切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2021, Vol. 10 ›› Issue (01) : 25 -30. doi: 10.3877/cma.j.issn.2095-3216.2021.01.005

所属专题: 文献

新进展

2020年肾脏病学基础研究进展
李青1, 袁杨刚1,(), 张波1, 毛慧娟1, 邢昌赢1   
  1. 1. 210029 南京医科大学第一附属医院(江苏省人民医院)肾内科
  • 收稿日期:2021-01-02 出版日期:2021-02-28
  • 通信作者: 袁杨刚
  • 基金资助:
    国家自然科学基金面上项目(81870469)

Advances in the basic research on nephrology in 2020

Qing Li1, Yanggang Yuan1,(), Bo Zhang1, Huijuan Mao1, Changying Xing1   

  1. 1. Department of Nephrology, First Affiliated Hospital of Nanjing Medical University (Jiangsu Provincial People′s Hospital), Nanjing 210029, Jiangsu Province, China
  • Received:2021-01-02 Published:2021-02-28
  • Corresponding author: Yanggang Yuan
引用本文:

李青, 袁杨刚, 张波, 毛慧娟, 邢昌赢. 2020年肾脏病学基础研究进展[J]. 中华肾病研究电子杂志, 2021, 10(01): 25-30.

Qing Li, Yanggang Yuan, Bo Zhang, Huijuan Mao, Changying Xing. Advances in the basic research on nephrology in 2020[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2021, 10(01): 25-30.

2020年肾脏病学基础研究领域取得了众多研究进展,本文主要从肾脏生理、急性肾损伤、肾小球疾病(原发性肾小球疾病、继发性肾小球疾病)、肾脏纤维化和急性肾损伤向慢性肾脏病转变五个方面,概括其发病机制、生物学标志物及预防治疗方面的最近进展,为肾脏疾病的临床诊治提供新思路。

In 2020, many research advances have been made in the field of basic research on nephrology. This article mainly focused on renal physiology, acute kidney injury, glomerular diseases (primary glomerular diseases, secondary glomerular diseases), renal fibrosis, and the transformation of acute kidney injury to chronic kidney disease, summarizing the recent advances in pathogenesis, biological markers, and prevention and treatment, so as to provide new ideas for the clinical diagnosis and treatment of renal diseases.

[1]
Datta A, Yang C, Limbutara K, et al. PKA-independent vasopressin signaling in renal collecting duct [J]. FASEB J, 2020, 34(5): 6129-6146.
[2]
Laszczyk A, Higashi A, Patel S, et al, Pax2 and Pax8 proteins regulate urea transporters and aquaporins to control urine concentration in the adult kidney [J]. J Am Soc Nephrol, 2020, 31(6): 1212-1225.
[3]
Manis AD, Hodges MR, Staruschenko A, et al. Expression, localization, and functional properties of inwardly rectifying K+ channels in the kidney [J]. Am J Physiol Renal Physiol, 2020, 318(2): F332-F337.
[4]
Hoorn EJ, Gritter M, Cuevas CA, et al, Regulation of the renal nacl cotransporter and its role in potassium homeostasis [J]. Physiol Rev, 2020, 100(1): 321-356.
[5]
Pham TD, Verlander JW, Wang Y, et al. Aldosterone regulates pendrin and epithelial sodium channel activity through intercalated cell mineralocorticoid receptor-dependent and-independent mechanisms over a wide range in serum potassium [J]. J Am Soc Nephrol, 2020, 31(3): 483-499.
[6]
DeLalio L, Masati E, Mendu S, et al. Pannexin 1 channels in renin-expressing cells influence renin secretion and blood pressure homeostasis [J]. Kidney Int, 2020, 98(3): 630-644.
[7]
Boyd-Shiwarski CR, Weaver CJ, Beacham RT, et al. Effects of extreme potassium stress on blood pressure and renal tubular sodium transport [J]. Am J Physiol Renal Physiol, 2020, 318(6): F1341-F1356.
[8]
Hu C, Lakshmipathi J, Stuart D, et al, Renomedullary interstitial cell endothelin a receptors regulate bp and renal function [J]. J Am Soc Nephrol, 2020, 31(7): 1555-1568.
[9]
Tang C, Cai J, Yin X, et al. Mitochondrial quality control in kidney injury and repair [J]. Nat Rev Nephrol, 2020, Epub ahead of print.
[10]
Battistone MA, Mendelsohn AC, Spallanzani RG, et al, Proinflammatory P2Y14 receptor inhibition protects against ischemic acute kidney injury in mice [J]. J Clin Invest, 2020, 130(7): 3734-3749.
[11]
Cao Q, Wang R, Wang Y, et al, Regulatory innate lymphoid cells suppress innate immunity and reduce renal ischemia/reperfusion injury [J]. Kidney Int, 2020, 97(1): 130-142.
[12]
Wang L, Wang K, Tian Z. miR-128-3p inhibits NRP1 expression and promotes inflammatory response to acute kidney injury in sepsis [J]. Inflammation, 2020, 43(5): 1772-1779.
[13]
Ibrahim YF, Moussa RA, Bayoumi AMA, et al. Tocilizumab attenuates acute lung and kidney injuries and improves survival in a rat model of sepsis via down-regulation of NF-κB/JNK: a possible role of P-glycoprotein [J]. Inflammopharmacology, 2020, 28(1): 215-230.
[14]
Zhou J, An C, Jin X, et al. TAK1 deficiency attenuates cisplatin-induced acute kidney injury [J]. Am J Physiol Renal Physiol, 2020, 318(1): F209-F215.
[15]
Zhao M, Wang Y, Li L, et al, Mitochondrial ros promote mitochondrial dysfunction and inflammation in ischemic acute kidney injury by disrupting tfam-mediated mtdna maintenance [J]. Theranostics, 2021, 11(4): 1845-1863.
[16]
Cao H, Cheng Y, Gao H, et al. In vivo tracking of mesenchymal stem cell-derived extracellular vesicles improving mitochondrial function in renal ischemia-reperfusion injury [J]. ACS Nano, 2020, 14(4): 4014-4026.
[17]
Li Y, Nourbakhsh N, Pham H, et al. Evolution of altered tubular metabolism and mitochondrial function in sepsis-associated acute kidney injury [J]. Am J Physiol Renal Physiol, 2020, 319(2): F229-F244.
[18]
Jang HS, Noh MR, Jung EM, et al. Proximal tubule cyclophilin D regulates fatty acid oxidation in cisplatin-induced acute kidney injury [J]. Kidney Int, 2020, 97(2): 327-339.
[19]
Tan X, Tao Q, Li G, et al, Fibroblast growth factor 2 attenuates renal ischemia-reperfusion injury via inhibition of endoplasmic reticulum stress [J]. Front Cell Dev Biol, 2020, 8: 147.
[20]
Zhang Y, Zhang J, Liu X, et al. CBX7 suppression prevents ischemia-reperfusion injury-induced endoplasmic reticulum stress through the Nrf-2/Ho-1 pathway [J]. Am J Physiol Renal Physiol, 2020, 318(6): F1531-F1538.
[21]
Huang Z, Guo F, Xia Z, et al. Activation of GPR120 by TUG891 ameliorated cisplatin-induced acute kidney injury via repressing ER stress and apoptosis [J]. Biomed Pharmacother, 2020, 126: 110056.
[22]
Ruiz-Ortega M, Rayego-Mateos S, Lamas S, et al, Targeting the progression of chronic kidney disease [J]. Nat Rev Nephrol, 2020, 16(5): 269-288.
[23]
Cockwell P, Fisher LA. The global burden of chronic kidney disease [J]. Lancet, 2020, 395(10225): 662-664.
[24]
Zheng N, Xie K, Ye H, et al. TLR7 in B cells promotes renal inflammation and Gd-IgA1 synthesis in IgA nephropathy [J]. JCI Insight, 2020, 5(14): e136965.
[25]
Faria B, Canão P, Cai Q, et al. Arteriolar C4d in IgA nephropathy: a cohort study [J]. Am J Kidney Dis, 2020, 76(5): 669-678.
[26]
Takahata A, Arai S, Hiramoto E, et al. Crucial role of AIM/CD5L in the development of glomerular inflammation in IgA nephropathy [J]. J Am Soc Nephrol, 2020, 31(9): 2013-2024.
[27]
Sethi S, Debiec H, Madden B, et al. Neural epidermal growth factor-like 1 protein (NELL-1) associated membranous nephropathy [J]. Kidney Int, 2020, 97(1): 163-174.
[28]
Zhuang Q, Li F, Liu J, et al. Nuclear exclusion of YAP exacerbates podocyte apoptosis and disease progression in adriamycin-induced focal segmental glomerulosclerosis [J]. Lab Invest, 2020, 101(2): 258-270.
[29]
Sun L, Zhang X, Wang Z. NPHS2 gene polymorphism aggravates renal damage caused by focal segmental glomerulosclerosis with COL4A3 mutation [J]. Biosci Rep, 2021, 41(1): BSR20203248.
[30]
Yang C, Chen XC, Li ZH, et al. SMAD3 promotes autophagy dysregulation by triggering lysosome depletion in tubular epithelial cells in diabetic nephropathy [J]. Autophagy, 2020, Epub ahead of print.
[31]
Fu Y, Sun Y, Wang M, et al, Elevation of jaml promotes diabetic kidney disease by modulating podocyte lipid metabolism [J]. Cell Metab, 2020, 32(6): 1052-1062.
[32]
Lai H, Chen A, Cai H, et al. Podocyte and endothelial-specific elimination of bambi identifies differential transforming growth factor-beta pathways contributing to diabetic glomerulopathy [J]. Kidney Int, 2020, 98(3): 601-614.
[33]
Huang X, Shi Y, Chen H, et al. Isoliquiritigenin prevents hyperglycemia-induced renal injuries by inhibiting inflammation and oxidative stress via SIRT1-dependent mechanism [J]. Cell Death Dis, 2020, 11(12): 1040.
[34]
Caza T, Hassen S, Kuperman M, et al. Neural cell adhesion molecule 1 is a novel autoantigen in membranous lupus nephritis [J]. Kidney Int, 2020, Epub ahead of print.
[35]
Breitkopf DM, Jankowski V, Ohl K, et al. The YB-1:Notch-3 axis modulates immune cell responses and organ damage in systemic lupus erythematosus [J]. Kidney Int, 2020, 97(2): 289-303.
[36]
Chen W, Li W, Zhang Z, et al. Lipocalin-2 exacerbates lupus nephritis by promoting Th1 cell differentiation [J]. J Am Soc Nephrol, 2020, 31(10): 2263-2277.
[37]
Yang SR, Hua KF, Chu LJ, et al. Xenon blunts NF-κB/NLRP3 inflammasome activation and improves acute onset of accelerated and severe lupus nephritis in mice [J]. Kidney Int, 2020, 98(2): 378-390.
[38]
Scindia Y, Wlazlo E, Ghias E, et al. Modulation of iron homeostasis with hepcidin ameliorates spontaneous murine lupus nephritis [J]. Kidney Int, 2020, 98(1): 100-115.
[39]
Luque A, Serrano I, Ripoll E, et al. Noncanonical immunomodulatory activity of complement regulator C4BP(β-) limits the development of lupus nephritis [J]. Kidney Int, 2020, 97(3): 551-566.
[40]
Li X, Pan J, Li H, et al. DsbA-L mediated renal tubulointerstitial fibrosis in UUO mice [J]. Nat Commun, 2020, 11(1): 4467.
[41]
Liu X, Miao J, Wang C, et al. Tubule-derived exosomes play a central role in fibroblast activation and kidney fibrosis [J]. Kidney Int, 2020, 97(6): 1181-1195.
[42]
Baues M, Klinkhammer BM, Ehling J, et al. A collagen-binding protein enables molecular imaging of kidney fibrosis in vivo [J]. Kidney Int, 2020, 97(3): 609-614.
[43]
Aparicio-Trejo OE, Avila-Rojas SH, Tapia E, et al. Chronic impairment of mitochondrial bioenergetics and β-oxidation promotes experimental AKI-to-CKD transition induced by folic acid [J]. Free Radic Biol Med, 2020, 154: 18-32.
[44]
Hsu YH, Chiu IJ, Lin YF. Lactoferrin contributes a renoprotective effect in acute kidney injury and early renal fibrosis [J]. Pharmaceutics, 2020, 12(5): 434.
[45]
Wang X, Xue N, Zhao S, et al. Upregulation of miR-382 contributes to renal fibrosis secondary to aristolochic acid-induced kidney injury via PTEN signaling pathway [J]. Cell Death Dis, 2020, 11(8): 620.
[1] 韩圣瑾, 周正武, 翁云龙, 黄鑫. 碳酸氢钠林格液联合连续性肾脏替代疗法对创伤合并急性肾损伤患者炎症水平及肾功能的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 376-381.
[2] 张秋彬, 张楠, 林清婷, 徐军, 朱华栋, 姜辉. 急性胰腺炎合并急性肾损伤患者的预后评估[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 382-389.
[3] 莫小乔, 胡喆莹, 廖冬花, 谢天. 脓毒症继发急性肾损伤患者死亡风险预测模型构建及评估[J]. 中华危重症医学杂志(电子版), 2023, 16(03): 198-206.
[4] 吴庆华, 冒勇, 闫效坤. AECOPD并发AKI的危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 529-531.
[5] 袁久莉, 刘丹, 李林藜, 刘晋宇. 毛囊间充质干细胞的基础研究及临床应用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 189-192.
[6] 任加发, 邬步云, 邢昌赢, 毛慧娟. 2022年急性肾损伤领域基础与临床研究进展[J]. 中华肾病研究电子杂志, 2023, 12(05): 276-281.
[7] 李青霖, 宋仁杰, 周飞虎. 一种重型劳力性热射病相关急性肾损伤小鼠模型的建立与探讨[J]. 中华肾病研究电子杂志, 2023, 12(05): 265-270.
[8] 李金璞, 饶向荣. 抗病毒药物和急性肾损伤[J]. 中华肾病研究电子杂志, 2023, 12(05): 287-290.
[9] 程庆砾. 新冠病毒感染与肾脏[J]. 中华肾病研究电子杂志, 2023, 12(04): 240-240.
[10] 宋艳琪, 任雪景, 王文娟, 韩秋霞, 续玥, 庄凯婷, 肖拓, 蔡广研. 间充质干细胞对顺铂诱导的小鼠急性肾损伤中细胞铁死亡的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 187-193.
[11] 苗软昕, 乔晞. Toll样受体在脓毒症性急性肾损伤中的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 210-214.
[12] 李娜, 朱国贞. 肠道菌群及其代谢产物在急性肾损伤中的作用研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 215-219.
[13] 任国华, 杜晓晓, 洪善玲, 邵帅. 妊娠期高血压并发急性肾损伤患者血清白细胞介素-22、硫化氢及护骨素水平的变化与意义[J]. 中华肾病研究电子杂志, 2023, 12(03): 150-155.
[14] 于天宇, 杨悦, 陆海涛, 田志永, 李文歌. 高龄急性肾损伤患者连续性肾脏替代治疗的预后及影响因素[J]. 中华肾病研究电子杂志, 2023, 12(03): 134-138.
[15] 易成, 韦伟, 赵宇亮. 急性肾脏病的概念沿革[J]. 中华临床医师杂志(电子版), 2023, 17(08): 906-910.
阅读次数
全文


摘要