切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2021, Vol. 10 ›› Issue (01) : 25 -30. doi: 10.3877/cma.j.issn.2095-3216.2021.01.005

所属专题: 文献

新进展

2020年肾脏病学基础研究进展
李青1, 袁杨刚1,(), 张波1, 毛慧娟1, 邢昌赢1   
  1. 1. 210029 南京医科大学第一附属医院(江苏省人民医院)肾内科
  • 收稿日期:2021-01-02 出版日期:2021-02-28
  • 通信作者: 袁杨刚
  • 基金资助:
    国家自然科学基金面上项目(81870469)

Advances in the basic research on nephrology in 2020

Qing Li1, Yanggang Yuan1,(), Bo Zhang1, Huijuan Mao1, Changying Xing1   

  1. 1. Department of Nephrology, First Affiliated Hospital of Nanjing Medical University (Jiangsu Provincial People′s Hospital), Nanjing 210029, Jiangsu Province, China
  • Received:2021-01-02 Published:2021-02-28
  • Corresponding author: Yanggang Yuan
引用本文:

李青, 袁杨刚, 张波, 毛慧娟, 邢昌赢. 2020年肾脏病学基础研究进展[J/OL]. 中华肾病研究电子杂志, 2021, 10(01): 25-30.

Qing Li, Yanggang Yuan, Bo Zhang, Huijuan Mao, Changying Xing. Advances in the basic research on nephrology in 2020[J/OL]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2021, 10(01): 25-30.

2020年肾脏病学基础研究领域取得了众多研究进展,本文主要从肾脏生理、急性肾损伤、肾小球疾病(原发性肾小球疾病、继发性肾小球疾病)、肾脏纤维化和急性肾损伤向慢性肾脏病转变五个方面,概括其发病机制、生物学标志物及预防治疗方面的最近进展,为肾脏疾病的临床诊治提供新思路。

In 2020, many research advances have been made in the field of basic research on nephrology. This article mainly focused on renal physiology, acute kidney injury, glomerular diseases (primary glomerular diseases, secondary glomerular diseases), renal fibrosis, and the transformation of acute kidney injury to chronic kidney disease, summarizing the recent advances in pathogenesis, biological markers, and prevention and treatment, so as to provide new ideas for the clinical diagnosis and treatment of renal diseases.

[1]
Datta A, Yang C, Limbutara K, et al. PKA-independent vasopressin signaling in renal collecting duct [J]. FASEB J, 2020, 34(5): 6129-6146.
[2]
Laszczyk A, Higashi A, Patel S, et al, Pax2 and Pax8 proteins regulate urea transporters and aquaporins to control urine concentration in the adult kidney [J]. J Am Soc Nephrol, 2020, 31(6): 1212-1225.
[3]
Manis AD, Hodges MR, Staruschenko A, et al. Expression, localization, and functional properties of inwardly rectifying K+ channels in the kidney [J]. Am J Physiol Renal Physiol, 2020, 318(2): F332-F337.
[4]
Hoorn EJ, Gritter M, Cuevas CA, et al, Regulation of the renal nacl cotransporter and its role in potassium homeostasis [J]. Physiol Rev, 2020, 100(1): 321-356.
[5]
Pham TD, Verlander JW, Wang Y, et al. Aldosterone regulates pendrin and epithelial sodium channel activity through intercalated cell mineralocorticoid receptor-dependent and-independent mechanisms over a wide range in serum potassium [J]. J Am Soc Nephrol, 2020, 31(3): 483-499.
[6]
DeLalio L, Masati E, Mendu S, et al. Pannexin 1 channels in renin-expressing cells influence renin secretion and blood pressure homeostasis [J]. Kidney Int, 2020, 98(3): 630-644.
[7]
Boyd-Shiwarski CR, Weaver CJ, Beacham RT, et al. Effects of extreme potassium stress on blood pressure and renal tubular sodium transport [J]. Am J Physiol Renal Physiol, 2020, 318(6): F1341-F1356.
[8]
Hu C, Lakshmipathi J, Stuart D, et al, Renomedullary interstitial cell endothelin a receptors regulate bp and renal function [J]. J Am Soc Nephrol, 2020, 31(7): 1555-1568.
[9]
Tang C, Cai J, Yin X, et al. Mitochondrial quality control in kidney injury and repair [J]. Nat Rev Nephrol, 2020, Epub ahead of print.
[10]
Battistone MA, Mendelsohn AC, Spallanzani RG, et al, Proinflammatory P2Y14 receptor inhibition protects against ischemic acute kidney injury in mice [J]. J Clin Invest, 2020, 130(7): 3734-3749.
[11]
Cao Q, Wang R, Wang Y, et al, Regulatory innate lymphoid cells suppress innate immunity and reduce renal ischemia/reperfusion injury [J]. Kidney Int, 2020, 97(1): 130-142.
[12]
Wang L, Wang K, Tian Z. miR-128-3p inhibits NRP1 expression and promotes inflammatory response to acute kidney injury in sepsis [J]. Inflammation, 2020, 43(5): 1772-1779.
[13]
Ibrahim YF, Moussa RA, Bayoumi AMA, et al. Tocilizumab attenuates acute lung and kidney injuries and improves survival in a rat model of sepsis via down-regulation of NF-κB/JNK: a possible role of P-glycoprotein [J]. Inflammopharmacology, 2020, 28(1): 215-230.
[14]
Zhou J, An C, Jin X, et al. TAK1 deficiency attenuates cisplatin-induced acute kidney injury [J]. Am J Physiol Renal Physiol, 2020, 318(1): F209-F215.
[15]
Zhao M, Wang Y, Li L, et al, Mitochondrial ros promote mitochondrial dysfunction and inflammation in ischemic acute kidney injury by disrupting tfam-mediated mtdna maintenance [J]. Theranostics, 2021, 11(4): 1845-1863.
[16]
Cao H, Cheng Y, Gao H, et al. In vivo tracking of mesenchymal stem cell-derived extracellular vesicles improving mitochondrial function in renal ischemia-reperfusion injury [J]. ACS Nano, 2020, 14(4): 4014-4026.
[17]
Li Y, Nourbakhsh N, Pham H, et al. Evolution of altered tubular metabolism and mitochondrial function in sepsis-associated acute kidney injury [J]. Am J Physiol Renal Physiol, 2020, 319(2): F229-F244.
[18]
Jang HS, Noh MR, Jung EM, et al. Proximal tubule cyclophilin D regulates fatty acid oxidation in cisplatin-induced acute kidney injury [J]. Kidney Int, 2020, 97(2): 327-339.
[19]
Tan X, Tao Q, Li G, et al, Fibroblast growth factor 2 attenuates renal ischemia-reperfusion injury via inhibition of endoplasmic reticulum stress [J]. Front Cell Dev Biol, 2020, 8: 147.
[20]
Zhang Y, Zhang J, Liu X, et al. CBX7 suppression prevents ischemia-reperfusion injury-induced endoplasmic reticulum stress through the Nrf-2/Ho-1 pathway [J]. Am J Physiol Renal Physiol, 2020, 318(6): F1531-F1538.
[21]
Huang Z, Guo F, Xia Z, et al. Activation of GPR120 by TUG891 ameliorated cisplatin-induced acute kidney injury via repressing ER stress and apoptosis [J]. Biomed Pharmacother, 2020, 126: 110056.
[22]
Ruiz-Ortega M, Rayego-Mateos S, Lamas S, et al, Targeting the progression of chronic kidney disease [J]. Nat Rev Nephrol, 2020, 16(5): 269-288.
[23]
Cockwell P, Fisher LA. The global burden of chronic kidney disease [J]. Lancet, 2020, 395(10225): 662-664.
[24]
Zheng N, Xie K, Ye H, et al. TLR7 in B cells promotes renal inflammation and Gd-IgA1 synthesis in IgA nephropathy [J]. JCI Insight, 2020, 5(14): e136965.
[25]
Faria B, Canão P, Cai Q, et al. Arteriolar C4d in IgA nephropathy: a cohort study [J]. Am J Kidney Dis, 2020, 76(5): 669-678.
[26]
Takahata A, Arai S, Hiramoto E, et al. Crucial role of AIM/CD5L in the development of glomerular inflammation in IgA nephropathy [J]. J Am Soc Nephrol, 2020, 31(9): 2013-2024.
[27]
Sethi S, Debiec H, Madden B, et al. Neural epidermal growth factor-like 1 protein (NELL-1) associated membranous nephropathy [J]. Kidney Int, 2020, 97(1): 163-174.
[28]
Zhuang Q, Li F, Liu J, et al. Nuclear exclusion of YAP exacerbates podocyte apoptosis and disease progression in adriamycin-induced focal segmental glomerulosclerosis [J]. Lab Invest, 2020, 101(2): 258-270.
[29]
Sun L, Zhang X, Wang Z. NPHS2 gene polymorphism aggravates renal damage caused by focal segmental glomerulosclerosis with COL4A3 mutation [J]. Biosci Rep, 2021, 41(1): BSR20203248.
[30]
Yang C, Chen XC, Li ZH, et al. SMAD3 promotes autophagy dysregulation by triggering lysosome depletion in tubular epithelial cells in diabetic nephropathy [J]. Autophagy, 2020, Epub ahead of print.
[31]
Fu Y, Sun Y, Wang M, et al, Elevation of jaml promotes diabetic kidney disease by modulating podocyte lipid metabolism [J]. Cell Metab, 2020, 32(6): 1052-1062.
[32]
Lai H, Chen A, Cai H, et al. Podocyte and endothelial-specific elimination of bambi identifies differential transforming growth factor-beta pathways contributing to diabetic glomerulopathy [J]. Kidney Int, 2020, 98(3): 601-614.
[33]
Huang X, Shi Y, Chen H, et al. Isoliquiritigenin prevents hyperglycemia-induced renal injuries by inhibiting inflammation and oxidative stress via SIRT1-dependent mechanism [J]. Cell Death Dis, 2020, 11(12): 1040.
[34]
Caza T, Hassen S, Kuperman M, et al. Neural cell adhesion molecule 1 is a novel autoantigen in membranous lupus nephritis [J]. Kidney Int, 2020, Epub ahead of print.
[35]
Breitkopf DM, Jankowski V, Ohl K, et al. The YB-1:Notch-3 axis modulates immune cell responses and organ damage in systemic lupus erythematosus [J]. Kidney Int, 2020, 97(2): 289-303.
[36]
Chen W, Li W, Zhang Z, et al. Lipocalin-2 exacerbates lupus nephritis by promoting Th1 cell differentiation [J]. J Am Soc Nephrol, 2020, 31(10): 2263-2277.
[37]
Yang SR, Hua KF, Chu LJ, et al. Xenon blunts NF-κB/NLRP3 inflammasome activation and improves acute onset of accelerated and severe lupus nephritis in mice [J]. Kidney Int, 2020, 98(2): 378-390.
[38]
Scindia Y, Wlazlo E, Ghias E, et al. Modulation of iron homeostasis with hepcidin ameliorates spontaneous murine lupus nephritis [J]. Kidney Int, 2020, 98(1): 100-115.
[39]
Luque A, Serrano I, Ripoll E, et al. Noncanonical immunomodulatory activity of complement regulator C4BP(β-) limits the development of lupus nephritis [J]. Kidney Int, 2020, 97(3): 551-566.
[40]
Li X, Pan J, Li H, et al. DsbA-L mediated renal tubulointerstitial fibrosis in UUO mice [J]. Nat Commun, 2020, 11(1): 4467.
[41]
Liu X, Miao J, Wang C, et al. Tubule-derived exosomes play a central role in fibroblast activation and kidney fibrosis [J]. Kidney Int, 2020, 97(6): 1181-1195.
[42]
Baues M, Klinkhammer BM, Ehling J, et al. A collagen-binding protein enables molecular imaging of kidney fibrosis in vivo [J]. Kidney Int, 2020, 97(3): 609-614.
[43]
Aparicio-Trejo OE, Avila-Rojas SH, Tapia E, et al. Chronic impairment of mitochondrial bioenergetics and β-oxidation promotes experimental AKI-to-CKD transition induced by folic acid [J]. Free Radic Biol Med, 2020, 154: 18-32.
[44]
Hsu YH, Chiu IJ, Lin YF. Lactoferrin contributes a renoprotective effect in acute kidney injury and early renal fibrosis [J]. Pharmaceutics, 2020, 12(5): 434.
[45]
Wang X, Xue N, Zhao S, et al. Upregulation of miR-382 contributes to renal fibrosis secondary to aristolochic acid-induced kidney injury via PTEN signaling pathway [J]. Cell Death Dis, 2020, 11(8): 620.
[1] 张婧琦, 江洋, 孙佳璐, 唐兴喆, 赵宇飞, 崔颖, 李信响, 戴景月, 傅琳, 彭新桂. 基于肾周CT特征结合血清肌酐水平探讨脓毒症伴急性肾损伤的早期识别[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 285-292.
[2] 樊恒, 孙敏, 朱建华. 红景天苷通过抑制PI3K/AKT/mTOR信号通路对大鼠脓毒症急性肾损伤的保护作用[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(03): 188-195.
[3] 张锦丽, 席毛毛, 褚志刚, 栾夏刚, 陈诺, 王德运, 谢卫国. 大面积烧伤患者发生早期急性肾损伤的危险因素分析[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(04): 282-287.
[4] 彭瑞, 杨瑞文, 魏澹宁, 夏永良. 琥珀酸受体1加重肾脏缺血再灌注损伤的作用研究[J/OL]. 中华移植杂志(电子版), 2024, 18(03): 159-164.
[5] 中华医学会器官移植学分会, 中国医师协会器官移植医师分会. 中国肝移植受者肾损伤管理临床实践指南(2023版)[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 276-288.
[6] 杜霞, 马梦青, 曹长春. 造影剂诱导的急性肾损伤的发病机制及干预靶点研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 279-282.
[7] 郭俊楠, 林惠, 任艺林, 乔晞. 氨基酸代谢异常在急性肾损伤向慢性肾脏病转变中的作用研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 283-287.
[8] 袁楠, 黄梦杰, 白云凤, 李晓帆, 罗从娟, 陈健文. 急性肾损伤-慢性肾脏病转化小鼠模型制备的教学要点及学习效果分析[J/OL]. 中华肾病研究电子杂志, 2024, 13(04): 226-230.
[9] 林玲, 李京儒, 沈瑞华, 林惠, 乔晞. 基于生物信息学分析小鼠急性肾损伤和急性肺损伤的枢纽基因[J/OL]. 中华肾病研究电子杂志, 2024, 13(03): 134-144.
[10] 张轶男, 朱国贞. 急性肾损伤向慢性肾脏病转变研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(02): 106-112.
[11] 周建芳, 罗旭颖, 张琳琳, 李宏亮, 杨燕琳, 陈光强, 石广志. 开颅术后危重患者急性肾损伤的发病率、危险因素及其对预后的影响[J/OL]. 中华重症医学电子杂志, 2024, 10(02): 148-156.
[12] 司楠, 孙洪涛. 创伤性脑损伤后肾功能障碍危险因素的研究进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(05): 300-305.
[13] 沈炎, 张俊峰, 唐春芳. 预后营养指数结合血清降钙素原、胱抑素C及视黄醇结合蛋白对急性胰腺炎并发急性肾损伤的预测价值[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 536-540.
[14] 崔秋子, 姚红曼, 艾迎春. 监测NLR、PLR、CAR、白蛋白、血钙及血糖指标水平对急性胰腺炎患者急性肾损伤的预测价值分析[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(03): 244-248.
[15] 颜世锐, 熊辉. 感染性心内膜炎合并急性肾损伤患者的危险因素探索及死亡风险预测[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 618-624.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?