切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2022, Vol. 11 ›› Issue (02) : 84 -89. doi: 10.3877/cma.j.issn.2095-3216.2022.02.006

综述

2021年肾脏病学临床研究进展
李婷1, 蒋玲1, 耿璐涵1, 黄智敏1, 袁杨刚1, 张波1, 王宁宁1, 张莉1, 毛慧娟1,(), 邢昌赢1   
  1. 1. 210029 南京,江苏省人民医院(南京医科大学第一附属医院)肾内科
  • 收稿日期:2022-01-21 出版日期:2022-04-28
  • 通信作者: 毛慧娟
  • 基金资助:
    国家自然科学基金专项项目(82151320); 国家自然科学基金面上项目(81970639)

Update on clinical research on nephrology in 2021

Ting Li1, Ling Jiang1, Luhan Geng1, Zhimin Huang1, Yanggang Yuan1, Bo Zhang1, Ningning Wang1, Li Zhang1, Huijuan Mao1,(), Changying Xing1   

  1. 1. Department of Nephrology, Jiangsu Provincial People′s Hospital, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
  • Received:2022-01-21 Published:2022-04-28
  • Corresponding author: Huijuan Mao
引用本文:

李婷, 蒋玲, 耿璐涵, 黄智敏, 袁杨刚, 张波, 王宁宁, 张莉, 毛慧娟, 邢昌赢. 2021年肾脏病学临床研究进展[J]. 中华肾病研究电子杂志, 2022, 11(02): 84-89.

Ting Li, Ling Jiang, Luhan Geng, Zhimin Huang, Yanggang Yuan, Bo Zhang, Ningning Wang, Li Zhang, Huijuan Mao, Changying Xing. Update on clinical research on nephrology in 2021[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2022, 11(02): 84-89.

本文综述了2021年肾脏病临床研究领域的重要进展,包括原发性肾小球疾病、继发性肾小球疾病、急性肾损伤、慢性肾脏病矿物质与骨异常和新型冠状病毒肺炎合并肾损伤等,涉及其发生和进展风险、诊断、治疗和预后,以期为这些疾病的临床诊疗提供思路和帮助。

This article reviewed the important advances in the clinical research field of nephrology in 2021, which included primary glomerular disease, secondary glomerular disease, acute kidney injury, chronic kidney disease-mineral and bone abnormalities, and kidney injury associated with COVID-19, etc, involving their risks of occurrence and progression, diagnosis, treatment, and prognosis, in order to provide ideas and help for the clinical diagnosis and treatment.

[1]
Wang YN, Zhou XJ, Chen P, et al. Interaction between GALNT12 and C1GALT1 associates with galactose-deficient IgA1 and IgA nephropathy [J]. J Am Soc Nephrol, 2021, 32(3): 545-552.
[2]
Dotz V, Visconti A, Lomax-Browne HJ, et al. O- and N-glycosylation of serum immunoglobulin A is associated with IgA nephropathy and glomerular function [J]. J Am Soc Nephrol, 2021, 32(10): 2455-2465.
[3]
Wheeler DC, Toto RD, Stefansson BV, et al. A pre-specified analysis of the DAPA-CKD trial demonstrates the effects of dapagliflozin on major adverse kidney events in patients with IgA nephropathy [J]. Kidney Int, 2021, 100(1): 215-224.
[4]
Xie D, Zhao H, Xu X, et al. Intensity of macrophage infiltration in glomeruli predicts response to immunosuppressive therapy in patients with IgA nephropathy [J]. J Am Soc Nephrol, 2021, 32(12): 3187-3196.
[5]
Canney M, Barbour SJ, Zheng Y, et al. Quantifying duration of proteinuria remission and association with clinical outcome in iga nephropathy [J]. J Am Soc Nephrol, 2021, 32(2): 436-447.
[6]
Sethi S, Madden B, Debiec H, et al. Protocadherin 7-associated membranous nephropathy [J]. J Am Soc Nephrol, 2021, 32(5): 1249-1261.
[7]
Al-Rabadi LF, Caza T, Trivin-Avillach C, et al. Serine protease HTRA1 as a novel target antigen in primary membranous nephropathy [J]. J Am Soc Nephrol, 2021, 32(7): 1666-1681.
[8]
Caza TN, Hassen SI, Kuperman M, et al. Neural cell adhesion molecule 1 is a novel autoantigen in membranous lupus nephritis [J]. Kidney Int, 2021, 100(1): 171-181.
[9]
Fernandez-Juarez G, Rojas-Rivera J, Logt AV, et al. The STARMEN trial indicates that alternating treatment with corticosteroids and cyclophosphamide is superior to sequential treatment with tacrolimus and rituximab in primary membranous nephropathy [J]. Kidney Int, 2021, 99(4): 986-998.
[10]
Scolari F, Delbarba E, Santoro D, et al. Rituximab or cyclophosphamide in the treatment of membranous nephropathy: the RI-CYCLO randomized trial [J]. J Am Soc Nephrol, 2021, 32(4): 972-982.
[11]
Zonozi R, Laliberte K, Huizenga NR, et al. Combination of rituximab, low-dose cyclophosphamide, and prednisone for primary membranous nephropathy: a case series with extended follow up [J]. Am J Kidney Dis, 2021, 78(6): 793-803.
[12]
Delafosse M, Ponlot E, Esteve E, et al. Personalized phospholipase A2 receptor antibody-driven rituximab treatment strategy in membranous nephropathy [J]. Kidney Int, 2021, 99(4): 1023-1024.
[13]
Haukka J, Sandholm N, Valo E, et al. Novel linkage peaks discovered for diabetic nephropathy in individuals with type 1 diabetes [J]. Diabetes, 2021, 70(4): 986-995.
[14]
Anderson AH, Xie D, Wang X, et al. Novel risk factors for progression of diabetic and nondiabetic CKD: findings from the chronic renal insufficiency cohort (CRIC) study [J]. Am J Kidney Dis, 2021, 77(1): 56-73.
[15]
Schrauben SJ, Shou H, Zhang X, et al. Association of multiple plasma biomarker concentrations with progression of prevalent diabetic kidney disease: findings from the chronic renal insufficiency cohort (CRIC) study [J]. J Am Soc Nephrol, 2021, 32(1): 115-126.
[16]
Wheeler DC, Stefánsson BV, Jongs N, et al. Effects of dapagliflozin on major adverse kidney and cardiovascular events in patients with diabetic and non-diabetic chronic kidney disease: a prespecified analysis from the DAPA-CKD trial [J]. Lancet Diabetes Endocrinol, 2021, 9(1): 22-31.
[17]
Heerspink HJL, Jongs N, Chertow GM, et al. Effect of dapagliflozin on the rate of decline in kidney function in patients with chronic kidney disease with and without type 2 diabetes: a prespecified analysis from the DAPA-CKD trial [J]. Lancet Diabetes Endocrinol, 2021, 9(11): 743-754.
[18]
Jongs N, Greene T, Chertow GM, et al. Effect of dapagliflozin on urinary albumin excretion in patients with chronic kidney disease with and without type 2 diabetes: a prespecified analysis from the DAPA-CKD trial [J]. Lancet Diabetes Endocrinol, 2021, 9(11): 755-766.
[19]
Bhatt DL, Szarek M, Pitt B, et al. Sotagliflozin in patients with diabetes and chronic kidney disease [J]. N Engl J Med, 2021, 384(2): 129-139.
[20]
Heerspink HJL, Kohan DE, de Zeeuw D. New insights from sonar indicate adding sodium glucose co-transporter 2 inhibitors to an endothelin receptor antagonist mitigates fluid retention and enhances albuminuria reduction [J]. Kidney Int, 2021, 99(2): 346-349.
[21]
Ravindran A, Casal Moura M, Fervenza FC, et al. In patients with membranous lupus nephritis, exostosin-positivity and exostosin-negativity represent two different phenotypes [J]. J Am Soc Nephrol, 2021, 32(3): 695-706.
[22]
Rovin BH, Teng YKO, Ginzler EM, et al. Efficacy and safety of voclosporin versus placebo for lupus nephritis (AURORA 1): a double-blind, randomised, multicentre, placebo-controlled, phase 3 trial [J]. Lancet, 2021, 397(10289): 2070-2080.
[23]
Atisha-Fregoso Y, Malkiel S, Harris KM, et al. Phase II randomized trial of rituximab plus cyclophosphamide followed by belimumab for the treatment of lupus nephritis [J]. Arthritis Rheumatol, 2021, 73(1): 121-131.
[24]
Rovin BH, Furie R, Teng YKO, et al. A secondary analysis of the belimumab international study in lupus nephritis trial examined effects of belimumab on kidney outcomes and preservation of kidney function in patients with lupus nephritis [J]. Kidney Int, 2021, 101(2): 403-413.
[25]
Chung SA, Langford CA, Maz M, et al. 2021 American College of Rheumatology/vasculitis foundation guideline for the management of antineutrophil cytoplasmic antibody-associated vasculitis [J]. Arthritis Rheumatol, 2021, 73(8): 1366-1383.
[26]
Jayne DRW, Merkel PA, Schall TJ, et al. Avacopan for the treatment of ANCA-associated vasculitis [J]. N Engl J Med, 2021, 384(7): 599-609.
[27]
Gulati K, Edwards H, Prendecki M, et al. Combination treatment with rituximab, low-dose cyclophosphamide and plasma exchange for severe antineutrophil cytoplasmic antibody-associated vasculitis [J]. Kidney Int, 2021, 100(6): 1316-1324.
[28]
Nasr SH, Fidler ME, Said SM, et al. Immunofluorescence staining for immunoglobulin heavy chain/light chain on kidney biopsies is a valuable ancillary technique for the diagnosis of monoclonal gammopathy-associated kidney diseases [J]. Kidney Int, 2021, 100(1): 155-170.
[29]
Javaugue V, Pascal V, Bender S, et al. RNA-based immunoglobulin repertoire sequencing is a new tool for the management of monoclonal gammopathy of renal (kidney) significance [J]. Kidney Int, 2021, 101(2): 331-337.
[30]
Zand L, Rajkumar SV, Leung N, et al. Safety and efficacy of daratumumab in patients with proliferative GN with monoclonal immunoglobulin deposits [J]. J Am Soc Nephrol, 2021, 32(5): 1163-1173.
[31]
Nasr SH, Kudose SS, Said SM, et al. Immunotactoid glomerulopathy is a rare entity with monoclonal and polyclonal variants [J]. Kidney Int, 2021, 99(2): 410-420.
[32]
Mohammad KN, Chan EYY, Lau SY, et al. Relationship between acute kidney injury, seasonal influenza, and environmental factors: a 14-year retrospective analysis [J]. Environ Int, 2021, 153: 106521.
[33]
Ikizler TA, Parikh CR, Himmelfarb J, et al. A prospective cohort study of acute kidney injury and kidney outcomes, cardiovascular events, and death [J]. Kidney Int, 2021, 99(2): 456-465.
[34]
Hapca S, Siddiqui MK, Kwan RSY, et al. The relationship between AKI and CKD in patients with type 2 diabetes: an observational cohort study [J]. J Am Soc Nephrol, 2021, 32(1): 138-150.
[35]
Wilson FP, Martin M, Yamamoto Y, et al. Electronic health record alerts for acute kidney injury: multicenter, randomized clinical trial [J]. BMJ, 2021, 372: m4786.
[36]
Lodise TP, Drusano G. Vancomycin area under the curve-guided dosing and monitoring for adult and pediatric patients with suspected or documented serious methicillin-resistant staphylococcus aureus infections: putting the safety of our patients first [J]. Clin Infect Dis, 2021, 72(9): 1497-1501.
[37]
Lee JD, Heintz BH, Mosher HJ, et al. Risk of acute kidney injury and clostridioides difficile infection with piperacillin/tazobactam, cefepime, and meropenem with or without vancomycin [J]. Clin Infect Dis, 2021, 73(7): e1579-e1586.
[38]
Espi M, Teuma C, Novel-Catin E, et al. Renal adverse effects of immune checkpoints inhibitors in clinical practice: ImmuNoTox study [J]. Eur J Cancer, 2021, 147: 29-39.
[39]
Gupta S, Short SAP, Sise ME, et al. Acute kidney injury in patients treated with immune checkpoint inhibitors [J]. J Immunother Cancer, 2021, 9(10): e003467.
[40]
Lunyera J, Clare RM, Chiswell K, et al. Racial differences in aki incidence following percutaneous coronary intervention [J]. J Am Soc Nephrol, 2021, 32(3): 654-662.
[41]
Mehran R, Owen R, Chiarito M, et al. A contemporary simple risk score for prediction of contrast-associated acute kidney injury after percutaneous coronary intervention: derivation and validation from an observational registry [J]. Lancet, 2021, 398(10315): 1974-1983.
[42]
Gaudry S, Hajage D, Martin-Lefevre L, et al. Comparison of two delayed strategies for renal replacement therapy initiation for severe acute kidney injury (AKIKI 2): a multicentre, open-label, randomised, controlled trial [J]. Lancet, 2021, 397(10281): 1293-1300.
[43]
Liu C, Peng Z, Dong Y, et al. Continuous renal replacement therapy liberation and outcomes of critically ill patients with acute kidney injury [J]. Mayo Clin Proc, 2021, 96(11): 2757-2767.
[44]
Naorungroj T, Neto AS, Murugan R, et al. Continuous renal replacement therapy: the interaction between fluid balance and net ultrafiltration [J]. Am J Respir Crit Care Med, 2021, 203(9): 1199-1201.
[45]
Roberts JA, Joynt GM, Lee A, et al. The effect of renal replacement therapy and antibiotic dose on antibiotic concentrations in critically ill patients: data from the multinational sampling antibiotics in renal replacement therapy study [J]. Clin Infect Dis, 2021, 72(8): 1369-1378.
[46]
Pergola PE, Rosenbaum DP, Yang Y, et al. A randomized trial of tenapanor and phosphate binders as a dual-mechanism treatment for hyperphosphatemia in patients on maintenance dialysis (AMPLIFY) [J]. J Am Soc Nephrol, 2021, 32(6): 1465-1473.
[47]
Hill Gallant KM, Stremke ER, Trevino LL, et al. EOS789, a broad-spectrum inhibitor of phosphate transport, is safe with an indication of efficacy in a phase 1b randomized crossover trial in hemodialysis patients [J]. Kidney Int, 2021, 99(5): 1225-1233.
[48]
Isaka Y, Hamano T, Fujii H, et al. Optimal phosphate control related to coronary artery calcification in dialysis patients [J]. J Am Soc Nephrol, 2021, 32(3): 723-735.
[49]
Ogata H, Fukagawa M, Hirakata H, et al. Effect of treating hyperphosphatemia with lanthanum carbonate vs calcium carbonate on cardiovascular events in patients with chronic kidney disease undergoing hemodialysis: the landmark randomized clinical trial [J]. JAMA, 2021, 325(19): 1946-1954.
[50]
Chan L, Chaudhary K, Saha A, et al. AKI in hospitalized patients with COVID-19 [J]. J Am Soc Nephrol, 2021, 32(1): 151-160.
[51]
Gupta S, Coca SG, Chan L, et al. AKI treated with renal replacement therapy in critically ill patients with COVID-19 [J]. J Am Soc Nephrol, 2021, 32(1): 161-176.
[52]
De Meester J, De Bacquer D, Naesens M, et al. Incidence, characteristics, and outcome of COVID-19 in adults on kidney replacement therapy: a regionwide registry study [J]. J Am Soc Nephrol, 2021, 32(2): 385-396.
[53]
Hsu CM, Weiner DE, Aweh G, et al. COVID-19 among US dialysis patients: risk factors and outcomes from a national dialysis provider [J]. Am J Kidney Dis, 2021, 77(5): 748-756.
[54]
May RM, Cassol C, Hannoudi A, et al. A multi-center retrospective cohort study defines the spectrum of kidney pathology in coronavirus 2019 disease (COVID-19) [J]. Kidney Int, 2021, 100(6): 1303-1315.
[55]
Diao B, Wang C, Wang R, et al. Human kidney is a target for novel severe acute respiratory syndrome coronavirus 2 infection [J]. Nat Commun, 2021, 12(1): 2506.
[56]
Govind D, Becker JU, Miecznikowski J, et al. Podosighter: a cloud-based tool for label-free podocyte detection in kidney whole-slide images [J]. J Am Soc Nephrol, 2021, 32(11): 2795-2813.
[57]
Ginley B, Jen KY, Han SS, et al. Automated computational detection of interstitial fibrosis, tubular atrophy, and glomerulosclerosis [J]. J Am Soc Nephrol, 2021, 32(4): 837-850.
[58]
Schena FP, Anelli VW, Trotta J, et al. Development and testing of an artificial intelligence tool for predicting end-stage kidney disease in patients with immunoglobulin A nephropathy [J]. Kidney Int, 2021, 99(5): 1179-1188.
[59]
Zhang K, Liu X, Xu J, et al. Deep-learning models for the detection and incidence prediction of chronic kidney disease and type 2 diabetes from retinal fundus images [J]. Nat Biomed Eng, 2021, 5(6): 533-545.
[60]
Chan L, Nadkarni GN, Fleming F, et al. Derivation and validation of a machine learning risk score using biomarker and electronic patient data to predict progression of diabetic kidney disease [J]. Diabetologia, 2021, 64(7): 1504-1515.
[61]
Ayoub I, Wolf BJ, Geng L, et al. Prediction models of treatment response in lupus nephritis [J]. Kidney Int, 2022, 101(2): 379-389.
[1] 杨水华, 何桂丹, 覃桂灿, 梁蒙凤, 罗艳合, 李雪芹, 唐娟松. 胎儿孤立性完全型肺静脉异位引流的超声心动图特征及高分辨率血流联合时间-空间相关成像的应用[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1061-1067.
[2] 姚宏伟, 魏鹏宇, 高加勒, 张忠涛. 不断提高腹腔镜右半结肠癌D3根治术的规范化[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 1-4.
[3] 杨倩, 李翠芳, 张婉秋. 原发性肝癌自发性破裂出血急诊TACE术后的近远期预后及影响因素分析[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 33-36.
[4] 栗艳松, 冯会敏, 刘明超, 刘泽鹏, 姜秋霞. STIP1在三阴性乳腺癌组织中的表达及临床意义研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 52-56.
[5] 彭旭, 邵永孚, 李铎, 邹瑞, 邢贞明. 结肠肝曲癌的诊断和外科治疗[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 108-110.
[6] 马伟强, 马斌林, 吴中语, 张莹. microRNA在三阴性乳腺癌进展中发挥的作用[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 111-114.
[7] 李永胜, 孙家和, 郭书伟, 卢义康, 刘洪洲. 高龄结直肠癌患者根治术后短期并发症及其影响因素[J]. 中华临床医师杂志(电子版), 2023, 17(9): 962-967.
[8] 袁媛, 赵良平, 刘智慧, 张丽萍, 谭丽梅, 閤梦琴. 子宫内膜癌组织中miR-25-3p、PTEN的表达及与病理参数的关系[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1016-1020.
[9] 王军, 刘鲲鹏, 姚兰, 张华, 魏越, 索利斌, 陈骏, 苗成利, 罗成华. 腹膜后肿瘤切除术中大量输血患者的麻醉管理特点与分析[J]. 中华临床医师杂志(电子版), 2023, 17(08): 844-849.
[10] 陆志峰, 周佳佳, 梁舒. 虚拟现实技术在治疗弱视中的临床应用研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 891-895.
[11] 李田, 徐洪, 刘和亮. 尘肺病的相关研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 900-905.
[12] 易成, 韦伟, 赵宇亮. 急性肾脏病的概念沿革[J]. 中华临床医师杂志(电子版), 2023, 17(08): 906-910.
[13] 岳瑞雪, 孔令欣, 郝鑫, 杨进强, 韩猛, 崔国忠, 王建军, 张志生, 孔凡庭, 张维, 何文博, 李现桥, 周新平, 徐东宏, 胡崇珠. 乳腺癌HER2蛋白表达水平预测新辅助治疗疗效的真实世界研究[J]. 中华临床医师杂志(电子版), 2023, 17(07): 765-770.
[14] 索利斌, 刘鲲鹏, 姚兰, 张华, 魏越, 王军, 陈骏, 苗成利, 罗成华. 原发性腹膜后副神经节瘤切除术麻醉管理的特点和分析[J]. 中华临床医师杂志(电子版), 2023, 17(07): 771-776.
[15] 周婷, 孙培培, 张二明, 安欣华, 向平超. 北京市石景山区40岁及以上居民慢性阻塞性肺疾病诊断现状调查[J]. 中华临床医师杂志(电子版), 2023, 17(07): 790-797.
阅读次数
全文


摘要