkerk R, et al. Circular RNAs in kidney disease and cancer [J]. Nat Rev Nephrol, 2021, 17(12): 814-826.
[36]
Schmidt IM, Colona MR, Kestenbaum BR, et al. Cadherin-11, Sparc-related modular calcium binding protein-2, and pigment epithelium-derived factor are promising non-invasive biomarkers of kidney fibrosis [J]. Kidney Int, 2021, 100(3): 672-683.
[37]
Yang L, Dai R, Wu H, et al. Unspliced XBP1 counteracts β-catenin to inhibit vascular calcification [J]. Circ Res, 2022, 130(2): 213-229.
[38]
Liu X, Chen A, Liang Q, et al. Spermidine inhibits vascular calcification in chronic kidney disease through modulation of SIRT1 signaling pathway [J]. Aging Cell, 2021, 20(6): e13377.
[39]
Chiu HW, Hou YC, Lu CL, et al. Cinacalcet improves bone parameters through regulation of osteoclast endoplasmic reticulum stress, autophagy, and apoptotic pathways in chronic kidney disease-mineral and bone disorder [J]. J Bone Miner Res, 2022, 37(2): 215-225.
[1] 韩圣瑾, 周正武, 翁云龙, 黄鑫. 碳酸氢钠林格液联合连续性肾脏替代疗法对创伤合并急性肾损伤患者炎症水平及肾功能的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 376-381.
[2] 张秋彬, 张楠, 林清婷, 徐军, 朱华栋, 姜辉. 急性胰腺炎合并急性肾损伤患者的预后评估[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 382-389.
[3] 莫小乔, 胡喆莹, 廖冬花, 谢天. 脓毒症继发急性肾损伤患者死亡风险预测模型构建及评估[J]. 中华危重症医学杂志(电子版), 2023, 16(03): 198-206.
[4] 吴庆华, 冒勇, 闫效坤. AECOPD并发AKI的危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 529-531.
[5] 李金璞, 饶向荣. 抗病毒药物和急性肾损伤[J]. 中华肾病研究电子杂志, 2023, 12(05): 287-290.
[6] 任加发, 邬步云, 邢昌赢, 毛慧娟. 2022年急性肾损伤领域基础与临床研究进展[J]. 中华肾病研究电子杂志, 2023, 12(05): 276-281.
[7] 李青霖, 宋仁杰, 周飞虎. 一种重型劳力性热射病相关急性肾损伤小鼠模型的建立与探讨[J]. 中华肾病研究电子杂志, 2023, 12(05): 265-270.
[8] 程庆砾. 新冠病毒感染与肾脏[J]. 中华肾病研究电子杂志, 2023, 12(04): 240-240.
[9] 宋艳琪, 任雪景, 王文娟, 韩秋霞, 续玥, 庄凯婷, 肖拓, 蔡广研. 间充质干细胞对顺铂诱导的小鼠急性肾损伤中细胞铁死亡的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 187-193.
[10] 苗软昕, 乔晞. Toll样受体在脓毒症性急性肾损伤中的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 210-214.
[11] 李娜, 朱国贞. 肠道菌群及其代谢产物在急性肾损伤中的作用研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 215-219.
[12] 任国华, 杜晓晓, 洪善玲, 邵帅. 妊娠期高血压并发急性肾损伤患者血清白细胞介素-22、硫化氢及护骨素水平的变化与意义[J]. 中华肾病研究电子杂志, 2023, 12(03): 150-155.
[13] 于天宇, 杨悦, 陆海涛, 田志永, 李文歌. 高龄急性肾损伤患者连续性肾脏替代治疗的预后及影响因素[J]. 中华肾病研究电子杂志, 2023, 12(03): 134-138.
[14] 李欣赛, 彭凯, 黄萱, 王正业, 褚雪倩, 陈思思, 蒋绪燕, 李素华. 不同分型急性主动脉夹层导致围术期AKI临床预测模型的构建与比较[J]. 中华重症医学电子杂志, 2023, 09(02): 149-161.
[15] 易成, 韦伟, 赵宇亮. 急性肾脏病的概念沿革[J]. 中华临床医师杂志(电子版), 2023, 17(08): 906-910.
阅读次数
全文


摘要