切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2023, Vol. 12 ›› Issue (04) : 215 -219. doi: 10.3877/cma.j.issn.2095-3216.2023.04.007

综述

肠道菌群及其代谢产物在急性肾损伤中的作用研究进展
李娜, 朱国贞()   
  1. 030001 太原,山西医科大学第二医院肾内科
  • 收稿日期:2022-09-07 出版日期:2023-08-28
  • 通信作者: 朱国贞
  • 基金资助:
    山西省自然科学研究面上项目(202103021224420)

Progress of research on the roles of gut microbiota and its metabolites in acute kidney injury

Na Li, Guozhen Zhu()   

  1. Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
  • Received:2022-09-07 Published:2023-08-28
  • Corresponding author: Guozhen Zhu
引用本文:

李娜, 朱国贞. 肠道菌群及其代谢产物在急性肾损伤中的作用研究进展[J/OL]. 中华肾病研究电子杂志, 2023, 12(04): 215-219.

Na Li, Guozhen Zhu. Progress of research on the roles of gut microbiota and its metabolites in acute kidney injury[J/OL]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2023, 12(04): 215-219.

急性肾损伤(AKI)导致肠道菌群失调,而失调的肠道菌群会加重AKI进展,从而形成肠-肾恶性循环。肠道益生菌及其代谢产物可能通过阻断肠-肾恶性循环而具有抑制AKI进展作用,有可能会成为AKI的新疗法。本文就肠道菌群在AKI中作用的研究进展作一综述。

Studies have found that AKI could lead to gut microbiota imbalance, while the imbalance of gut microbiota could aggravate the progression of AKI, forming a gut-kidney vicious cycle. Probiotics and their metabolites might inhibit the progression of AKI by blocking the gut-kidney vicious cycle, which may become a new therapy for AKI. This article reviewed the progress of research on the role of gut microbiota in AKI.

图1 急性肾损伤对肠道菌群的影响示意图
[1]
Xu X, Nie S, Liu Z, et al. Epidemiology and clinical correlates of AKI in Chinese hospitalized adults [J]. Clin J Am Soc Nephrol, 2015, 10(9): 1510-1518.
[2]
Lei J, Xie Y, Sheng J, et al. Intestinal microbiota dysbiosis in acute kidney injury: novel insights into mechanisms and promising therapeutic strategies [J]. Ren Fail, 2022, 44(1): 571-580.
[3]
Gong J, Noel S, Pluznick JL, et al. Gut microbiota-kidney cross-talk in acute kidney injury [J]. Semin Nephrol, 2019, 39(1): 107-116.
[4]
Kim CH, Moon SJ. The role of the gut microbiota in acute kidney injury: a new therapeutic candidate? [J]. Kidney Res Clin Pract, 2021, 40(4): 505-507.
[5]
Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body [J]. PLoS Biol, 2016, 14(8): e1002533.
[6]
Gilbert JA, Blaser MJ, Caporaso JG, et al. Current understanding of the human microbiome [J]. Nat Med, 2018, 24(4): 392-400.
[7]
Markowiak-Kopec P, Slizewska K. The effect of probiotics on the production of short-chain fatty acids by human intestinal microbiome [J]. Nutrients, 2020, 12(4): 1107.
[8]
Haber AL, Biton M, Rogel N, et al. A single-cell survey of the small intestinal epithelium [J]. Nature, 2017, 551(7680): 333-339.
[9]
Emal D, Rampanelli E, Stroo I, et al. Depletion of gut microbiota protects against renal ischemia-reperfusion injury [J]. J Am Soc Nephrol, 2017, 28(5): 1450-1461.
[10]
Moghadamrad S, Mccoy KD, Geuking MB, et al. Attenuated portal hypertension in germ-free mice: function of bacterial flora on the development of mesenteric lymphatic and blood vessels [J]. Hepatology, 2015, 61(5): 1685-1695.
[11]
Andrianova NV, Popkov VA, Klimenko NS, et al. Microbiome-metabolome signature of acute kidney injury [J]. Metabolites, 2020, 10(4): 142.
[12]
Liu Y, Li YJ, Loh YW, et al. Fiber derived microbial metabolites prevent acute kidney injury through G-protein coupled receptors and HDAC inhibition [J]. Front Cell Dev Biol, 2021, 9: 648639.
[13]
Lee TH, Park D, Kim YJ, et al. Lactobacillus salivarius BP121 prevents cisplatin induced acute kidney injury by inhibition of uremic toxins such as indoxyl sulfate and p-cresol sulfate via alleviating dysbiosis [J]. Int J Mol Med, 2020, 45(4): 1130-1140.
[14]
Gharaie S, Noel S, Rabb H. Gut microbiome and AKI: roles of the immune system and short-chain fatty acids [J]. Nephron, 2020, 144(12): 662-664.
[15]
Yang J, Kim CJ, Go YS, et al. Intestinal microbiota control acute kidney injury severity by immune modulation [J]. Kidney Int, 2020, 98(4): 932-946.
[16]
Veldeman L, Vanmassenhove J, Van Biesen W, et al. Evolution of protein-bound uremic toxins indoxyl sulphate and p-cresyl sulphate in acute kidney injury [J]. Int Urol Nephrol, 2019, 51(2): 293-302.
[17]
Fang Q, Liu N, Zheng B, et al. Roles of gut microbial metabolites in diabetic kidney disease [J]. Front Endocrinol (Lausanne), 2021, 12: 636175.
[18]
Li J, Moturi KR, Wang L, et al. Gut derived-endotoxin contributes to inflammation in severe ischemic acute kidney injury [J]. BMC Nephrol, 2019, 20(1): 16.
[19]
Chassaing B, Kumar M, Baker MT, et al. Mammalian gut immunity [J]. Biomed J, 2014, 37(5): 246-258.
[20]
Nakade Y, Iwata Y, Furuichi K, et al. Gut microbiota-derived D-serine protects against acute kidney injury [J]. JCI Insight, 2018, 3(20): e97957.
[21]
Osada Y, Nakagawa S, Ishibe K, et al. Antibiotic-induced microbiome depletion alters renal glucose metabolism and exacerbates renal injury after ischemia-reperfusion injury in mice [J]. Am J Physiol Renal Physiol, 2021, 321(4): F455-F465.
[22]
Hsu CN, Tain YL. Chronic kidney disease and gut microbiota: what is their connection in early life? [J]. Int J Mol Sci, 2022, 23(7): 3954.
[23]
Zheng DW, Pan P, Chen KW, et al. An orally delivered microbial cocktail for the removal of nitrogenous metabolic waste in animal models of kidney failure [J]. Nat Biomed Eng, 2020, 4(9): 853-862.
[24]
Wang Y, Wu Y, Wang Y, et al. Antioxidant properties of probiotic bacteria [J]. Nutrients, 2017, 9(5): 521.
[25]
Yang J, Ji GE, Park MS, et al. Probiotics partially attenuate the severity of acute kidney injury through an immunomodulatory effect [J]. Kidney Res Clin Pract, 2021, 40(4): 620-633.
[26]
Sarwar S, Hossain MJ, Irfan NM, et al. Renoprotection of selected antioxidant-rich foods (water spinach and red grape) and probiotics in gentamicin-induced nephrotoxicity and oxidative stress in rats [J]. Life (Basel), 2022, 12(1): 60.
[27]
Canfora EE, Meex R, Venema K, et al. Gut microbial metabolites in obesity, NAFLD and T2DM [J]. Nat Rev Endocrinol, 2019, 15(5): 261-273.
[28]
Peng Q, Zeng XF, Zhu JL, et al. Effects of dietary Lactobacillus plantarum B1 on growth performance, intestinal microbiota, and short chain fatty acid profiles in broiler chickens [J]. Poult Sci, 2016, 95(4): 893-900.
[29]
Huang W, Zhou L, Guo H, et al. The role of short-chain fatty acids in kidney injury induced by gut-derived inflammatory response [J]. Metabolism, 2017, 68: 20-30.
[30]
Sun Y, Zhou C, Chen Y, et al. Quantitative increase in short-chain fatty acids, especially butyrate protects kidney from ischemia/reperfusion injury [J]. J Investig Med, 2022, 70(1): 29-35.
[31]
Hsu CN, Hou CY, Chang CI, et al. Resveratrol butyrate ester protects adenine-treated rats against hypertension and kidney disease by regulating the gut-kidney axis [J]. Antioxidants (Basel), 2021, 11(1): 83.
[32]
Knauf F, Brewer JR, Flavell RA. Immunity, microbiota and kidney disease [J]. Nat Rev Nephrol, 2019, 15(5): 263-274.
[33]
Du Y, Tang G, Yuan W. Suppression of HDAC2 by sodium butyrate alleviates apoptosis of kidney cells in db/db mice and HG-induced NRK-52E cells [J]. Int J Mol Med, 2020, 45(1): 210-222.
[34]
Andrade-Oliveira V, Amano MT, Correa-Costa M, et al. Gut bacteria products prevent AKI induced by ischemia-reperfusion [J]. J Am Soc Nephrol, 2015, 26(8): 1877-1888.
[35]
Lin MY, de Zoete MR, van Putten JP, et al. Redirection of epithelial immune responses by short-chain fatty acids through inhibition of histone deacetylases [J]. Front Immunol, 2015, 6: 554.
[36]
Foresto-Neto O, Ghirotto B, Camara NOS. Renal sensing of bacterial metabolites in the gut-kidney axis [J]. Kidney360, 2021, 2(9): 1501-1509.
[37]
Sasabe J, Miyoshi Y, Rakoff-Nahoum S, et al. Interplay between microbial d-amino acids and host d-amino acid oxidase modifies murine mucosal defence and gut microbiota [J]. Nat Microbiol, 2016, 1(10): 16125.
[38]
Okada A, Nangaku M, Jao TM, et al. D-serine, a novel uremic toxin, induces senescence in human renal tubular cells via GCN2 activation [J]. Sci Rep, 2017, 7(1): 11168.
[39]
Al KS, Reichert B, Shatat IF. The microbiome and blood pressure: can microbes regulate our blood pressure? [J]. Front Pediatr, 2017, 5: 138.
[40]
Li T, Zhao J, Miao S, et al. Protective effect of H2S on LPS-induced AKI by promoting autophagy [J]. Mol Med Rep, 2022, 25(3): 96.
[41]
Rund KM, Peng S, Greite R, et al. Dietary omega-3 PUFA improved tubular function after ischemia induced acute kidney injury in mice but did not attenuate impairment of renal function [J]. Prostaglandins Other Lipid Mediat, 2020, 146: 106386.
[42]
Vandeputte D, Falony G, Vieira-Silva S, et al. Prebiotic inulin-type fructans induce specific changes in the human gut microbiota [J]. Gut, 2017, 66(11): 1968-1974.
[43]
Cammarota G, Ianiro G, Tilg H, et al. European consensus conference on faecal microbiota transplantation in clinical practice [J]. Gut, 2017, 66(4): 569-580.
[44]
Barba C, Soulage CO, Caggiano G, et al. Effects of fecal microbiota transplantation on composition in mice with CKD [J]. Toxins (Basel), 2020, 12(12): 741.
[45]
Lauriero G, Abbad L, Vacca M, et al. Fecal microbiota transplantation modulates renal phenotype in the humanized mouse model of IgA nephropathy [J]. Front Immunol, 2021, 12: 694787.
[46]
Lano G, Burtey S, Sallee M. Indoxyl sulfate, a uremic endotheliotoxin [J]. Toxins (Basel), 2020, 12(4): 229.
[47]
Sun J, Luo JW, Yao WJ, et al. Effect of emodin on gut microbiota of rats with acute kidney failure [J]. Zhongguo Zhong Yao Za Zhi, 2019, 44(4): 758-764.
[1] 戴睿, 张亮, 陈浏阳, 张永博, 吴丕根, 孙华, 杨盛, 孟博. 肠道菌群与椎间盘退行性变相关性的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 546-549.
[2] 李玲, 刘亚, 李培玲, 张秀敏, 李萍. 直肠癌患者术后肠道菌群的变化与抑郁症相关性研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 607-610.
[3] 王雪玲, 曹欢, 顾劲扬. 肠道菌群在器官缺血再灌注损伤中的作用及机制研究进展[J/OL]. 中华移植杂志(电子版), 2024, 18(04): 247-250.
[4] 方道成, 唐春华, 胡媛媛. 肠道菌群对草酸钙肾结石形成的影响[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 509-513.
[5] 蔡艺丹, 方坚, 张志强, 陈莉, 张世安, 夏磊, 阮梅, 李东良. 经颈静脉肝内门体分流术对肝硬化门脉高压患者肠道菌群及肝功能的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 285-293.
[6] 杜霞, 马梦青, 曹长春. 造影剂诱导的急性肾损伤的发病机制及干预靶点研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 279-282.
[7] 郭俊楠, 林惠, 任艺林, 乔晞. 氨基酸代谢异常在急性肾损伤向慢性肾脏病转变中的作用研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 283-287.
[8] 孙婧婷, 李娜, 罗明辉, 高瑶瑶, 白义行, 朱国贞. 短链脂肪酸对小鼠缺血再灌注肾损伤的炎症及纤维化影响和作用机制研究[J/OL]. 中华肾病研究电子杂志, 2024, 13(04): 181-187.
[9] 袁楠, 黄梦杰, 白云凤, 李晓帆, 罗从娟, 陈健文. 急性肾损伤-慢性肾脏病转化小鼠模型制备的教学要点及学习效果分析[J/OL]. 中华肾病研究电子杂志, 2024, 13(04): 226-230.
[10] 司楠, 孙洪涛. 创伤性脑损伤后肾功能障碍危险因素的研究进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(05): 300-305.
[11] 沈炎, 张俊峰, 唐春芳. 预后营养指数结合血清降钙素原、胱抑素C及视黄醇结合蛋白对急性胰腺炎并发急性肾损伤的预测价值[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 536-540.
[12] 宋燕秋, 戚桂艳, 杨双双, 周萍. 重症急性胰腺炎肠道菌群特征及早期肠内营养联合微生态制剂治疗的临床价值[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 442-447.
[13] 邱岭, 朱旭丽, 浦坚, 邢苗苗, 吴佳玲. 糖尿病肾病患者肠道菌群生态特点与胃肠道功能障碍的关联性研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 453-458.
[14] 赵小民, 杨军, 田巍巍. 枳术颗粒联合利那洛肽治疗便秘型肠易激综合征的临床研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 465-469.
[15] 颜世锐, 熊辉. 感染性心内膜炎合并急性肾损伤患者的危险因素探索及死亡风险预测[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 618-624.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?