[1] |
Ostendorf T, Boor P, van Roeyen CR, et al. Platelet-derived growth factors (PDGFs) in glomerular and tubulointerstitial fibrosis [J]. Kidney Int Suppl, 2014, 4(1): 65-69.
|
[2] |
Grande MT, Sánchez-Laorden B, López-Blau C, et al. Snail1-induced partial epithelial-to-mesenchymal transition drives renal fibrosis in mice and can be targeted to reverse established disease [J]. Nat Med, 2015, 21(9): 989-997.
|
[3] |
Liu CM, Sun Y, Sun JM, et al. Protective role of quercetin against lead-induced inflammatory response in rat kidney through the ROS-mediated MAPKs and NF-κB pathway [J]. Biochim Biophys Acta, 2012, 1820(10): 1693-703.
|
[4] |
Cheng X, Zheng X, Song Y, et al. Apocynin attenuates renal fibrosis via inhibition of NOXs-ROS-ERK-myofibroblast accumulation in UUO rats [J]. Free Radic Res, 2016, 25: 1-28.
|
[5] |
Klahr S, Morrissey J. Obstructive nephropathy and renal fibrosis [J]. Am J Physiol Renal Physiol, 2002, 283(5): F861-F875.
|
[6] |
Roh J, Chang CL, Bhalla A, et al. Intermedin is a calcitonin/calcitonin gene-related peptide family peptide acting through the calcitonin receptor-like receptor/receptor activity-modifying protein receptor complexes [J]. J Biol Chem, 2004, 279(8): 7264-7274.
|
[7] |
Takei Y, Inoue K, Ogoshi M, et al. Identification of novel adrenomedullin in mammals: a potentcardiovascular and renal regulator [J]. FEBS Lett, 2004, 556(1-3): 53-58.
|
[8] |
乔晞,赵宁,王利华,等.上调肾组织intermedin表达抑制单侧输尿管梗阻大鼠肾间质纤维化[J/CD].中华肾病研究电子杂志,2015,4(1): 29-36.
|
[9] |
Rhyu DY, Park J, Sharma BR, et al. Role of reactive oxygen species in transforming growth factor-beta1-induced extracellular matrix accumulation in renal tubular epithelial cells [J]. Transplant Proc, 2012, 44(3): 625-628.
|
[10] |
Lan HY, Mu W, Tomita N, et al. Inhibition of renal fibrosis by gene transfer of inducible Smad 7 using ultrasound-microbubble system in rat UUO model [J]. J Am Soc Nephrol, 2003, 14(6): 1535-1548.
|
[11] |
Taniyama Y, Azuma J, Rakugi H, et al. Plasmid DNA-based gene transfer with ultrasound and microbubbles [J]. Curr Gene Ther, 2011, 11(6): 485-490.
|
[12] |
Kamijo-Ikemori A, Sugaya T, Obama A. Liver-type fatty acid-binding protein attenuated renal injury induced by unilateral ureteral obstruction [J]. Am J Pathol, 2006, 169(4): 1107-1117.
|
[13] |
Otunctemur A, Ozbek E, Cakir SS. Beneficial effects of montelukast, a cysteinyl-leukotriene receptor antagonist, on renal damage after unilateral ureteral obstruction in rats [J]. Int Braz J Urol, 2015, 41(2): 279-287.
|
[14] |
Poss KD, Tonegawa S. Reduced stress defense in heme oxygenase 1-deficient cells [J]. Proc Natl Acad Sci USA, 1997, 94(20): 10925-10930.
|
[15] |
Jones EA, Shahed A, Shoskes DA, et al. Modulation of apoptotic and inflammatory genes by bioflavonoids and angiotensin II inhibition in ureteral obstruction [J]. Urology, 2000, 56(2): 346-351.
|
[16] |
Park JY, Han X, Piao MJ, et al. Hyperoside induces endogenous antioxidant system to alleviate oxidative stress [J]. J Cancer Prev, 2016, 21(1): 41-47.
|
[17] |
Kim JH, Yang JI, Jung MH, et al. Heme oxygenase-1 protects rat kidney from ureteral obstruction via an antiapoptotic pathway [J]. J Am Soc Nephrol, 2006, 17(5): 1373-1381.
|
[18] |
Chen X, Wei S-Y, Li J-S, et al. Overexpression of heme oxygenase-1 prevents renal interstitial inflammation and fibrosis induced by unilateral ureteral obstruction [J]. PLoS One, 2016, 11(1): e0147084.
|
[19] |
Kie JH, Kapturczak MH, Traylor A, et al. Heme oxygenase-1 deficiency promotes epithelial-mesenchymal transition and renal fibrosis [J]. J Am Soc Nephrol, 2008, 19(9): 1681-1691.
|