切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2023, Vol. 12 ›› Issue (05) : 276 -281. doi: 10.3877/cma.j.issn.2095-3216.2023.05.007

综述

2022年急性肾损伤领域基础与临床研究进展
任加发, 邬步云, 邢昌赢, 毛慧娟()   
  1. 210029 南京医科大学第一附属医院(江苏省人民医院)肾内科
  • 收稿日期:2023-01-18 出版日期:2023-10-28
  • 通信作者: 毛慧娟
  • 基金资助:
    国家自然科学基金青年项目(82100720); 国家自然科学基金(82151320、83970639)

Advances in the basic and clinical research on acute kidney injury in 2022

Jiafa Ren, Buyun Wu, Changying Xing, Huijuan Mao()   

  1. Department of Nephrology, First Affiliated Hospital of Nanjing Medical University (Jiangsu Provincial People′s Hospital), Nanjing 210029, Jiangsu Province, China
  • Received:2023-01-18 Published:2023-10-28
  • Corresponding author: Huijuan Mao
引用本文:

任加发, 邬步云, 邢昌赢, 毛慧娟. 2022年急性肾损伤领域基础与临床研究进展[J]. 中华肾病研究电子杂志, 2023, 12(05): 276-281.

Jiafa Ren, Buyun Wu, Changying Xing, Huijuan Mao. Advances in the basic and clinical research on acute kidney injury in 2022[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2023, 12(05): 276-281.

对2022年急性肾损伤的基础和临床研究领域重要进展作综述总结,其中,基础研究进展主要包括:肾小管损伤的发生机制、免疫炎症微环境、细胞间"交互通讯"等;临床研究进展主要包括:各临床类型急性肾损伤的再认识、诊断与生物标记物、肾脏替代治疗时机等。这些研究进展为理解急性肾损伤的发病机制、病理生理过程、诊断、预后以及指导治疗等提供重要证据。

This paper summarized the important progress in the basic and clinical research fields of acute kidney injury (AKI) in 2022. The basic research progress mainly included the pathogenesis of renal tubular injury, the microenvironment of immune inflammation, and the cross-talk between cells. The clinical research progress mainly included further understanding of the epidemiology, diagnosis and biomarkers, and timing of renal replacement therapy in AKI of various clinical types. These research advances provide critical evidence for understanding of the pathogenesis, pathophysiological process, diagnosis, prognosis, as well as guiding treatment of AKI.

[1]
Yu Z, Xu Z, Liang Y, et al. Vitamin C deficiency causes cell type-specific epigenetic reprogramming and acute tubular necrosis in a mouse model [J]. J Am Soc Nephrol, 2022, 33(3): 531-546.
[2]
De Chiara L, Conte C, Semeraro R, et al. Tubular cell polyploidy protects from lethal acute kidney injury but promotes consequent chronic kidney disease [J]. Nat Commun, 2022, 13(1): 5805.
[3]
Martin-Saiz L, Guerrero-Mauvecin J, Martin-Sanchez D, et al. Ferrostatin-1 modulates dysregulated kidney lipids in acute kidney injury [J]. J Pathol, 2022, 257(3): 285-299.
[4]
von Massenhausen A, Zamora Gonzalez N, Maremonti F, et al. Dexamethasone sensitizes to ferroptosis by glucocorticoid receptor-induced dipeptidase-1 expression and glutathione depletion [J]. Sci Adv, 2022, 8(5): eabl8920.
[5]
Sako K, Furuichi K, Makiishi S, et al. Cyclin-dependent kinase 4-related tubular epithelial cell proliferation is regulated by paired box gene 2 in kidney ischemia-reperfusion injury [J]. Kidney Int, 2022, 102(1): 45-57.
[6]
Shin NS, Marlier A, Xu L, et al. Arginase-1 is required for macrophage-mediated renal tubule regeneration [J]. J Am Soc Nephrol, 2022, 33(6): 1077-1086.
[7]
Shi M, Maique J, Shepard S, et al. In vivo evidence for therapeutic applications of beclin 1 to promote recovery and inhibit fibrosis after acute kidney injury [J]. Kidney Int, 2022, 101(1): 63-78.
[8]
Chen JW, Huang MJ, Chen XN, et al. Transient upregulation of EGR1 signaling enhances kidney repair by activating SOX9+ renal tubular cells [J]. Theranostics, 2022, 12(12): 5434-5450.
[9]
Klocke J, Kim SJ, Skopnik CM, et al. Urinary single-cell sequencing captures kidney injury and repair processes in human acute kidney injury [J]. Kidney Int, 2022, 102(6): 1359-1370.
[10]
Vallorz EL, Janda J, Mansour HM, et al. Kidney targeting of formoterol containing polymeric nanoparticles improves recovery from ischemia reperfusion-induced acute kidney injury in mice [J]. Kidney Int, 2022, 102(5): 1073-1089.
[11]
Thomas K, Zondler L, Ludwig N, et al. Glutamine prevents acute kidney injury by modulating oxidative stress and apoptosis in tubular epithelial cells [J]. JCI Insight, 2022, 7(21): e163161.
[12]
Valino-Rivas L, Cuarental L, Ceballos MI, et al. Growth differentiation factor-15 preserves klotho expression in acute kidney injury and kidney fibrosis [J]. Kidney Int, 2022, 101(6): 1200-1215.
[13]
Yao W, Chen Y, Li Z, et al. Single cell RNA sequencing identifies a unique inflammatory macrophage subset as a druggable target for alleviating acute kidney injury [J]. Adv Sci (Weinh), 2022, 9(12): e2103675.
[14]
Lau A, Rahn JJ, Chappellaz M, et al. Dipeptidase-1 governs renal inflammation during ischemia reperfusion injury [J]. Sci Adv, 2022, 8(5): eabm0142.
[15]
Pan Y, Cao S, Terker AS, et al. Myeloid cyclooxygenase-2/prostaglandin E2/E-type prostanoid receptor 4 promotes transcription factor MafB-dependent inflammatory resolution in acute kidney injury [J]. Kidney Int, 2022, 101(1): 79-91.
[16]
Leng J, Zhao W, Guo J, et al. E-prostanoid 3 receptor deficiency on myeloid cells protects against ischemic acute kidney injury via breaking the auto-amplification loop of necroinflammation [J]. Kidney Int, 2023, 103(1): 100-114.
[17]
Martin-Sanchez D, Guerrero-Mauvecin J, Fontecha-Barriuso M, et al. Bone marrow-derived RIPK3 mediates kidney inflammation in acute kidney injury [J]. J Am Soc Nephrol, 2022, 33(2): 357-373.
[18]
Baatarjav C, Komada T, Karasawa T, et al. dsDNA-induced AIM2 pyroptosis halts aberrant inflammation during rhabdomyolysis-induced acute kidney injury [J]. Cell Death Differ, 2022, 29(12): 2487-2502.
[19]
Privratsky JR, Ide S, Chen Y, et al. A macrophage-endothelial immunoregulatory axis ameliorates septic acute kidney injury [J]. Kidney Int, 2023, 103(3): 514-528.
[20]
Cai A, Ye G, Placier S, et al. Genetic inactivation of semaphorin 3C protects mice from acute kidney injury [J]. Kidney Int, 2022, 101(4): 720-732.
[21]
Tanaka T, Kavsur R, Sugiura A, et al. Acute kidney injury following tricuspid transcatheter edge-to-edge repair [J]. JACC Cardiovasc Interv, 2022, 15(19): 1936-1945.
[22]
Koh HB, Jung CY, Kim HW, et al. Preoperative ionized magnesium levels and risk of acute kidney injury after cardiac surgery [J]. Am J Kidney Dis, 2022, 80(5): e629-e637.
[23]
Murphy CF, Dunne T, Elliott JA, et al. Acute kidney injury after esophageal cancer surgery: incidence, risk factors, and impact on oncologic outcomes [J]. Ann Surg, 2022, 275(5): e683-e689.
[24]
Ozrazgat-Baslanti T, Loftus TJ, Mohandas R, et al. Clinical trajectories of acute kidney injury in surgical sepsis: a prospective observational study [J]. Ann Surg, 2022, 275(6): 1184-1193.
[25]
Molinari L, Del Rio-Pertuz G, Smith A, et al. Utility of biomarkers for sepsis-associated acute kidney injury staging [J]. JAMA Netw Open, 2022, 5(5): e2212709.
[26]
Mohebi R, Karimi Galougahi K, Garcia JJ, et al. Long-term clinical impact of contrast-associated acute kidney injury following PCI: an ADAPT-DES substudy [J]. JACC Cardiovasc Interv, 2022, 15(7): 753-766.
[27]
Tergast TL, Schulte B, Griemsmann M, et al. Application of CT contrast medium is not associated with an increased risk for acute kidney injury in patients with decompensated cirrhosis [J]. Aliment Pharmacol Ther, 2023, 57(1): 136-145.
[28]
Baker ML, Yamamoto Y, Perazella MA, et al. Mortality after acute kidney injury and acute interstitial nephritis in patients prescribed immune checkpoint inhibitor therapy [J]. J Immunother Cancer, 2022, 10(3): e004421.
[29]
Gupta S, Garcia-Carro C, Prosek JM, et al. Shorter versus longer corticosteroid duration and recurrent immune checkpoint inhibitor-associated AKI [J]. J Immunother Cancer, 2022, 10(9): e005646.
[30]
Collaborative ST. Perioperative nonsteroidal anti-inflammatory drugs (NSAID) administration and acute kidney injury (AKI) in major gastrointestinal surgery: a prospective, multicenter, propensity matched cohort study [J]. Ann Surg, 2022, 275(5): 904-910.
[31]
Jiang G, Luk AO, Tam CHT, et al. Clinical predictors and long-term impact of acute kidney injury on progression of diabetic kidney disease in Chinese patients with type 2 diabetes [J]. Diabetes, 2022, 71(3): 520-529.
[32]
Farooqui N, Sy-Go JPT, Miao J, et al. Incidence and risk factors for acute kidney injury after chimeric antigen receptor t-cell therapy [J]. Mayo Clin Proc, 2022, 97(7): 1294-1304.
[33]
Patidar KR, Naved MA, Grama A, et al. Acute kidney disease is common and associated with poor outcomes in patients with cirrhosis and acute kidney injury [J]. J Hepatol, 2022, 77(1): 108-115.
[34]
Shapiro J, Ray JG, McArthur E, et al. Risk of acute kidney injury after hypertensive disorders of pregnancy: a population-based cohort study [J]. Am J Kidney Dis, 2022, 79(4): 561-569.
[35]
Batte A, Menon S, Ssenkusu JM, et al. Neutrophil gelatinase-associated lipocalin is elevated in children with acute kidney injury and sickle cell anemia, and predicts mortality [J]. Kidney Int, 2022, 102(4): 885-893.
[36]
Gambino C, Piano S, Stenico M, et al. Diagnostic and prognostic performance of urinary neutrophil gelatinase-associated lipocalin in patients with cirrhosis and acute kidney injury [J]. Hepatology, 2022, Epub ahead of print.
[37]
Wilson M, Packington R, Sewell H, et al. Biomarkers during recovery from AKI and prediction of long-term reductions in estimated GFR [J]. Am J Kidney Dis, 2022, 79(5): 646-656.
[38]
Pan HC, Yang SY, Chiou TT, et al. Comparative accuracy of biomarkers for the prediction of hospital-acquired acute kidney injury: a systematic review and meta-analysis [J]. Crit Care, 2022, 26(1): 349.
[39]
Demirjian S, Bashour CA, Shaw A, et al. Predictive accuracy of a perioperative laboratory test-based prediction model for moderate to severe acute kidney injury after cardiac surgery [J]. JAMA, 2022, 327(10): 956-964.
[40]
Neyra JA, Ortiz-Soriano V, Liu LJ, et al. Prediction of mortality and major adverse kidney events in critically ill patients with acute kidney injury [J]. Am J Kidney Dis, 2023, 81(1): 36-47.
[41]
Hinze C, Kocks C, Leiz J, et al. Single-cell transcriptomics reveals common epithelial response patterns in human acute kidney injury [J]. Genome Med, 2022, 14(1): 103.
[42]
James MT, Har BJ, Tyrrell BD, et al. Effect of clinical decision support with audit and feedback on prevention of acute kidney injury in patients undergoing coronary angiography: a randomized clinical trial [J]. JAMA, 2022, 328(9): 839-849.
[43]
Zhuo M, Paik JM, Wexler DJ, et al. SGLT2 inhibitors and the risk of acute kidney injury in older adults with type 2 diabetes [J]. Am J Kidney Dis, 2022, 79(6): 858-867.
[44]
Bagshaw SM, Neto AS, Smith O, et al. Impact of renal-replacement therapy strategies on outcomes for patients with chronic kidney disease: a secondary analysis of the STARRT-AKI trial [J]. Intensive Care Med, 2022, 48(12): 1736-1750.
[45]
Gaudry S, Grolleau F, Barbar S, et al. Continuous renal replacement therapy versus intermittent hemodialysis as first modality for renal replacement therapy in severe acute kidney injury: a secondary analysis of AKIKI and IDEAL -ICU studies [J]. Crit Care, 2022, 26(1): 93.
[46]
Wang W, Chen J, Hu D, et al. SARS-CoV-2 N protein induces acute kidney injury via Smad3-dependent G1 cell cycle arrest mechanism [J]. Adv Sci (Weinh), 2022, 9(3): e2103248.
[47]
Hassler L, Wysocki J, Gelarden I, et al. A novel soluble ACE2 protein provides lung and kidney protection in mice susceptible to lethal SARS-CoV-2 infection [J]. J Am Soc Nephrol, 2022, 33(7): 1293-1307.
[48]
Rahmani W, Chung H, Sinha S, et al. Attenuation of SARS-CoV-2 infection by losartan in human kidney organoids [J]. iScience, 2022, 25(2): 103818.
[49]
Hsu CM, Gupta S, Tighiouart H, et al. Kidney recovery and death in critically ill patients with COVID-19-associated acute kidney injury treated with dialysis: the STOP-COVID cohort study [J]. Am J Kidney Dis, 2022, 79(3): 404-416.
[1] 刘佳璇, 徐兵河. 中国乳腺癌临床研究年度进展[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 259-265.
[2] 贺敬龙, 尚宏喜, 郝敏, 谢伟, 高明宏, 孙炜, 刘安庆. 重度类风湿关节炎患者行多关节置换术的临床手术疗效[J]. 中华关节外科杂志(电子版), 2023, 17(06): 860-864.
[3] 韩圣瑾, 周正武, 翁云龙, 黄鑫. 碳酸氢钠林格液联合连续性肾脏替代疗法对创伤合并急性肾损伤患者炎症水平及肾功能的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 376-381.
[4] 张秋彬, 张楠, 林清婷, 徐军, 朱华栋, 姜辉. 急性胰腺炎合并急性肾损伤患者的预后评估[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 382-389.
[5] 张晓燕, 肖东琼, 高沪, 陈琳, 唐发娟, 李熙鸿. 转录因子12过表达对脓毒症相关性脑病大鼠大脑皮质的保护作用及其机制[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 540-549.
[6] 陆美琪, 赵洁, 单菲, 王兴蕾, 姜笃银. 药物相关坏疽性脓皮病的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 447-450.
[7] 张潇尹, 于洋. 牙龈卟啉单胞菌介导慢性肾病发生发展的研究进展[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 328-334.
[8] 姚宏伟, 魏鹏宇, 高加勒, 张忠涛. 不断提高腹腔镜右半结肠癌D3根治术的规范化[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 1-4.
[9] 叶晓琳, 刘云飞, 庞明泉, 王海久, 任利, 侯立朝, 于文昊, 王志鑫, 樊海宁. 肝再生细胞来源及调控机制的研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 96-99.
[10] 熊风, 林辉煌, 陈晓波. 铥激光在泌尿外科中的临床应用及研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 533-536.
[11] 李青霖, 宋仁杰, 周飞虎. 一种重型劳力性热射病相关急性肾损伤小鼠模型的建立与探讨[J]. 中华肾病研究电子杂志, 2023, 12(05): 265-270.
[12] 李金璞, 饶向荣. 抗病毒药物和急性肾损伤[J]. 中华肾病研究电子杂志, 2023, 12(05): 287-290.
[13] 金刚, 李英真, 施维, 李博. 帕金森病在病理生理学中的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 315-319.
[14] 李田, 徐洪, 刘和亮. 尘肺病的相关研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 900-905.
[15] 易成, 韦伟, 赵宇亮. 急性肾脏病的概念沿革[J]. 中华临床医师杂志(电子版), 2023, 17(08): 906-910.
阅读次数
全文


摘要