切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2023, Vol. 12 ›› Issue (04) : 210 -214. doi: 10.3877/cma.j.issn.2095-3216.2023.04.006

综述

Toll样受体在脓毒症性急性肾损伤中的作用
苗软昕, 乔晞()   
  1. 030001 太原,山西医科大学第二医院肾内科
  • 收稿日期:2022-12-16 出版日期:2023-08-28
  • 通信作者: 乔晞
  • 基金资助:
    山西省回国留学人员科研资助项目(2020-186); 山西省留学回国人员科技活动择优资助项目(2017-29)

Role of Toll-like receptor in sepsis-induced acute kidney injury

Ruanxin Miao, Xi Qiao()   

  1. Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
  • Received:2022-12-16 Published:2023-08-28
  • Corresponding author: Xi Qiao
引用本文:

苗软昕, 乔晞. Toll样受体在脓毒症性急性肾损伤中的作用[J/OL]. 中华肾病研究电子杂志, 2023, 12(04): 210-214.

Ruanxin Miao, Xi Qiao. Role of Toll-like receptor in sepsis-induced acute kidney injury[J/OL]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2023, 12(04): 210-214.

脓毒症导致的急性肾损伤(SIAKI)是危重症患者中最常见的急性肾损伤(AKI)类型,其发病机制复杂,而过度的炎症反应则起着关键作用。Toll样受体(TLRs)介导的信号通路能够介导促炎细胞因子的转录、肾内炎症反应,进而导致肾脏损伤。本文就TLRs的生物学特性及其在SIAKI中的作用做一综述,旨在为探索SIAKI的治疗干预靶点提供思路。

Sepsis-induced acute kidney injury (SIAKI) is the most common type of acute kidney injury (AKI) in critically ill patients. Its pathogenesis is complex, in which excessive inflammation plays a key role. Toll-like receptors (TLRs) mediate signal pathways that can contribute to the transcription of pro-inflammatory cytokines, inflammation in the kidney, and lead to kidney injury. This article reviewed the biological characteristics of Toll-like receptors as well as their roles in SIAKI, aiming to provide ideas for exploring the therapeutic intervention targets of SIAKI.

图1 TLRs引起细胞损伤的机制注:TLR:Toll样受体;TIRAP:含Toll/白细胞介素-1受体域衔接蛋白;MyD88:髓样分化因子88;IRAK:白细胞介素-1受体相关激酶;TRAF:肿瘤坏死因子受体相关因子;TAK1:转化生长因子β活化激酶1;TAB:转化生长因子β活化激酶1结合蛋白;MAPK:丝裂原活化蛋白激酶;IKK:IκB激酶;AP-1:激活蛋白-1,NF-κB:核因子κB;TRIF:TIR结构域衔接蛋白;TRAM:TRIF相关适配器分子;TBK1:TANK结合激酶1;IRF3:干扰素调节因子3;RIP-1:受体作用蛋白-1
[1]
Ronco C, Bellomo R, Kellum JA, et al. Acute kidney injury [J]. Lancet, 2019, 394(10212): 1949-1964.
[2]
Mercado MG, Smith DK, Guard EL, et al. Acute kidney injury: diagnosis and management[J]. Am Fam Physician, 2019, 100(11): 687-694.
[3]
Peerapornratana S, Manrique-Caballero CL, Gómez H, et al. Acute kidney injury from sepsis: current concepts, epidemiology, pathophysiology, prevention and treatment [J]. Kidney Int, 2019, 96(5): 1083-1099.
[4]
Vázquez-Carballo C, Guerrero-Hue M, García-Caballero C, et al. Toll-like receptors in acute kidney injury [J]. Int J Mol Sci, 2021, 22(2): 816.
[5]
Aluri J, Cooper MA, Schuettpelz LG, et al. Toll-like receptor signaling in the establishment and function of the immune system [J]. Cells, 2021, 10(6): 1374.
[6]
Anthoney N, Foldi I, Hidalgo A, et al. Toll and Toll-like receptor signalling in development [J]. Development, 2018, 145(9): dev156018.
[7]
Mertowski S, Lipa P, Morawska I, et al. Toll-like receptor as a potential biomarker in renal diseases [J]. Int J Mol Sci, 2020, 21(18): 6712.
[8]
Anwar MA, Shah M, Kim J, et al. Recent clinical trends in Toll-like receptor targeting therapeutics [J]. Med Res Rev, 2019, 39(3): 1053-1090.
[9]
Mokhtari Y, Pourbagheri-Sigaroodi A, Zafari P, et al. Toll-like receptors (TLRs): an old family of immune receptors with a new face in cancer pathogenesis [J]. J Cell Mol Med, 2021, 25(2): 639-651.
[10]
Lind NA, Rael VE, Pestal K, et al. Regulation of the nucleic acid-sensing Toll-like receptors [J]. Nat Rev Immunol, 2022, 22(4): 224-235.
[11]
Duan T, Du Y, Xing C, et al. Toll-like receptor signaling and its role in cell-mediated immunity [J]. Front Immunol, 2022, 13: 812774.
[12]
Chen L, Zheng L, Chen P, et al. Myeloid differentiation primary response protein 88 (MyD88): the central hub of TLR/IL-1R signaling [J]. J Med Chem, 2020, 63(22): 13316-13329.
[13]
Bayer AL, Alcaide P. MyD88: at the heart of inflammatory signaling and cardiovascular disease [J]. J Mol Cell Cardiol, 2021, 161: 75-85.
[14]
Owen AM, Fults JB, Patil NK, et al. TLR agonists as mediators of trained immunity: mechanistic insight and immunotherapeutic potential to combat infection [J]. Front Immunol, 2020, 11: 622614.
[15]
Wang J, Wu X, Jiang M, et al. Mechanism by which TRAF6 participates in the immune regulation of autoimmune diseases and cancer [J]. Biomed Res Int, 2020, 2020: 4607197.
[16]
Chen Y, Lin J, Zhao Y, et al. Toll-like receptor 3 (TLR3) regulation mechanisms and roles in antiviral innate immune responses [J]. J Zhejiang Univ Sci B, 2021, 22(8): 609-632.
[17]
Kim SY, Shin S, Kwon M, et al. Suppression of the TRIF-dependent signaling pathway of TLRs by epoxomicin [J]. Arch Pharm (Weinheim), 2021, 354(9): e2100130.
[18]
Peng Y, Zhang X, Wang Y, et al. Overexpression of Toll-like receptor 2 in glomerular endothelial cells and podocytes in septic acute kidney injury mouse model [J]. Ren Fail, 2015, 37(4): 694-698.
[19]
Huang X, Hou X, Chuan L, et al. miR-129-5p alleviates LPS-induced acute kidney injury via targeting HMGB1/TLRs/NF-kappaB pathway [J]. Int Immunopharmacol, 2020, 89(Pt A): 107016.
[20]
Wang QL, Xing W, Yu C, et al. ROCK1 regulates sepsis-induced acute kidney injury via TLR2-mediated endoplasmic reticulum stress/pyroptosis axis [J]. Mol Immunol, 2021, 138: 99-109.
[21]
Jia P, Xu S, Wang X, et al. Chemokine CCL2 from proximal tubular epithelial cells contributes to sepsis-induced acute kidney injury [J]. Am J Physiol Renal Physiol, 2022, 323(2): F107-F119.
[22]
Li H, Qiu D, Yuan Y, et al. Trichinella spiralis cystatin alleviates polymicrobial sepsis through activating regulatory macrophages [J]. Int Immunopharmacol, 2022, 109: 108907.
[23]
Xia S, Lin H, Liu H, et al. Honokiol attenuates sepsis-associated acute kidney injury via the inhibition of oxidative stress and inflammation [J]. Inflammation, 2019, 42(3): 826-834.
[24]
Peng Y, Liu L, Wang Y, et al. Treatment with Toll-like receptor 2 inhibitor ortho-vanillin alleviates lipopolysaccharide-induced acute kidney injury in mice [J]. Exp Ther Med, 2019, 18(6): 4829-4837.
[25]
Jha AK, Gairola S, Kundu S, et al. Toll-like receptor 4: an attractive therapeutic target for acute kidney injury [J]. Life Sci, 2021, 271: 119155.
[26]
Anderberg SB, Luther T, Frithiof R, et al. Physiological aspects of Toll-like receptor 4 activation in sepsis-induced acute kidney injury [J]. Acta Physiol (Oxf), 2017, 219(3): 573-588.
[27]
Wang B, Xu J, Ren Q, et al. Fatty acid-binding protein 4 is a therapeutic target for septic acute kidney injury by regulating inflammatory response and cell apoptosis [J]. Cell Death Dis, 2022, 13(4): 333.
[28]
Gatica S, Villegas V, Vallejos A, et al. TRPM7 mediates kidney injury, endothelial hyperpermeability and mortality during endotoxemia [J]. Lab Invest, 2020, 100(2): 234-249.
[29]
Smith JA, Stallons LJ, Collier JB, et al. Suppression of mitochondrial biogenesis through toll-like receptor 4-dependent mitogen-activated protein kinase kinase/extracellular signal-regulated kinase signaling in endotoxin-induced acute kidney injury [J]. J Pharmacol Exp Ther, 2015, 352(2): 346-357.
[30]
Gao Q, Zheng Y, Wang H, et al. circSTRN3 aggravates sepsis-induced acute kidney injury by regulating miR-578/Toll like receptor 4 axis [J]. Bioengineered, 2022, 13(5): 11388-11401.
[31]
Wu S, Qiu H, Wang Q, et al. Effects and mechanism of lncRNA CRNDE on sepsis-induced acute kidney injury [J]. Anal Cell Pathol (Amst), 2020, 2020: 8576234.
[32]
Zhang Q, Wang L, Wu M, et al. Humanized anti-TLR4 monoclonal antibody ameliorates lipopolysaccharide-related acute kidney injury by inhibiting TLR4/NF-κB signaling [J]. Mol Med Rep, 2021, 24(2): 608.
[33]
Zhao G, Lu S, Li L, et al. Local anesthetic articaine ameliorates LPS-induced acute kidney injury via inhibition of NF-κB activation and the NLRP3 inflammasome pathway [J]. J Biochem Mol Toxicol, 2020, 34(10): e22554.
[34]
Zeng M, Qi M, Wang Y, et al. 5-O-methyldihydroquercetin and cilicicone B isolated from Spina Gleditsiae ameliorate lipopolysaccharide-induced acute kidney injury in mice by inhibiting inflammation and oxidative stress via the TLR4/MyD88/TRIF/NLRP3 signaling pathway [J]. Int Immunopharmacol, 2020, 80: 106194.
[35]
Fan H, Zhao Y, Zhu JH, et al. S-nitrosoglutathione protects lipopolysaccharide-induced acute kidney injury by inhibiting Toll-like receptor 4-nuclear factor-κB signal pathway [J]. J Pharm Pharmacol, 2019, 71(8): 1255-1261.
[36]
Tsuji N, Tsuji T, Ohashi N, et al. Role of mitochondrial DNA in septic AKI via Toll-like receptor 9 [J]. J Am Soc Nephrol, 2016, 27(7): 2009-2020.
[37]
Naito Y, Tsuji T, Nagata S, et al. IL-17A activated by Toll-like receptor 9 contributes to the development of septic acute kidney injury [J]. Am J Physiol Renal Physiol, 2020, 318(1): F238-F247.
[38]
Li H, Sun H, Xu Y, et al. Curcumin plays a protective role against septic acute kidney injury by regulating the TLR9 signaling pathway [J]. Transl Androl Urol, 2021, 10(5): 2103-2112.
[39]
Sun BQ, Sui YD, Huang H, et al. Effect of lncRNA CRNDE on sepsis-related kidney injury through the TLR3/NF-κB pathway [J]. Eur Rev Med Pharmacol Sci, 2019, 23(23): 10489-10497.
[40]
Lin X, Huang H, You Y, et al. Activation of TLR5 induces podocyte apoptosis [J]. Cell Biochem Funct, 2016, 34(2): 63-68.
[41]
Yang X, Yin Y, Yan X, et al. Flagellin attenuates experimental sepsis in a macrophage-dependent manner [J]. Crit Care, 2019, 23(1): 106.
[42]
Wang HF, Li Y, Wang YQ, et al. MicroRNA-494-3p alleviates inflammatory response in sepsis by targeting TLR6 [J]. Eur Rev Med Pharmacol Sci, 2019, 23(7): 2971-2977.
[43]
Jian W, Gu L, Williams B, et al. Toll-like receptor 7 contributes to inflammation, organ injury, and mortality in murine sepsis [J]. Anesthesiology, 2019, 131(1): 105-118.
[1] 王振宇, 张洪美, 荆琳, 何名江, 闫奇. 膝骨关节炎相关炎症因子与血浆代谢物间的因果关系及中介效应[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 467-473.
[2] 张洁, 罗小霞, 余鸿. 系统性免疫炎症指数对急性胰腺炎患者并发器官功能损伤的预测价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 68-71.
[3] 唐梅, 周丽, 牛岑月, 周小童, 王倩. ICG荧光导航的腹腔镜肝切除术临床意义[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 655-658.
[4] 付成旺, 杨大刚, 王榕, 李福堂. 营养与炎症指标在可切除胰腺癌中的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 704-708.
[5] 高娟, 徐建庆, 闫芳, 丁盛华, 刘霞. Rutkow、TAPP、TEP 手术治疗单侧腹股沟疝患者的临床疗效及对血清炎症因子水平的影响[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 675-680.
[6] 邢嘉翌, 龚佳晟, 祝佳佳, 陆群. 肺癌化疗患者继发肺部感染的病原菌耐药性及炎症因子变化分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 714-718.
[7] 孙璐, 蒋亚玲, 陈凌君. 布托啡诺对脑缺血再灌注损伤大鼠神经炎症和JAK2/STAT3信号通路的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 344-350.
[8] 沈炎, 张俊峰, 唐春芳. 预后营养指数结合血清降钙素原、胱抑素C及视黄醇结合蛋白对急性胰腺炎并发急性肾损伤的预测价值[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 536-540.
[9] 杭丽, 张耀辉, 孙文恺. 参菝抗瘤液对结直肠腺瘤性息肉术后肠道功能、炎症指标及复发情况的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 413-416.
[10] 丛黎, 马林, 陈旭, 李文文, 张亮亮, 周华亭. 改良CT严重指数联合炎症指标在重症急性胰腺炎患者胰腺感染预测及预后评估中的研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 432-436.
[11] 陈惠英, 邱敏珊, 邵汉权. 脓毒症诱发肠黏膜屏障功能损伤的风险因素模型构建与应用效果[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 448-452.
[12] 李润东, 豆小文, 张秀明. 失笑散联合胃复春治疗慢性萎缩性胃炎的疗效及对血清免疫受体和炎症因子水平的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 470-473.
[13] 王湛, 李文坤, 杨奕, 徐芳, 周敏思, 苏珈仪, 王亚丹, 吴静. 炎症指标在早发性结直肠肿瘤中的应用[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 802-810.
[14] 颜世锐, 熊辉. 感染性心内膜炎合并急性肾损伤患者的危险因素探索及死亡风险预测[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 618-624.
[15] 牟磊, 徐东成, 韩鑫, 徐长江, 韩坤锜, 薛叶潇, 牟媛, 秦文玲, 刘相静, 陈哲, 高楠. 五虫通络胶囊防治椎动脉开口支架术后再狭窄发生的效果[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 467-472.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?