[1] |
Datta A, Yang C, Limbutara K, et al. PKA-independent vasopressin signaling in renal collecting duct [J]. FASEB J, 2020, 34(5): 6129-6146.
|
[2] |
Laszczyk A, Higashi A, Patel S, et al, Pax2 and Pax8 proteins regulate urea transporters and aquaporins to control urine concentration in the adult kidney [J]. J Am Soc Nephrol, 2020, 31(6): 1212-1225.
|
[3] |
Manis AD, Hodges MR, Staruschenko A, et al. Expression, localization, and functional properties of inwardly rectifying K+ channels in the kidney [J]. Am J Physiol Renal Physiol, 2020, 318(2): F332-F337.
|
[4] |
Hoorn EJ, Gritter M, Cuevas CA, et al, Regulation of the renal nacl cotransporter and its role in potassium homeostasis [J]. Physiol Rev, 2020, 100(1): 321-356.
|
[5] |
Pham TD, Verlander JW, Wang Y, et al. Aldosterone regulates pendrin and epithelial sodium channel activity through intercalated cell mineralocorticoid receptor-dependent and-independent mechanisms over a wide range in serum potassium [J]. J Am Soc Nephrol, 2020, 31(3): 483-499.
|
[6] |
DeLalio L, Masati E, Mendu S, et al. Pannexin 1 channels in renin-expressing cells influence renin secretion and blood pressure homeostasis [J]. Kidney Int, 2020, 98(3): 630-644.
|
[7] |
Boyd-Shiwarski CR, Weaver CJ, Beacham RT, et al. Effects of extreme potassium stress on blood pressure and renal tubular sodium transport [J]. Am J Physiol Renal Physiol, 2020, 318(6): F1341-F1356.
|
[8] |
Hu C, Lakshmipathi J, Stuart D, et al, Renomedullary interstitial cell endothelin a receptors regulate bp and renal function [J]. J Am Soc Nephrol, 2020, 31(7): 1555-1568.
|
[9] |
Tang C, Cai J, Yin X, et al. Mitochondrial quality control in kidney injury and repair [J]. Nat Rev Nephrol, 2020, Epub ahead of print.
|
[10] |
Battistone MA, Mendelsohn AC, Spallanzani RG, et al, Proinflammatory P2Y14 receptor inhibition protects against ischemic acute kidney injury in mice [J]. J Clin Invest, 2020, 130(7): 3734-3749.
|
[11] |
Cao Q, Wang R, Wang Y, et al, Regulatory innate lymphoid cells suppress innate immunity and reduce renal ischemia/reperfusion injury [J]. Kidney Int, 2020, 97(1): 130-142.
|
[12] |
Wang L, Wang K, Tian Z. miR-128-3p inhibits NRP1 expression and promotes inflammatory response to acute kidney injury in sepsis [J]. Inflammation, 2020, 43(5): 1772-1779.
|
[13] |
Ibrahim YF, Moussa RA, Bayoumi AMA, et al. Tocilizumab attenuates acute lung and kidney injuries and improves survival in a rat model of sepsis via down-regulation of NF-κB/JNK: a possible role of P-glycoprotein [J]. Inflammopharmacology, 2020, 28(1): 215-230.
|
[14] |
Zhou J, An C, Jin X, et al. TAK1 deficiency attenuates cisplatin-induced acute kidney injury [J]. Am J Physiol Renal Physiol, 2020, 318(1): F209-F215.
|
[15] |
Zhao M, Wang Y, Li L, et al, Mitochondrial ros promote mitochondrial dysfunction and inflammation in ischemic acute kidney injury by disrupting tfam-mediated mtdna maintenance [J]. Theranostics, 2021, 11(4): 1845-1863.
|
[16] |
Cao H, Cheng Y, Gao H, et al. In vivo tracking of mesenchymal stem cell-derived extracellular vesicles improving mitochondrial function in renal ischemia-reperfusion injury [J]. ACS Nano, 2020, 14(4): 4014-4026.
|
[17] |
Li Y, Nourbakhsh N, Pham H, et al. Evolution of altered tubular metabolism and mitochondrial function in sepsis-associated acute kidney injury [J]. Am J Physiol Renal Physiol, 2020, 319(2): F229-F244.
|
[18] |
Jang HS, Noh MR, Jung EM, et al. Proximal tubule cyclophilin D regulates fatty acid oxidation in cisplatin-induced acute kidney injury [J]. Kidney Int, 2020, 97(2): 327-339.
|
[19] |
Tan X, Tao Q, Li G, et al, Fibroblast growth factor 2 attenuates renal ischemia-reperfusion injury via inhibition of endoplasmic reticulum stress [J]. Front Cell Dev Biol, 2020, 8: 147.
|
[20] |
Zhang Y, Zhang J, Liu X, et al. CBX7 suppression prevents ischemia-reperfusion injury-induced endoplasmic reticulum stress through the Nrf-2/Ho-1 pathway [J]. Am J Physiol Renal Physiol, 2020, 318(6): F1531-F1538.
|
[21] |
Huang Z, Guo F, Xia Z, et al. Activation of GPR120 by TUG891 ameliorated cisplatin-induced acute kidney injury via repressing ER stress and apoptosis [J]. Biomed Pharmacother, 2020, 126: 110056.
|
[22] |
Ruiz-Ortega M, Rayego-Mateos S, Lamas S, et al, Targeting the progression of chronic kidney disease [J]. Nat Rev Nephrol, 2020, 16(5): 269-288.
|
[23] |
Cockwell P, Fisher LA. The global burden of chronic kidney disease [J]. Lancet, 2020, 395(10225): 662-664.
|
[24] |
Zheng N, Xie K, Ye H, et al. TLR7 in B cells promotes renal inflammation and Gd-IgA1 synthesis in IgA nephropathy [J]. JCI Insight, 2020, 5(14): e136965.
|
[25] |
Faria B, Canão P, Cai Q, et al. Arteriolar C4d in IgA nephropathy: a cohort study [J]. Am J Kidney Dis, 2020, 76(5): 669-678.
|
[26] |
Takahata A, Arai S, Hiramoto E, et al. Crucial role of AIM/CD5L in the development of glomerular inflammation in IgA nephropathy [J]. J Am Soc Nephrol, 2020, 31(9): 2013-2024.
|
[27] |
Sethi S, Debiec H, Madden B, et al. Neural epidermal growth factor-like 1 protein (NELL-1) associated membranous nephropathy [J]. Kidney Int, 2020, 97(1): 163-174.
|
[28] |
Zhuang Q, Li F, Liu J, et al. Nuclear exclusion of YAP exacerbates podocyte apoptosis and disease progression in adriamycin-induced focal segmental glomerulosclerosis [J]. Lab Invest, 2020, 101(2): 258-270.
|
[29] |
Sun L, Zhang X, Wang Z. NPHS2 gene polymorphism aggravates renal damage caused by focal segmental glomerulosclerosis with COL4A3 mutation [J]. Biosci Rep, 2021, 41(1): BSR20203248.
|
[30] |
Yang C, Chen XC, Li ZH, et al. SMAD3 promotes autophagy dysregulation by triggering lysosome depletion in tubular epithelial cells in diabetic nephropathy [J]. Autophagy, 2020, Epub ahead of print.
|
[31] |
Fu Y, Sun Y, Wang M, et al, Elevation of jaml promotes diabetic kidney disease by modulating podocyte lipid metabolism [J]. Cell Metab, 2020, 32(6): 1052-1062.
|
[32] |
Lai H, Chen A, Cai H, et al. Podocyte and endothelial-specific elimination of bambi identifies differential transforming growth factor-beta pathways contributing to diabetic glomerulopathy [J]. Kidney Int, 2020, 98(3): 601-614.
|
[33] |
Huang X, Shi Y, Chen H, et al. Isoliquiritigenin prevents hyperglycemia-induced renal injuries by inhibiting inflammation and oxidative stress via SIRT1-dependent mechanism [J]. Cell Death Dis, 2020, 11(12): 1040.
|
[34] |
Caza T, Hassen S, Kuperman M, et al. Neural cell adhesion molecule 1 is a novel autoantigen in membranous lupus nephritis [J]. Kidney Int, 2020, Epub ahead of print.
|
[35] |
Breitkopf DM, Jankowski V, Ohl K, et al. The YB-1:Notch-3 axis modulates immune cell responses and organ damage in systemic lupus erythematosus [J]. Kidney Int, 2020, 97(2): 289-303.
|
[36] |
Chen W, Li W, Zhang Z, et al. Lipocalin-2 exacerbates lupus nephritis by promoting Th1 cell differentiation [J]. J Am Soc Nephrol, 2020, 31(10): 2263-2277.
|
[37] |
Yang SR, Hua KF, Chu LJ, et al. Xenon blunts NF-κB/NLRP3 inflammasome activation and improves acute onset of accelerated and severe lupus nephritis in mice [J]. Kidney Int, 2020, 98(2): 378-390.
|
[38] |
Scindia Y, Wlazlo E, Ghias E, et al. Modulation of iron homeostasis with hepcidin ameliorates spontaneous murine lupus nephritis [J]. Kidney Int, 2020, 98(1): 100-115.
|
[39] |
Luque A, Serrano I, Ripoll E, et al. Noncanonical immunomodulatory activity of complement regulator C4BP(β-) limits the development of lupus nephritis [J]. Kidney Int, 2020, 97(3): 551-566.
|
[40] |
Li X, Pan J, Li H, et al. DsbA-L mediated renal tubulointerstitial fibrosis in UUO mice [J]. Nat Commun, 2020, 11(1): 4467.
|
[41] |
Liu X, Miao J, Wang C, et al. Tubule-derived exosomes play a central role in fibroblast activation and kidney fibrosis [J]. Kidney Int, 2020, 97(6): 1181-1195.
|
[42] |
Baues M, Klinkhammer BM, Ehling J, et al. A collagen-binding protein enables molecular imaging of kidney fibrosis in vivo [J]. Kidney Int, 2020, 97(3): 609-614.
|
[43] |
Aparicio-Trejo OE, Avila-Rojas SH, Tapia E, et al. Chronic impairment of mitochondrial bioenergetics and β-oxidation promotes experimental AKI-to-CKD transition induced by folic acid [J]. Free Radic Biol Med, 2020, 154: 18-32.
|
[44] |
Hsu YH, Chiu IJ, Lin YF. Lactoferrin contributes a renoprotective effect in acute kidney injury and early renal fibrosis [J]. Pharmaceutics, 2020, 12(5): 434.
|
[45] |
Wang X, Xue N, Zhao S, et al. Upregulation of miR-382 contributes to renal fibrosis secondary to aristolochic acid-induced kidney injury via PTEN signaling pathway [J]. Cell Death Dis, 2020, 11(8): 620.
|