切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2017, Vol. 06 ›› Issue (01) : 25 -30. doi: 10.3877/cma.j.issn.2095-3216.2017.01.006

所属专题: 文献

论著

Intermedin通过抑制氧化应激减轻单侧输尿管梗阻大鼠肾脏间质纤维化
彭志强1, 乔晞1,(), 王利华1   
  1. 1. 030001 太原,山西医科大学第二医院肾内科、山西省肾脏病研究所
  • 收稿日期:2016-10-14 出版日期:2017-02-28
  • 通信作者: 乔晞
  • 基金资助:
    国家自然科学基金青年科学基金项目(81100531); 山西省卫生计生委科研课题(201601043); 山西省回国留学人员科研资助项目(2010-58)

Intermedin attenuates renal interstitial fibrosis through inhibiting oxidative stress in rats with unilateral ureteral obstruction

Zhiqiang Peng1, Xi Qiao1,(), Lihua Wang1   

  1. 1. Department of Nephrology, Second Hospital Affiliated to Shanxi Medical University, Kidney Disease Institute of Shanxi Province, Taiyuan 030001, China
  • Received:2016-10-14 Published:2017-02-28
  • Corresponding author: Xi Qiao
  • About author:
    Corresponding author: Qiao Xi, Email:
引用本文:

彭志强, 乔晞, 王利华. Intermedin通过抑制氧化应激减轻单侧输尿管梗阻大鼠肾脏间质纤维化[J]. 中华肾病研究电子杂志, 2017, 06(01): 25-30.

Zhiqiang Peng, Xi Qiao, Lihua Wang. Intermedin attenuates renal interstitial fibrosis through inhibiting oxidative stress in rats with unilateral ureteral obstruction[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2017, 06(01): 25-30.

目的

探讨intermedin(IMD)是否通过抑制氧化应激减轻单侧输尿管梗阻(UUO)大鼠肾脏间质纤维化。

方法

健康雄性Wistar大鼠,随机分为5组:假手术组、UUO模型组、UUO+IMD组、UUO+IMDshRNA组、UUO+空质粒组,每组24只。转染组于质粒转染后7 d制做UUO模型,各组分别于术后1、3、7、14 d取6只大鼠:Masson染色观察肾脏纤维化程度;化学荧光法检测大鼠肾组织局部活性氧类(ROS)物质的表达;比色法检测超氧化物歧化酶(SOD)活性及脂质过氧化产物丙二醛(MDA)含量;real time RT-PCR检测肾组织血红素加氧酶-1(HO-1)的mRNA表达,免疫组化法检测其蛋白质表达。

结果

Masson染色结果显示,假手术组检测各时间点肾组织无明显纤维化表现;UUO各组随着梗阻时间的延长肾间质纤维化进行性加重(P<0.05);UUO+IMD组各时间点肾间质纤维化程度较相应UUO组明显减轻(P<0.05);而UUO+IMDshRNA组肾间质纤维化程度较相应UUO组更重(P<0.05);UUO+空质粒组与UUO组相比无明显区别。与假手术组相比,UUO组大鼠各检测时间点肾组织ROS和MDA含量明显增高(P<0.05);UUO+IMD组较相应时间点UUO组ROS和MDA含量明显降低;UUO+IMDshRNA组较相应UUO组ROS和MDA含量更高(P<0.05);UUO+空质粒组则与相应UUO组相比无明显区别(P>0.05)。与假手术组相比,UUO组SOD活性、HO-1的mRNA和蛋白表达在第1d明显升高,以后逐渐下降,SOD活性第3天开始低于假手术组,而HO-1的mRNA和蛋白表达各检测时间点均高于假手术组(P<0.05);UUO+IMD组较相应时间点UUO组SOD活性和HO-1的表达更高(P<0.05);UUO+IMDshRNA组SOD活性和HO-1的表达较相应UUO组显著下降(P<0.05);UUO+空质粒组与UUO相比无明显区别(P>0.05)。

结论

IMD可以通过抑制氧化应激减轻UUO所致的大鼠肾脏纤维化。

Objective

To explore if intermedin (IMD) could reduce renal interstitial fibrosis through inhibiting reactive oxygen species (ROS) in rats with unilateral ureteral obstruction (UUO).

Methods

Healthy male Wistar rats were randomly divided into sham-operation group (n=24), UUO group (n=24), UUO+ IMD-pcDNA3.1 group (n=24), UUO+ IMDshRNA group (n=24), and UUO+ pcDNA3.1 group (n=24). Plasmid transfection was induced 7 days before UUO operation. Groups of 6 animals were killed at 1 d, 3 d, 7 d and 14 d after operation, respectively. The obstructed kidneys were harvested for further analysis. For analyzing the degree of tubulointerstitial collagen deposition, sections were stained with Masson trichrome. ROS content in the obstructed kidney was measured by chemiluminescence. Renal superoxide dismutase (SOD) activity and malondialdehyde (MDA) content were evaluated by colorimetry. Expression of heme oxygenase-1 (HO-1) was detected by real-time reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemical staining, respectively.

Results

Masson trichrome showed no obvious fibrosis at each time point in kidneys of sham-operation rats. With the time of obstruction, the degree of renal interstitial fibrosis increased in the UUO group (P<0.05), but decreased in the UUO+ IMD group (P<0.05), and increased more in the UUO+ IMDshRNA group (P<0.05). Renal fibrosis showed no difference between the UUO group and UUO+ pcDNA3.1 group (P>0.05). At each time point, the ROS activity and MDA content increased obviously in the UUO group compared with the sham controls (P<0.05), but decreased in the UUO+ IMD group, and increased more in the UUO+ IMDshRNA group (P<0.05). The ROS activity and MDA content showed no difference between the UUO group and UUO+ pcDNA3.1 group (P>0.05). SOD activity and HO-1 expression increased significantly at d1 after UUO in the UUO group, and then gradually declined. The SOD activity was lower than that of the sham controls at d3, d7, d14 after UUO, while HO-1 expressions of mRNA and protein were higher than those of the sham controls at each time point (P<0.05). The SOD activity and expression of HO-1 were significantly higher in the UUO+ IMD group than in the UUO group (P<0.05), but markedly lower in the UUO+ IMDshRNA group (P<0.05). There were no significant differences in the SOD activity and HO-1 expression between the UUO group and UUO+ pcDNA3.1 group (P>0.05).

Conclusion

IMD attenuated renal fibrosis induced in the UUO rats through inhibiting oxidative stress.

表1 UUO术后不同时间各组大鼠细胞外基质比较[纤维化面积(%), ±s]
图1 UUO术后不同时间各组大鼠肾组织细胞外基质比较(Masson染色×200倍)
表2 UUO术后不同时间各组大鼠肾组织ROS的含量(×104/mg, ±s)
表3 UUO术后不同时间各组大鼠肾组织MDA的含量(nmol/mg, ±s)
表4 UUO术后不同时间各组大鼠肾组织SOD活性(U/g,±s)
表5 UUO术后不同时间各组大鼠肾组织HO-1 mRNA的相对表达量(±s)
表6 UUO术后不同时间各组大鼠肾组织HO-1蛋白表达的比较(光密度值,±s)
图2 UUO术后不同时间各组大鼠肾组织HO-1蛋白表达的比较(免疫组化×200倍)
[1]
Ostendorf T, Boor P, van Roeyen CR, et al. Platelet-derived growth factors (PDGFs) in glomerular and tubulointerstitial fibrosis [J]. Kidney Int Suppl, 2014, 4(1): 65-69.
[2]
Grande MT, Sánchez-Laorden B, López-Blau C, et al. Snail1-induced partial epithelial-to-mesenchymal transition drives renal fibrosis in mice and can be targeted to reverse established disease [J]. Nat Med, 2015, 21(9): 989-997.
[3]
Liu CM, Sun Y, Sun JM, et al. Protective role of quercetin against lead-induced inflammatory response in rat kidney through the ROS-mediated MAPKs and NF-κB pathway [J]. Biochim Biophys Acta, 2012, 1820(10): 1693-703.
[4]
Cheng X, Zheng X, Song Y, et al. Apocynin attenuates renal fibrosis via inhibition of NOXs-ROS-ERK-myofibroblast accumulation in UUO rats [J]. Free Radic Res, 2016, 25: 1-28.
[5]
Klahr S, Morrissey J. Obstructive nephropathy and renal fibrosis [J]. Am J Physiol Renal Physiol, 2002, 283(5): F861-F875.
[6]
Roh J, Chang CL, Bhalla A, et al. Intermedin is a calcitonin/calcitonin gene-related peptide family peptide acting through the calcitonin receptor-like receptor/receptor activity-modifying protein receptor complexes [J]. J Biol Chem, 2004, 279(8): 7264-7274.
[7]
Takei Y, Inoue K, Ogoshi M, et al. Identification of novel adrenomedullin in mammals: a potentcardiovascular and renal regulator [J]. FEBS Lett, 2004, 556(1-3): 53-58.
[8]
乔晞,赵宁,王利华,等.上调肾组织intermedin表达抑制单侧输尿管梗阻大鼠肾间质纤维化[J/CD].中华肾病研究电子杂志,2015,4(1): 29-36.
[9]
Rhyu DY, Park J, Sharma BR, et al. Role of reactive oxygen species in transforming growth factor-beta1-induced extracellular matrix accumulation in renal tubular epithelial cells [J]. Transplant Proc, 2012, 44(3): 625-628.
[10]
Lan HY, Mu W, Tomita N, et al. Inhibition of renal fibrosis by gene transfer of inducible Smad 7 using ultrasound-microbubble system in rat UUO model [J]. J Am Soc Nephrol, 2003, 14(6): 1535-1548.
[11]
Taniyama Y, Azuma J, Rakugi H, et al. Plasmid DNA-based gene transfer with ultrasound and microbubbles [J]. Curr Gene Ther, 2011, 11(6): 485-490.
[12]
Kamijo-Ikemori A, Sugaya T, Obama A. Liver-type fatty acid-binding protein attenuated renal injury induced by unilateral ureteral obstruction [J]. Am J Pathol, 2006, 169(4): 1107-1117.
[13]
Otunctemur A, Ozbek E, Cakir SS. Beneficial effects of montelukast, a cysteinyl-leukotriene receptor antagonist, on renal damage after unilateral ureteral obstruction in rats [J]. Int Braz J Urol, 2015, 41(2): 279-287.
[14]
Poss KD, Tonegawa S. Reduced stress defense in heme oxygenase 1-deficient cells [J]. Proc Natl Acad Sci USA, 1997, 94(20): 10925-10930.
[15]
Jones EA, Shahed A, Shoskes DA, et al. Modulation of apoptotic and inflammatory genes by bioflavonoids and angiotensin II inhibition in ureteral obstruction [J]. Urology, 2000, 56(2): 346-351.
[16]
Park JY, Han X, Piao MJ, et al. Hyperoside induces endogenous antioxidant system to alleviate oxidative stress [J]. J Cancer Prev, 2016, 21(1): 41-47.
[17]
Kim JH, Yang JI, Jung MH, et al. Heme oxygenase-1 protects rat kidney from ureteral obstruction via an antiapoptotic pathway [J]. J Am Soc Nephrol, 2006, 17(5): 1373-1381.
[18]
Chen X, Wei S-Y, Li J-S, et al. Overexpression of heme oxygenase-1 prevents renal interstitial inflammation and fibrosis induced by unilateral ureteral obstruction [J]. PLoS One, 2016, 11(1): e0147084.
[19]
Kie JH, Kapturczak MH, Traylor A, et al. Heme oxygenase-1 deficiency promotes epithelial-mesenchymal transition and renal fibrosis [J]. J Am Soc Nephrol, 2008, 19(9): 1681-1691.
[1] 尹娟, 杨兴, 李平, 徐旻馨, 鲍玉, 张志鹏, 薛慧. 低强度脉冲式超声波在脂多糖诱导的RAW264.7巨噬细胞分化中的抗炎和抗氧化作用[J]. 中华口腔医学研究杂志(电子版), 2023, 17(01): 26-36.
[2] 赵路, 张哲儒, 贾骏麒, 宗春琳, 景莉, 郭凯, 田磊. M2型巨噬细胞抑制放射后骨髓间充质干细胞向肌成纤维细胞转化的实验研究[J]. 中华口腔医学研究杂志(电子版), 2021, 15(04): 198-206.
[3] 邵浩仁, 郭佳. 铁死亡的分子机制及其在前列腺癌治疗中的研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(03): 294-298.
[4] 张江河, 李玉红, 李余杰, 张洪壮, 张一鸣. 低浓度过氧化氢对HaCat细胞增殖和大鼠创面愈合的作用与机制研究[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(02): 75-82.
[5] 孙文琦, 吴欣荣, 王运荣, 赵贝, 窦晓坛, 李雯, 邹晓平, 王雷, 陈敏. 结直肠上皮细胞ROS及FH检测对结直肠癌筛查的应用价值[J]. 中华结直肠疾病电子杂志, 2023, 12(04): 326-330.
[6] 熊寰, 朱亿豪, 胡志乔, 袁子茗, 胡汉卿, 汤庆超. 铁死亡在结直肠疾病中的研究进展[J]. 中华结直肠疾病电子杂志, 2021, 10(01): 86-89.
[7] 李燕辰, 李建宁, 涂晓文, 李峰生. 核辐射导致急性肾损伤中铁死亡的作用研究进展[J]. 中华肾病研究电子杂志, 2022, 11(06): 338-341.
[8] 尚春晓, 李纳琦. 白细胞介素-11在慢性肾脏病中的作用研究进展[J]. 中华肾病研究电子杂志, 2022, 11(03): 156-160.
[9] 刘思梦, 陈思, 周梦, 李青, 吴琳, 袁杨刚, 张波, 王宁宁, 张莉, 毛慧娟, 邢昌赢. 2021年肾脏病学基础研究进展[J]. 中华肾病研究电子杂志, 2022, 11(02): 79-83.
[10] 迟坤, 付章宁, 宋成成, 耿晓东, 刘超, 蔡广研, 陈香美, 洪权. 高尿酸通过TXNIP/NLRP3通路导致内皮细胞焦亡[J]. 中华肾病研究电子杂志, 2021, 10(02): 81-89.
[11] 李青, 袁杨刚, 张波, 毛慧娟, 邢昌赢. 2020年肾脏病学基础研究进展[J]. 中华肾病研究电子杂志, 2021, 10(01): 25-30.
[12] 孙静宜, 刘绪言, 蒋伟. NLRP3炎症小体介导足细胞损伤机制的研究进展[J]. 中华肾病研究电子杂志, 2020, 09(06): 267-271.
[13] 都一鸣, 陈鑫, 赵世光. 急性缺血性脑卒中氧化应激机制的研究进展[J]. 中华神经创伤外科电子杂志, 2021, 07(02): 121-124.
[14] 隆昱洲, 柳华, 张云茜, 李兴统, 范云虎, 尚正良, 宋镇妤, 罗丽华. 依达拉奉预适应延长急性缺血性脑卒中溶栓时间窗的研究及ROS/TXNIP/NLRP3通路参与机制的探讨[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(02): 65-74.
[15] 李少莹, 文莹, 贾翠萍, 张媛, 邓伟豪. 抑制糖毒性通路对细胞线粒体功能障碍的影响和潜在意义[J]. 中华临床实验室管理电子杂志, 2023, 11(02): 65-70.
阅读次数
全文


摘要