切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2023, Vol. 12 ›› Issue (05) : 265 -270. doi: 10.3877/cma.j.issn.2095-3216.2023.05.005

论著

一种重型劳力性热射病相关急性肾损伤小鼠模型的建立与探讨
李青霖, 宋仁杰, 周飞虎()   
  1. 100853 北京,解放军总医院第一医学中心重症医学科
    100853 北京,解放军总医院第一医学中心重症医学科;解放军总医院第一医学中心肾脏疾病国家重点实验室
  • 收稿日期:2022-06-28 出版日期:2023-10-28
  • 通信作者: 周飞虎
  • 基金资助:
    基础加强计划项目(2022-JCJQ-ZD-097-11)

Establishment and exploration of a mouse model of severe exertional heat stroke-related acute kidney injury

Qinglin Li, Renjie Song, Feihu Zhou()   

  1. Department of Critical Care Medicine, First Medical Center of Chinese PLA General Hospital
    Department of Critical Care Medicine, First Medical Center of Chinese PLA General Hospital; First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases; Beijing 100853, China
  • Received:2022-06-28 Published:2023-10-28
  • Corresponding author: Feihu Zhou
引用本文:

李青霖, 宋仁杰, 周飞虎. 一种重型劳力性热射病相关急性肾损伤小鼠模型的建立与探讨[J]. 中华肾病研究电子杂志, 2023, 12(05): 265-270.

Qinglin Li, Renjie Song, Feihu Zhou. Establishment and exploration of a mouse model of severe exertional heat stroke-related acute kidney injury[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2023, 12(05): 265-270.

目的

建立小鼠重型劳力性热射病-急性肾损伤(EHS-AKI)模型,为其发病机制及相关治疗研究提供支持。

方法

6~8周的C57BL/6雄性野生型小鼠随机分为6组:生理盐水空白对照组(n=8)、生理盐水常温运动组(n=40)、生理盐水高温高湿运动组(n=80);甘油空白对照组(n=8)、甘油常温运动组(n=40)、甘油高温高湿运动组(n=120)。EHS的建模成功标准:小鼠直肠温度≥42.5℃且意识丧失。运动结束后6 h、12 h、1 d、2 d和3 d处死小鼠,留取标本。检测肌酐(Scr),尿素氮(BUN),白介素-6(IL-6),肌酸激酶(CK)、肌红蛋白(MYO)和肾脏病理。AKI诊断标准:参照KDIGO指南,48 h内Scr升高≥ 26.5 μmol/L并伴有明显的肾脏病理损伤。

结果

生理盐水常温运动组和甘油常温运动组小鼠至3 d时均存活,肾功能无明显变化。在运动结束后6 h、12 h、1 d、2 d、3 d,生理盐水高温高湿运动组的小鼠生存率分别为80%、70%、60%、60%、60%,而甘油高温高湿运动组的小鼠生存率则分别为60%、50%、40%、30%、30%。运动后12 h,生理盐水高温高湿运动组小鼠的Scr短暂性升高(P<0.05);运动后6 h,甘油高温高湿组小鼠的Scr、BUN、IL-6、CK、MYO即显著升高,在运动后1 d达到峰值。在生理盐水常温运动组、生理盐水高温高湿运动组、甘油常温运动组的小鼠,偶见肾间质炎症细胞浸润,未见肾小管扩张、水肿等肾脏损伤病理改变。甘油高温高湿运动组小鼠出现肾小管上皮细胞刷状缘脱失、小管上皮细胞脱落、基底膜裸露、管腔内管型等,其在运动后6 h、12 h、1 d、2 d、3 d时肾脏病理损伤的评分分别为(0.8±0.5)、(1.6±0.6)、(3.0±1.1)、(1.3±0.5)和(1.1±0.5)。

结论

通过小剂量甘油肌注和高温高湿运动,成功建立了重型EHS-AKI小鼠模型,将可为其发病机制及相关治疗研究提供支持。

Objective

To establish a mouse model of severe exertional heat stroke-related acute kidney injury (EHS-AKI) in order to provide support for research on the pathogenesis and treatment.

Methods

C57BL/6 male wild-type mice aged 6-8 weeks were randomly divided into 6 groups: saline blank control group (n=8), saline-normal temperature-exercise group (n=40), saline-high temperature-high humidity-exercise group (n=80), glycerol blank control group (n=8), glycerol-normal temperature-exercise group (n=40), and glycerol-high temperature-high humidity-exercise group (n=120). The success criteria for modeling EHS included that the mice had rectal temperature ≥ 42.5 ℃ and lost consciousness. At 6 hours, 12 hours, 1 day, 2 days, and 3 days after the exercise, the mice were sacrificed and specimens were taken. Measurement was performed for serum creatinine (Scr), urea nitrogen (BUN), interleukin-6 (IL-6), creatine kinase (CK), myoglobin (MYO), and renal pathological lesions. AKI diagnostic criteria was according to the KDIGO guidelines in Scr elevation ≥ 26.5 within 48 hours μmol/L accompanied by significant renal pathological lesions.

Results

Mice of both the saline-normal temperature-exercise group and the glycerol-normal temperature-exercise group survived at 3 days after exercise without significant change in the renal function. At 6 h, 12 h, 1 d, 2 d, and 3 d after the exercise, the survival rates of the saline-high temperature-high humidity-exercise group were 80%, 70%, 60%, 60%, and 60%, respectively, while the survival rates of the glycerol-high temperature-high humidity-exercise group were 60%, 50%, 40%, 30%, and 30%, respectively. At 12 hours after exercise, in the saline-high temperature-high humidity-exercise group, the level of Scr was briefly increased (P<0.05), while at 6 hours after exercise, in the glycerol-high temperature-high humidity-exercise group, levels of Scr, BUN, IL-6, CK, and MYO significantly increased, and peaked at 1 day after the exercise. In the saline-normal temperature-exercise group, the saline-high temperature-high humidity-exercise group, and the glycerol-normal temperature-exercise group, there were only occasional renal interstitial infiltration of inflammatory cells, without other pathological lesion changes such as renal tubular dilation and edema. In the glycerol-high temperature-high humidity-exercise group, the mice showed loss of brush border of renal tubular epithelial cells, detachment of tubular epithelial cells, exposure of the basement membrane, and tubular cast, etc. At 6 h, 12 h, 1 d, 2 d, and 3 d after exercise, the scores of renal pathological lesions in this group were 0.8±0.5, 1.6±0.6, 3.0±1.1, 1.3±0.5, and 1.1±0.5, respectively.

Conclusion

A mouse model of severe EHS-AKI was successfully established through low-dose glycerol intramuscular injection and exercise in high-temperature and high humidity, which may provide support for further research on the pathogenesis and treatment.

图1 实验造模方法流程图
表1 基线生理盐水空白对照组与甘油空白对照组比较(±sn=8)
表2 各组小鼠跑步后生化指标比较(±sn=8)
组别 跑步结束后
6 h 12 h 1 d 2 d 3 d
血肌酐(μmol/L)          
生理盐水常温运动组 25.9±1.8 25.0±3.4 24.4±3.3 23.4±2.8 24.5±3.8
生理盐水高温高湿运动组 26.2±2.1 30.2±3.2a 25.4±1.9 26.8±1.9 25.3±1.6
甘油常温运动组 27.4±1.8 27.2±1.6 26.2±2.5 27.4±1.8 27.5±2.4
甘油高温高湿运动组 52.7±8.6b 168.6±12.6b 185.9±18.4b 86.6±8.4b 108.1±10.1b
尿素氮(mmol/L)          
生理盐水常温运动组 7.1±1.7 8.0±1.7 7.9±2.2 7.4±1.3 8.0±1.4
生理盐水高温高湿运动组 8.3±1.6 14.9±4.3 12.1±4.6 8.5±1.6 8.2±1.2
甘油常温运动组 9.9±1.6 11.3±3.0 10.9±1.8 9.3±1.3 9.6±1.7
甘油高温高湿运动组 26.8±6.3b 48.2±11.0b 71.8±25.0b 38.5±10.6b 35.4±10.2b
白介素-6 (pg/ml)          
生理盐水常温运动组 10.6±1.5 5.6±1.3 4.5±0.8 3.8±0.8 3.5±0.8
生理盐水高温高湿运动组 16.4±2.9 14.2±4.4 10.4±2.9 9.7±1.2 7.2±1.3
甘油常温运动组 19.8±4.2 16.2±4.0 9.3±2.0 7.6±2.2 4.6±1.4
甘油高温高湿运动组 48.2±25.6a 86.1±11.1b 183.0±18.1b 82.9±15.2b 55.9±12.0b
肌酸激酶(U/L)          
生理盐水常温运动组 1121.1±472.0 753.7±180.6 708.7±135.5 664.4±150.0 635.1±122.5
生理盐水高温高湿运动组 1132.3±385.8 967.7±155.3 757.8±144.8 703.5±103.5 698.2±144.3
甘油常温运动组 1201.1±396.4 1006.6±286.5 823.1±136.0 753.8±114.7 704.0±112.0
甘油高温高湿运动组 3080.1±672.4b 4152.9±562.3b 4908.8±706.3b 3719.3±613.9b 2280.3±625.5b
肌红蛋白(pg/ml)          
生理盐水常温运动组 1475.8±194.5 1692.3±260.6 1634.5±243.6 1503.6±214.0 1401.5±292.5
生理盐水高温高湿运动组 1550.0±202.7 1774.4±176.9 1729.9±270.0 1598.7±294.5 1432.5±319.7
甘油常温运动组 1842.3±291.5 1900.2±380.9 1741.9±243.4 1589.8±224.0 1505.6±228.7
甘油高温高湿运动组 3144.8±646.8b 3636.0±607.8b 4009.1±537.9b 3049.9±700.3b 3229.3±737.5b
图2 各组小鼠跑步后不同时间肾组织病理图片(PAS×400)
[1]
Epstein Y, Yanovich R. Heatstroke [J]. N Engl J Med, 2019, 380(25): 2449-2459.
[2]
Satirapoj B, Kongthaworn S, Choovichian P, et al. Electrolyte disturbances and risk factors of acute kidney injury patients receiving dialysis in exertional heat stroke [J]. BMC Nephrol, 2016, 17(1): 55.
[3]
Johnson RJ, Sanchez-Lozada LG, Newman LS, et al. Climate change and the kidney [J]. Ann Nutr Metab, 2019, 74(Suppl 3): 38-44.
[4]
Thongprayoon C, Qureshi F, Petnak T, et al. Impact of acute kidney injury on outcomes of hospitalizations for heat stroke in the United States [J]. Diseases, 2020, 8(3): 28.
[5]
宋仁杰,李彦波,周飞虎. 热射病发病机制的研究进展[J]. 解放军医学院学报2020, 41(12): 1231-1235.
[6]
何嘉骐,倪军,张静. 热射病相关肾脏损伤的机制及研究进展[J]. 中华灾害救援医学2021, 9(1): 754-757, 767.
[7]
King MA, Leon LR, Mustico DL, et al. Biomarkers of multiorgan injury in a preclinical model of exertional heat stroke [J]. J Appl Physiol (1985), 2015, 118(10): 1207-1220.
[8]
He SX, Li R, Yang HH, et al. Optimization of a rhabdomyolysis model in mice with exertional heat stroke mouse model of EHS-rhabdomyolysis [J]. Front Physiol, 2020, 11: 642.
[9]
Li D, Wang X, Liu B, et al. Exercises in hot and humid environment caused liver injury in a rat model [J]. PLoS One, 2014, 9(12): e111741.
[10]
张婷,宋青,周飞虎,等. 经典型与劳力性热射病动物模型之比较[J]. 解放军医学院学报2013, 34(12): 1209-1212.
[11]
Lin Y, Zhang Y. Renoprotective effect of oral rehydration solution III in exertional heatstroke rats [J]. Ren Fail, 2019, 41(1): 190-196.
[12]
Mosili P, Maikoo S, Mabandla MV, et al. The pathogenesis of fever-induced febrile seizures and its current state [J]. Neurosci Insights, 2020, 15: 2633105520956973.
[13]
Lippi G, Schena F, Ceriotti F. Diagnostic biomarkers of muscle injury and exertional rhabdomyolysis [J]. Clin Chem Lab Med, 2018, 57(2): 175-182.
[14]
Backer HC, Busko M, Krause FG, et al. Exertional rhabdomyolysis and causes of elevation of creatine kinase [J]. Phys Sportsmed, 2020, 48(2): 179-185.
[15]
Ward MD, King MA, Gabrial C, et al. Biochemical recovery from exertional heat stroke follows a 16-day time course [J]. PLoS One, 2020, 15(3): e0229616.
[16]
Song R, Li Q, Hu J, et al. A mouse model of exertional heatstroke-related acute kidney injury [J]. Ann Transl Med, 2022, 10(6): 276.
[1] 韩圣瑾, 周正武, 翁云龙, 黄鑫. 碳酸氢钠林格液联合连续性肾脏替代疗法对创伤合并急性肾损伤患者炎症水平及肾功能的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 376-381.
[2] 张秋彬, 张楠, 林清婷, 徐军, 朱华栋, 姜辉. 急性胰腺炎合并急性肾损伤患者的预后评估[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 382-389.
[3] 莫小乔, 胡喆莹, 廖冬花, 谢天. 脓毒症继发急性肾损伤患者死亡风险预测模型构建及评估[J]. 中华危重症医学杂志(电子版), 2023, 16(03): 198-206.
[4] 唐英俊, 李华娟, 王赛妮, 徐旺, 刘峰, 李羲, 郝新宝, 黄华萍. 人脐带间充质干细胞治疗COPD小鼠及机制分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 476-480.
[5] 吴庆华, 冒勇, 闫效坤. AECOPD并发AKI的危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 529-531.
[6] 任加发, 邬步云, 邢昌赢, 毛慧娟. 2022年急性肾损伤领域基础与临床研究进展[J]. 中华肾病研究电子杂志, 2023, 12(05): 276-281.
[7] 李金璞, 饶向荣. 抗病毒药物和急性肾损伤[J]. 中华肾病研究电子杂志, 2023, 12(05): 287-290.
[8] 程庆砾. 新冠病毒感染与肾脏[J]. 中华肾病研究电子杂志, 2023, 12(04): 240-240.
[9] 宋艳琪, 任雪景, 王文娟, 韩秋霞, 续玥, 庄凯婷, 肖拓, 蔡广研. 间充质干细胞对顺铂诱导的小鼠急性肾损伤中细胞铁死亡的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 187-193.
[10] 苗软昕, 乔晞. Toll样受体在脓毒症性急性肾损伤中的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 210-214.
[11] 李娜, 朱国贞. 肠道菌群及其代谢产物在急性肾损伤中的作用研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 215-219.
[12] 朱泽超, 杨新宇, 李侑埕, 潘鹏宇, 梁国标. 染料木黄酮通过SIRT1/p53信号通路对蛛网膜下腔出血后早期脑损伤的作用[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 261-269.
[13] 王淑友, 宋晓晶, 贾术永, 王广军, 张维波. 肝脏去唾液酸糖蛋白受体靶向活体荧光成像评估酒精性肝损伤肝脏功能的研究[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 443-446.
[14] 易成, 韦伟, 赵宇亮. 急性肾脏病的概念沿革[J]. 中华临床医师杂志(电子版), 2023, 17(08): 906-910.
[15] 李世凯, 梁佳, 何艳艳, 于毅, 李天晓, 常金龙, 贺迎坤. 兔颈动脉粥样硬化性狭窄模型在介入治疗的应用进展[J]. 中华介入放射学电子杂志, 2023, 11(04): 357-362.
阅读次数
全文


摘要