[1] |
Kalantar-Zadeh K, Jafar TH, Nitsch D, et al. Chronic kidney disease [J]. Lancet, 2021, 398(10302): 786-802.
|
[2] |
Ronco P, Beck L, Debiec H, et al. Membranous nephropathy [J]. Nat Rev Dis Primers, 2021, 7(1): 69.
|
[3] |
Sethi S, Madden B, Debiec H, et al. Protocadherin 7-associated membranous nephropathy [J]. J Am Soc Nephrol, 2021, 32(5): 1249-1261.
|
[4] |
Al-Rabadi LF, Caza T, Trivin-Avillach C, et al. Serine protease HTRA1 as a novel target antigen in primary membranous nephropathy [J]. J Am Soc Nephrol, 2021, 32(7): 1666-1681.
|
[5] |
Sethi S. New 'antigens’ in membranous nephropathy [J]. J Am Soc Nephrol, 2021, 32(2): 268-278.
|
[6] |
Lomax-Browne HJ, Visconti A, Pusey CD, et al. IgA1 glycosylation is heritable in healthy twins [J]. J Am Soc Nephrol, 2017, 28(1): 64-68.
|
[7] |
Wang YN, Zhou XJ, Chen P, et al. Interaction between GALNT12 and C1GALT1 associates with galactose-deficient IgA1 and IgA nephropathy [J]. J Am Soc Nephrol, 2021, 32(3): 545-552.
|
[8] |
Farrar CA, Tran D, Li K, et al. Collectin-11 detects stress-induced L-fucose pattern to trigger renal epithelial injury [J]. J Clin Invest, 2016, 126(5): 1911-1925.
|
[9] |
Allison SJ. Acute kidney injury: collectin-11: a signal for complement activation [J]. Nat Rev Nephrol, 2016, 12(7): 378.
|
[10] |
Wei M, Guo WY, Xu BY, et al. Collectin11 and complement activation in IgA nephropathy [J]. Clin J Am Soc Nephrol, 2021, 16(12): 1840-1850.
|
[11] |
Tang R, Meng T, Lin W, et al. A partial picture of the single-cell transcriptomics of human IgA nephropathy [J]. Front Immunol, 2021, 12: 645988.
|
[12] |
Dotz V, Visconti A, Lomax-Browne HJ, et al. O- and N-glycosylation of serum immunoglobulin A is associated with IgA nephropathy and glomerular function [J]. J Am Soc Nephrol, 2021, 32(10): 2455-2465.
|
[13] |
Xie D, Zhao H, Xu X, et al. Intensity of macrophage infiltration in glomeruli predicts response to immunosuppressive therapy in patients with IgA nephropathy [J]. J Am Soc Nephrol, 2021, 32(12): 3187-3196.
|
[14] |
Han WK, Alinani A, Wu CL, et al. Human kidney injury molecule-1 is a tissue and urinary tumor marker of renal cell carcinoma [J]. J Am Soc Nephrol, 2005, 16(4): 1126-1134.
|
[15] |
Greenberg JH, Abraham AG, Xu Y, et al. Urine biomarkers of kidney tubule health, injury, and inflammation are associated with progression of CKD in children [J]. J Am Soc Nephrol, 2021, 32(10): 2664-2677.
|
[16] |
Mori Y, Ajay AK, Chang JH, et al. KIM-1 mediates fatty acid uptake by renal tubular cells to promote progressive diabetic kidney disease [J]. Cell Metab, 2021, 33(5): 1042-1061.
|
[17] |
Doke T, Huang S, Qiu C, et al. Transcriptome-wide association analysis identifies DACH1 as a kidney disease risk gene that contributes to fibrosis [J]. J Clin Invest, 2021, 131(10): e141801.
|
[18] |
Cao A, Li J, Asadi M, et al. DACH1 protects podocytes from experimental diabetic injury and modulates PTIP-H3K4Me3 activity [J]. J Clin Invest, 2021, 131(10): e141279.
|
[19] |
Caza TN, Hassen SI, Kuperman M, et al. Neural cell adhesion molecule 1 is a novel autoantigen in membranous lupus nephritis [J]. Kidney Int, 2021, 100(1): 171-181.
|
[20] |
Fava A, Rao DA, Mohan C, et al. Urine proteomics and renal single cell transcriptomics implicate IL-16 in lupus nephritis [J]. Arthritis Rheumatol, 2021, Epub ahead of print.
|
[21] |
Amo L, Kole HK, Scott B, et al. CCL17-producing cDC2s are essential in end-stage lupus nephritis and averted by a parasitic infection [J]. J Clin Invest, 2021, 131(11): e148000.
|
[22] |
Gan PY, Dick J, O'Sullivan KM, et al. Anti-CD20 mAb-induced B cell apoptosis generates T cell regulation of experimental myeloperoxidase ANCA-associated vasculitis [J]. J Am Soc Nephrol, 2021, 32(5): 1071-1083.
|
[23] |
Moller-Hackbarth K, Dabaghie D, Charrin E, et al. Retinoic acid receptor responder1 promotes development of glomerular diseases via the nuclear factor-κB signaling pathway [J]. Kidney Int, 2021, 100(4): 809-823.
|
[24] |
Moran SM, Scott J, Clarkson MR, et al. The clinical application of urine soluble CD163 in ANCA-associated vasculitis [J]. J Am Soc Nephrol, 2021, 32(11): 2920-2932.
|
[25] |
Scholz H, Boivin FJ, Schmidt-Ott KM, et al. Kidney physiology and susceptibility to acute kidney injury: implications for renoprotection [J]. Nat Rev Nephrol, 2021, 17(5): 335-349.
|
[26] |
Tang C, Cai J, Yin XM, et al. Mitochondrial quality control in kidney injury and repair [J]. Nat Rev Nephrol, 2021, 17(5): 299-318.
|
[27] |
Tonnus W, Meyer C, Steinebach C, et al. Dysfunction of the key ferroptosis-surveilling systems hypersensitizes mice to tubular necrosis during acute kidney injury [J]. Nat Commun, 2021, 12(1): 4402.
|
[28] |
Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease [J]. Nat Rev Mol Cell Biol, 2021, 22(4): 266-282.
|
[29] |
Zhu H, Cao C, Wu Z, et al. The probiotic L. casei Zhang slows the progression of acute and chronic kidney disease [J]. Cell Metab, 2021, 33(10): 2091-2093.
|
[30] |
Radhakrishnan K, Kim YH, Jung YS, et al. Orphan nuclear receptor ERR-γ regulates hepatic FGF23 production in acute kidney injury [J]. Proc Natl Acad Sci USA, 2021, 118(16): e2022841118.
|
[31] |
Li W, Wang C, Lv H, et al. A DNA nanoraft-based cytokine delivery platform for alleviation of acute kidney injury [J]. ACS Nano, 2021, Epub ahead of print.
|
[32] |
Kim MG, Yun D, Kang CL, et al. Kidney VISTA prevents IFN-γ/IL-9 axis-mediated tubulointerstitial fibrosis after acute glomerular injury [J]. J Clin Invest, 2022, 132(1): e151189.
|
[33] |
Sasaki K, Terker AS, Pan Y, et al. Deletion of myeloid interferon regulatory factor 4 (Irf4) in mouse model protects against kidney fibrosis after ischemic injury by decreased macrophage recruitment and activation [J]. J Am Soc Nephrol, 2021, 32(5): 1037-1052.
|
[34] |
Peng F, Gong W, Li S, et al. circRNA_010383 acts as a sponge for miR-135a, and its downregulated expression contributes to renal fibrosis in diabetic nephropathy [J]. Diabetes, 2021, 70(2): 603-615.
|
[35] |
van Zonneveld AJ, Kolling M, Bijkerk R, et al. Circular RNAs in kidney disease and cancer [J]. Nat Rev Nephrol, 2021, 17(12): 814-826.
|
[36] |
Schmidt IM, Colona MR, Kestenbaum BR, et al. Cadherin-11, Sparc-related modular calcium binding protein-2, and pigment epithelium-derived factor are promising non-invasive biomarkers of kidney fibrosis [J]. Kidney Int, 2021, 100(3): 672-683.
|
[37] |
Yang L, Dai R, Wu H, et al. Unspliced XBP1 counteracts β-catenin to inhibit vascular calcification [J]. Circ Res, 2022, 130(2): 213-229.
|
[38] |
Liu X, Chen A, Liang Q, et al. Spermidine inhibits vascular calcification in chronic kidney disease through modulation of SIRT1 signaling pathway [J]. Aging Cell, 2021, 20(6): e13377.
|
[39] |
Chiu HW, Hou YC, Lu CL, et al. Cinacalcet improves bone parameters through regulation of osteoclast endoplasmic reticulum stress, autophagy, and apoptotic pathways in chronic kidney disease-mineral and bone disorder [J]. J Bone Miner Res, 2022, 37(2): 215-225.
|