切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2023, Vol. 12 ›› Issue (04) : 210 -214. doi: 10.3877/cma.j.issn.2095-3216.2023.04.006

综述

Toll样受体在脓毒症性急性肾损伤中的作用
苗软昕, 乔晞()   
  1. 030001 太原,山西医科大学第二医院肾内科
  • 收稿日期:2022-12-16 出版日期:2023-08-28
  • 通信作者: 乔晞
  • 基金资助:
    山西省回国留学人员科研资助项目(2020-186); 山西省留学回国人员科技活动择优资助项目(2017-29)

Role of Toll-like receptor in sepsis-induced acute kidney injury

Ruanxin Miao, Xi Qiao()   

  1. Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
  • Received:2022-12-16 Published:2023-08-28
  • Corresponding author: Xi Qiao
引用本文:

苗软昕, 乔晞. Toll样受体在脓毒症性急性肾损伤中的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 210-214.

Ruanxin Miao, Xi Qiao. Role of Toll-like receptor in sepsis-induced acute kidney injury[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2023, 12(04): 210-214.

脓毒症导致的急性肾损伤(SIAKI)是危重症患者中最常见的急性肾损伤(AKI)类型,其发病机制复杂,而过度的炎症反应则起着关键作用。Toll样受体(TLRs)介导的信号通路能够介导促炎细胞因子的转录、肾内炎症反应,进而导致肾脏损伤。本文就TLRs的生物学特性及其在SIAKI中的作用做一综述,旨在为探索SIAKI的治疗干预靶点提供思路。

Sepsis-induced acute kidney injury (SIAKI) is the most common type of acute kidney injury (AKI) in critically ill patients. Its pathogenesis is complex, in which excessive inflammation plays a key role. Toll-like receptors (TLRs) mediate signal pathways that can contribute to the transcription of pro-inflammatory cytokines, inflammation in the kidney, and lead to kidney injury. This article reviewed the biological characteristics of Toll-like receptors as well as their roles in SIAKI, aiming to provide ideas for exploring the therapeutic intervention targets of SIAKI.

图1 TLRs引起细胞损伤的机制注:TLR:Toll样受体;TIRAP:含Toll/白细胞介素-1受体域衔接蛋白;MyD88:髓样分化因子88;IRAK:白细胞介素-1受体相关激酶;TRAF:肿瘤坏死因子受体相关因子;TAK1:转化生长因子β活化激酶1;TAB:转化生长因子β活化激酶1结合蛋白;MAPK:丝裂原活化蛋白激酶;IKK:IκB激酶;AP-1:激活蛋白-1,NF-κB:核因子κB;TRIF:TIR结构域衔接蛋白;TRAM:TRIF相关适配器分子;TBK1:TANK结合激酶1;IRF3:干扰素调节因子3;RIP-1:受体作用蛋白-1
[1]
Ronco C, Bellomo R, Kellum JA, et al. Acute kidney injury [J]. Lancet, 2019, 394(10212): 1949-1964.
[2]
Mercado MG, Smith DK, Guard EL, et al. Acute kidney injury: diagnosis and management[J]. Am Fam Physician, 2019, 100(11): 687-694.
[3]
Peerapornratana S, Manrique-Caballero CL, Gómez H, et al. Acute kidney injury from sepsis: current concepts, epidemiology, pathophysiology, prevention and treatment [J]. Kidney Int, 2019, 96(5): 1083-1099.
[4]
Vázquez-Carballo C, Guerrero-Hue M, García-Caballero C, et al. Toll-like receptors in acute kidney injury [J]. Int J Mol Sci, 2021, 22(2): 816.
[5]
Aluri J, Cooper MA, Schuettpelz LG, et al. Toll-like receptor signaling in the establishment and function of the immune system [J]. Cells, 2021, 10(6): 1374.
[6]
Anthoney N, Foldi I, Hidalgo A, et al. Toll and Toll-like receptor signalling in development [J]. Development, 2018, 145(9): dev156018.
[7]
Mertowski S, Lipa P, Morawska I, et al. Toll-like receptor as a potential biomarker in renal diseases [J]. Int J Mol Sci, 2020, 21(18): 6712.
[8]
Anwar MA, Shah M, Kim J, et al. Recent clinical trends in Toll-like receptor targeting therapeutics [J]. Med Res Rev, 2019, 39(3): 1053-1090.
[9]
Mokhtari Y, Pourbagheri-Sigaroodi A, Zafari P, et al. Toll-like receptors (TLRs): an old family of immune receptors with a new face in cancer pathogenesis [J]. J Cell Mol Med, 2021, 25(2): 639-651.
[10]
Lind NA, Rael VE, Pestal K, et al. Regulation of the nucleic acid-sensing Toll-like receptors [J]. Nat Rev Immunol, 2022, 22(4): 224-235.
[11]
Duan T, Du Y, Xing C, et al. Toll-like receptor signaling and its role in cell-mediated immunity [J]. Front Immunol, 2022, 13: 812774.
[12]
Chen L, Zheng L, Chen P, et al. Myeloid differentiation primary response protein 88 (MyD88): the central hub of TLR/IL-1R signaling [J]. J Med Chem, 2020, 63(22): 13316-13329.
[13]
Bayer AL, Alcaide P. MyD88: at the heart of inflammatory signaling and cardiovascular disease [J]. J Mol Cell Cardiol, 2021, 161: 75-85.
[14]
Owen AM, Fults JB, Patil NK, et al. TLR agonists as mediators of trained immunity: mechanistic insight and immunotherapeutic potential to combat infection [J]. Front Immunol, 2020, 11: 622614.
[15]
Wang J, Wu X, Jiang M, et al. Mechanism by which TRAF6 participates in the immune regulation of autoimmune diseases and cancer [J]. Biomed Res Int, 2020, 2020: 4607197.
[16]
Chen Y, Lin J, Zhao Y, et al. Toll-like receptor 3 (TLR3) regulation mechanisms and roles in antiviral innate immune responses [J]. J Zhejiang Univ Sci B, 2021, 22(8): 609-632.
[17]
Kim SY, Shin S, Kwon M, et al. Suppression of the TRIF-dependent signaling pathway of TLRs by epoxomicin [J]. Arch Pharm (Weinheim), 2021, 354(9): e2100130.
[18]
Peng Y, Zhang X, Wang Y, et al. Overexpression of Toll-like receptor 2 in glomerular endothelial cells and podocytes in septic acute kidney injury mouse model [J]. Ren Fail, 2015, 37(4): 694-698.
[19]
Huang X, Hou X, Chuan L, et al. miR-129-5p alleviates LPS-induced acute kidney injury via targeting HMGB1/TLRs/NF-kappaB pathway [J]. Int Immunopharmacol, 2020, 89(Pt A): 107016.
[20]
Wang QL, Xing W, Yu C, et al. ROCK1 regulates sepsis-induced acute kidney injury via TLR2-mediated endoplasmic reticulum stress/pyroptosis axis [J]. Mol Immunol, 2021, 138: 99-109.
[21]
Jia P, Xu S, Wang X, et al. Chemokine CCL2 from proximal tubular epithelial cells contributes to sepsis-induced acute kidney injury [J]. Am J Physiol Renal Physiol, 2022, 323(2): F107-F119.
[22]
Li H, Qiu D, Yuan Y, et al. Trichinella spiralis cystatin alleviates polymicrobial sepsis through activating regulatory macrophages [J]. Int Immunopharmacol, 2022, 109: 108907.
[23]
Xia S, Lin H, Liu H, et al. Honokiol attenuates sepsis-associated acute kidney injury via the inhibition of oxidative stress and inflammation [J]. Inflammation, 2019, 42(3): 826-834.
[24]
Peng Y, Liu L, Wang Y, et al. Treatment with Toll-like receptor 2 inhibitor ortho-vanillin alleviates lipopolysaccharide-induced acute kidney injury in mice [J]. Exp Ther Med, 2019, 18(6): 4829-4837.
[25]
Jha AK, Gairola S, Kundu S, et al. Toll-like receptor 4: an attractive therapeutic target for acute kidney injury [J]. Life Sci, 2021, 271: 119155.
[26]
Anderberg SB, Luther T, Frithiof R, et al. Physiological aspects of Toll-like receptor 4 activation in sepsis-induced acute kidney injury [J]. Acta Physiol (Oxf), 2017, 219(3): 573-588.
[27]
Wang B, Xu J, Ren Q, et al. Fatty acid-binding protein 4 is a therapeutic target for septic acute kidney injury by regulating inflammatory response and cell apoptosis [J]. Cell Death Dis, 2022, 13(4): 333.
[28]
Gatica S, Villegas V, Vallejos A, et al. TRPM7 mediates kidney injury, endothelial hyperpermeability and mortality during endotoxemia [J]. Lab Invest, 2020, 100(2): 234-249.
[29]
Smith JA, Stallons LJ, Collier JB, et al. Suppression of mitochondrial biogenesis through toll-like receptor 4-dependent mitogen-activated protein kinase kinase/extracellular signal-regulated kinase signaling in endotoxin-induced acute kidney injury [J]. J Pharmacol Exp Ther, 2015, 352(2): 346-357.
[30]
Gao Q, Zheng Y, Wang H, et al. circSTRN3 aggravates sepsis-induced acute kidney injury by regulating miR-578/Toll like receptor 4 axis [J]. Bioengineered, 2022, 13(5): 11388-11401.
[31]
Wu S, Qiu H, Wang Q, et al. Effects and mechanism of lncRNA CRNDE on sepsis-induced acute kidney injury [J]. Anal Cell Pathol (Amst), 2020, 2020: 8576234.
[32]
Zhang Q, Wang L, Wu M, et al. Humanized anti-TLR4 monoclonal antibody ameliorates lipopolysaccharide-related acute kidney injury by inhibiting TLR4/NF-κB signaling [J]. Mol Med Rep, 2021, 24(2): 608.
[33]
Zhao G, Lu S, Li L, et al. Local anesthetic articaine ameliorates LPS-induced acute kidney injury via inhibition of NF-κB activation and the NLRP3 inflammasome pathway [J]. J Biochem Mol Toxicol, 2020, 34(10): e22554.
[34]
Zeng M, Qi M, Wang Y, et al. 5-O-methyldihydroquercetin and cilicicone B isolated from Spina Gleditsiae ameliorate lipopolysaccharide-induced acute kidney injury in mice by inhibiting inflammation and oxidative stress via the TLR4/MyD88/TRIF/NLRP3 signaling pathway [J]. Int Immunopharmacol, 2020, 80: 106194.
[35]
Fan H, Zhao Y, Zhu JH, et al. S-nitrosoglutathione protects lipopolysaccharide-induced acute kidney injury by inhibiting Toll-like receptor 4-nuclear factor-κB signal pathway [J]. J Pharm Pharmacol, 2019, 71(8): 1255-1261.
[36]
Tsuji N, Tsuji T, Ohashi N, et al. Role of mitochondrial DNA in septic AKI via Toll-like receptor 9 [J]. J Am Soc Nephrol, 2016, 27(7): 2009-2020.
[37]
Naito Y, Tsuji T, Nagata S, et al. IL-17A activated by Toll-like receptor 9 contributes to the development of septic acute kidney injury [J]. Am J Physiol Renal Physiol, 2020, 318(1): F238-F247.
[38]
Li H, Sun H, Xu Y, et al. Curcumin plays a protective role against septic acute kidney injury by regulating the TLR9 signaling pathway [J]. Transl Androl Urol, 2021, 10(5): 2103-2112.
[39]
Sun BQ, Sui YD, Huang H, et al. Effect of lncRNA CRNDE on sepsis-related kidney injury through the TLR3/NF-κB pathway [J]. Eur Rev Med Pharmacol Sci, 2019, 23(23): 10489-10497.
[40]
Lin X, Huang H, You Y, et al. Activation of TLR5 induces podocyte apoptosis [J]. Cell Biochem Funct, 2016, 34(2): 63-68.
[41]
Yang X, Yin Y, Yan X, et al. Flagellin attenuates experimental sepsis in a macrophage-dependent manner [J]. Crit Care, 2019, 23(1): 106.
[42]
Wang HF, Li Y, Wang YQ, et al. MicroRNA-494-3p alleviates inflammatory response in sepsis by targeting TLR6 [J]. Eur Rev Med Pharmacol Sci, 2019, 23(7): 2971-2977.
[43]
Jian W, Gu L, Williams B, et al. Toll-like receptor 7 contributes to inflammation, organ injury, and mortality in murine sepsis [J]. Anesthesiology, 2019, 131(1): 105-118.
[1] 张晓燕, 肖东琼, 高沪, 陈琳, 唐发娟, 李熙鸿. 转录因子12过表达对脓毒症相关性脑病大鼠大脑皮质的保护作用及其机制[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 540-549.
[2] 姚咏明. 如何精准评估烧伤脓毒症患者免疫状态[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 552-552.
[3] 陈大敏, 曹晓刚, 曹能琦. 肥胖对胃癌患者手术治疗效果的影响研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 651-653.
[4] 贾成朋, 王代宏, 陈华, 孙备. 可切除性胰腺癌预后术前预测模型的建立及应用[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 566-570.
[5] 伍学成, 李远伟, 袁武雄, 王建松, 石泳中, 卢强, 李卓, 陈佳, 刘哲, 滕伊漓, 高智勇. 炎症介质谱联合降钙素原在尿源性脓毒血症中的诊断价值[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 476-480.
[6] 王可, 范彬, 李多富, 刘奎. 两种疝囊残端处理方法在经腹腹膜前腹股沟疝修补术中的疗效比较[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 692-696.
[7] 李青霖, 宋仁杰, 周飞虎. 一种重型劳力性热射病相关急性肾损伤小鼠模型的建立与探讨[J]. 中华肾病研究电子杂志, 2023, 12(05): 265-270.
[8] 任加发, 邬步云, 邢昌赢, 毛慧娟. 2022年急性肾损伤领域基础与临床研究进展[J]. 中华肾病研究电子杂志, 2023, 12(05): 276-281.
[9] 李金璞, 饶向荣. 抗病毒药物和急性肾损伤[J]. 中华肾病研究电子杂志, 2023, 12(05): 287-290.
[10] 邹勇, 顾应江, 丁昊, 杨呈浩, 陈岷辉, 蔡昱. 基于Nrf2/HO-1及NF-κB信号通路探讨葛根素对大鼠脑出血后早期炎症反应及氧化应激反应的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 271-277.
[11] 屈霄, 王靓, 陆萍, 何斌, 孙敏. 外周血炎症因子及肠道菌群特征与活动性溃疡性结肠炎患者病情的相关性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 466-470.
[12] 朱风尚, 舍玲, 丁永年, 杨长青. 警惕炎症性肠病与少见肠道疾病的鉴别诊断[J]. 中华消化病与影像杂志(电子版), 2023, 13(05): 273-276.
[13] 易成, 韦伟, 赵宇亮. 急性肾脏病的概念沿革[J]. 中华临床医师杂志(电子版), 2023, 17(08): 906-910.
[14] 谭睿, 王晶, 於江泉, 郑瑞强. 脓毒症中高密度脂蛋白、载脂蛋白A-I和血清淀粉样蛋白A的作用研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(06): 749-753.
[15] 刘感哲, 艾芬. MiRNA-210通过抑制HIF-1α的表达改善大鼠血管性认知功能障碍[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 489-494.
阅读次数
全文


摘要