切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2022, Vol. 11 ›› Issue (02) : 79 -83. doi: 10.3877/cma.j.issn.2095-3216.2022.02.005

综述

2021年肾脏病学基础研究进展
刘思梦1, 陈思1, 周梦1, 李青1, 吴琳1, 袁杨刚1, 张波1, 王宁宁1, 张莉1, 毛慧娟1, 邢昌赢1,()   
  1. 1. 210029 南京,江苏省人民医院(南京医科大学第一附属医院)肾内科
  • 收稿日期:2022-01-21 出版日期:2022-04-28
  • 通信作者: 邢昌赢
  • 基金资助:
    国家自然科学基金面上项目(82170699); 江苏省医学创新团队项目(CXTDA2017011)

Advances in basic research on nephrology in 2021

Simeng Liu1, Si Chen1, Meng Zhou1, Qing Li1, Lin Wu1, Yanggang Yuan1, Bo Zhang1, Ningning Wang1, Li Zhang1, Huijuan Mao1, Changying Xing1,()   

  1. 1. Department of Nephrology, Jiangsu Provincial People′s Hospital, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
  • Received:2022-01-21 Published:2022-04-28
  • Corresponding author: Changying Xing
引用本文:

刘思梦, 陈思, 周梦, 李青, 吴琳, 袁杨刚, 张波, 王宁宁, 张莉, 毛慧娟, 邢昌赢. 2021年肾脏病学基础研究进展[J/OL]. 中华肾病研究电子杂志, 2022, 11(02): 79-83.

Simeng Liu, Si Chen, Meng Zhou, Qing Li, Lin Wu, Yanggang Yuan, Bo Zhang, Ningning Wang, Li Zhang, Huijuan Mao, Changying Xing. Advances in basic research on nephrology in 2021[J/OL]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2022, 11(02): 79-83.

2021年度肾脏病学基础研究领域取得了诸多重要研究进展。本文将从原发性肾小球疾病、继发性肾小球疾病、急性肾损伤、肾脏纤维化以及矿物质和骨代谢紊乱等5个方面,概括相关发病机制、生物标志物及潜在的新药靶标方面的最新进展,为肾脏疾病后续的基础研究和临床治疗提供新思路。

In 2021, many important research advances have been made in the field of basic research on nephrology. This article focused on five topics: primary glomerular disease, secondary glomerular disease, acute kidney injury, renal fibrosis, and mineral and bone disorder, summarizing recent advances in the pathogenesis, biomarkers, and potential targets for new drugs, in order to provide new ideas for further basic research and clinical treatment of renal diseases.

[1]
Kalantar-Zadeh K, Jafar TH, Nitsch D, et al. Chronic kidney disease [J]. Lancet, 2021, 398(10302): 786-802.
[2]
Ronco P, Beck L, Debiec H, et al. Membranous nephropathy [J]. Nat Rev Dis Primers, 2021, 7(1): 69.
[3]
Sethi S, Madden B, Debiec H, et al. Protocadherin 7-associated membranous nephropathy [J]. J Am Soc Nephrol, 2021, 32(5): 1249-1261.
[4]
Al-Rabadi LF, Caza T, Trivin-Avillach C, et al. Serine protease HTRA1 as a novel target antigen in primary membranous nephropathy [J]. J Am Soc Nephrol, 2021, 32(7): 1666-1681.
[5]
Sethi S. New 'antigens’ in membranous nephropathy [J]. J Am Soc Nephrol, 2021, 32(2): 268-278.
[6]
Lomax-Browne HJ, Visconti A, Pusey CD, et al. IgA1 glycosylation is heritable in healthy twins [J]. J Am Soc Nephrol, 2017, 28(1): 64-68.
[7]
Wang YN, Zhou XJ, Chen P, et al. Interaction between GALNT12 and C1GALT1 associates with galactose-deficient IgA1 and IgA nephropathy [J]. J Am Soc Nephrol, 2021, 32(3): 545-552.
[8]
Farrar CA, Tran D, Li K, et al. Collectin-11 detects stress-induced L-fucose pattern to trigger renal epithelial injury [J]. J Clin Invest, 2016, 126(5): 1911-1925.
[9]
Allison SJ. Acute kidney injury: collectin-11: a signal for complement activation [J]. Nat Rev Nephrol, 2016, 12(7): 378.
[10]
Wei M, Guo WY, Xu BY, et al. Collectin11 and complement activation in IgA nephropathy [J]. Clin J Am Soc Nephrol, 2021, 16(12): 1840-1850.
[11]
Tang R, Meng T, Lin W, et al. A partial picture of the single-cell transcriptomics of human IgA nephropathy [J]. Front Immunol, 2021, 12: 645988.
[12]
Dotz V, Visconti A, Lomax-Browne HJ, et al. O- and N-glycosylation of serum immunoglobulin A is associated with IgA nephropathy and glomerular function [J]. J Am Soc Nephrol, 2021, 32(10): 2455-2465.
[13]
Xie D, Zhao H, Xu X, et al. Intensity of macrophage infiltration in glomeruli predicts response to immunosuppressive therapy in patients with IgA nephropathy [J]. J Am Soc Nephrol, 2021, 32(12): 3187-3196.
[14]
Han WK, Alinani A, Wu CL, et al. Human kidney injury molecule-1 is a tissue and urinary tumor marker of renal cell carcinoma [J]. J Am Soc Nephrol, 2005, 16(4): 1126-1134.
[15]
Greenberg JH, Abraham AG, Xu Y, et al. Urine biomarkers of kidney tubule health, injury, and inflammation are associated with progression of CKD in children [J]. J Am Soc Nephrol, 2021, 32(10): 2664-2677.
[16]
Mori Y, Ajay AK, Chang JH, et al. KIM-1 mediates fatty acid uptake by renal tubular cells to promote progressive diabetic kidney disease [J]. Cell Metab, 2021, 33(5): 1042-1061.
[17]
Doke T, Huang S, Qiu C, et al. Transcriptome-wide association analysis identifies DACH1 as a kidney disease risk gene that contributes to fibrosis [J]. J Clin Invest, 2021, 131(10): e141801.
[18]
Cao A, Li J, Asadi M, et al. DACH1 protects podocytes from experimental diabetic injury and modulates PTIP-H3K4Me3 activity [J]. J Clin Invest, 2021, 131(10): e141279.
[19]
Caza TN, Hassen SI, Kuperman M, et al. Neural cell adhesion molecule 1 is a novel autoantigen in membranous lupus nephritis [J]. Kidney Int, 2021, 100(1): 171-181.
[20]
Fava A, Rao DA, Mohan C, et al. Urine proteomics and renal single cell transcriptomics implicate IL-16 in lupus nephritis [J]. Arthritis Rheumatol, 2021, Epub ahead of print.
[21]
Amo L, Kole HK, Scott B, et al. CCL17-producing cDC2s are essential in end-stage lupus nephritis and averted by a parasitic infection [J]. J Clin Invest, 2021, 131(11): e148000.
[22]
Gan PY, Dick J, O'Sullivan KM, et al. Anti-CD20 mAb-induced B cell apoptosis generates T cell regulation of experimental myeloperoxidase ANCA-associated vasculitis [J]. J Am Soc Nephrol, 2021, 32(5): 1071-1083.
[23]
Moller-Hackbarth K, Dabaghie D, Charrin E, et al. Retinoic acid receptor responder1 promotes development of glomerular diseases via the nuclear factor-κB signaling pathway [J]. Kidney Int, 2021, 100(4): 809-823.
[24]
Moran SM, Scott J, Clarkson MR, et al. The clinical application of urine soluble CD163 in ANCA-associated vasculitis [J]. J Am Soc Nephrol, 2021, 32(11): 2920-2932.
[25]
Scholz H, Boivin FJ, Schmidt-Ott KM, et al. Kidney physiology and susceptibility to acute kidney injury: implications for renoprotection [J]. Nat Rev Nephrol, 2021, 17(5): 335-349.
[26]
Tang C, Cai J, Yin XM, et al. Mitochondrial quality control in kidney injury and repair [J]. Nat Rev Nephrol, 2021, 17(5): 299-318.
[27]
Tonnus W, Meyer C, Steinebach C, et al. Dysfunction of the key ferroptosis-surveilling systems hypersensitizes mice to tubular necrosis during acute kidney injury [J]. Nat Commun, 2021, 12(1): 4402.
[28]
Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease [J]. Nat Rev Mol Cell Biol, 2021, 22(4): 266-282.
[29]
Zhu H, Cao C, Wu Z, et al. The probiotic L. casei Zhang slows the progression of acute and chronic kidney disease [J]. Cell Metab, 2021, 33(10): 2091-2093.
[30]
Radhakrishnan K, Kim YH, Jung YS, et al. Orphan nuclear receptor ERR-γ regulates hepatic FGF23 production in acute kidney injury [J]. Proc Natl Acad Sci USA, 2021, 118(16): e2022841118.
[31]
Li W, Wang C, Lv H, et al. A DNA nanoraft-based cytokine delivery platform for alleviation of acute kidney injury [J]. ACS Nano, 2021, Epub ahead of print.
[32]
Kim MG, Yun D, Kang CL, et al. Kidney VISTA prevents IFN-γ/IL-9 axis-mediated tubulointerstitial fibrosis after acute glomerular injury [J]. J Clin Invest, 2022, 132(1): e151189.
[33]
Sasaki K, Terker AS, Pan Y, et al. Deletion of myeloid interferon regulatory factor 4 (Irf4) in mouse model protects against kidney fibrosis after ischemic injury by decreased macrophage recruitment and activation [J]. J Am Soc Nephrol, 2021, 32(5): 1037-1052.
[34]
Peng F, Gong W, Li S, et al. circRNA_010383 acts as a sponge for miR-135a, and its downregulated expression contributes to renal fibrosis in diabetic nephropathy [J]. Diabetes, 2021, 70(2): 603-615.
[35]
van Zonneveld AJ, Kolling M, Bijkerk R, et al. Circular RNAs in kidney disease and cancer [J]. Nat Rev Nephrol, 2021, 17(12): 814-826.
[36]
Schmidt IM, Colona MR, Kestenbaum BR, et al. Cadherin-11, Sparc-related modular calcium binding protein-2, and pigment epithelium-derived factor are promising non-invasive biomarkers of kidney fibrosis [J]. Kidney Int, 2021, 100(3): 672-683.
[37]
Yang L, Dai R, Wu H, et al. Unspliced XBP1 counteracts β-catenin to inhibit vascular calcification [J]. Circ Res, 2022, 130(2): 213-229.
[38]
Liu X, Chen A, Liang Q, et al. Spermidine inhibits vascular calcification in chronic kidney disease through modulation of SIRT1 signaling pathway [J]. Aging Cell, 2021, 20(6): e13377.
[39]
Chiu HW, Hou YC, Lu CL, et al. Cinacalcet improves bone parameters through regulation of osteoclast endoplasmic reticulum stress, autophagy, and apoptotic pathways in chronic kidney disease-mineral and bone disorder [J]. J Bone Miner Res, 2022, 37(2): 215-225.
[1] 张婧琦, 江洋, 孙佳璐, 唐兴喆, 赵宇飞, 崔颖, 李信响, 戴景月, 傅琳, 彭新桂. 基于肾周CT特征结合血清肌酐水平探讨脓毒症伴急性肾损伤的早期识别[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 285-292.
[2] 樊恒, 孙敏, 朱建华. 红景天苷通过抑制PI3K/AKT/mTOR信号通路对大鼠脓毒症急性肾损伤的保护作用[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(03): 188-195.
[3] 张锦丽, 席毛毛, 褚志刚, 栾夏刚, 陈诺, 王德运, 谢卫国. 大面积烧伤患者发生早期急性肾损伤的危险因素分析[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(04): 282-287.
[4] 彭瑞, 杨瑞文, 魏澹宁, 夏永良. 琥珀酸受体1加重肾脏缺血再灌注损伤的作用研究[J/OL]. 中华移植杂志(电子版), 2024, 18(03): 159-164.
[5] 中华医学会器官移植学分会, 中国医师协会器官移植医师分会. 中国肝移植受者肾损伤管理临床实践指南(2023版)[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 276-288.
[6] 杜霞, 马梦青, 曹长春. 造影剂诱导的急性肾损伤的发病机制及干预靶点研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 279-282.
[7] 郭俊楠, 林惠, 任艺林, 乔晞. 氨基酸代谢异常在急性肾损伤向慢性肾脏病转变中的作用研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 283-287.
[8] 袁楠, 黄梦杰, 白云凤, 李晓帆, 罗从娟, 陈健文. 急性肾损伤-慢性肾脏病转化小鼠模型制备的教学要点及学习效果分析[J/OL]. 中华肾病研究电子杂志, 2024, 13(04): 226-230.
[9] 林玲, 李京儒, 沈瑞华, 林惠, 乔晞. 基于生物信息学分析小鼠急性肾损伤和急性肺损伤的枢纽基因[J/OL]. 中华肾病研究电子杂志, 2024, 13(03): 134-144.
[10] 周建芳, 罗旭颖, 张琳琳, 李宏亮, 杨燕琳, 陈光强, 石广志. 开颅术后危重患者急性肾损伤的发病率、危险因素及其对预后的影响[J/OL]. 中华重症医学电子杂志, 2024, 10(02): 148-156.
[11] 肖增丽, 杜安琪, 孙瑶, 赵慧颖, 安友仲. 脑出血术后AKI发生的危险因素分析及预测模型建立[J/OL]. 中华重症医学电子杂志, 2024, 10(02): 157-163.
[12] 司楠, 孙洪涛. 创伤性脑损伤后肾功能障碍危险因素的研究进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(05): 300-305.
[13] 沈炎, 张俊峰, 唐春芳. 预后营养指数结合血清降钙素原、胱抑素C及视黄醇结合蛋白对急性胰腺炎并发急性肾损伤的预测价值[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 536-540.
[14] 崔秋子, 姚红曼, 艾迎春. 监测NLR、PLR、CAR、白蛋白、血钙及血糖指标水平对急性胰腺炎患者急性肾损伤的预测价值分析[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(03): 244-248.
[15] 颜世锐, 熊辉. 感染性心内膜炎合并急性肾损伤患者的危险因素探索及死亡风险预测[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 618-624.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?