切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2015, Vol. 04 ›› Issue (04) : 212 -214. doi: 10.3877/cma.j.issn.2095-3216.2015.04.010

所属专题: 文献

综述

细胞程序性死亡与糖尿病肾病发病机制研究进展
吴蔚桦1()   
  1. 1. 646000 四川泸州,泸州医学院附属医院肾病内科
  • 出版日期:2015-08-28
  • 通信作者: 吴蔚桦
  • 基金资助:
    国家自然科学基金(81200533); 泸州医学院科研基金(2013ZRQN018,2014ZD-015)

Progress of research on the role of programmed cell death in the pathogenesis of diabetic nephropathy

Weihua Wu1,()   

  1. 1. Department of Nephropathy, Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan, 646000, China
  • Published:2015-08-28
  • Corresponding author: Weihua Wu
  • About author:
    Corresponding author: Wu Weihua, Email:
引用本文:

吴蔚桦. 细胞程序性死亡与糖尿病肾病发病机制研究进展[J/OL]. 中华肾病研究电子杂志, 2015, 04(04): 212-214.

Weihua Wu. Progress of research on the role of programmed cell death in the pathogenesis of diabetic nephropathy[J/OL]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2015, 04(04): 212-214.

糖尿病肾病是糖尿病常见微血管病变,其发病机制并不完全清楚,研究发现细胞程序性死亡与糖尿病肾病发病机制关系密切,包括内质网应激、线粒体功能异常、糖基化产物毒性、糖原合酶激酶GSK3等机制均认为与糖尿病肾病细胞程序性死亡相关,表现为自噬功能障碍,肾脏固有细胞凋亡增加以及出现某些潜在的新型细胞程序性死亡过程。本综述结合目前国内外研究现状,对这一领域做一总结。

Diabetic nephropathy (DN) is a common microvascular complication of diabetes, and its pathogenesis is not entirely clear yet. It has been reported that programmed cell death (PCD) is closely associated with the pathogenesis of DN through pathways including endoplasmic reticulum stress, mitochondrial dysfunction, glycosylation products toxicity, and glycogen synthase kinase GSK3, which can lead to autophagy dysfunction, apoptosis increase of renal inherent cells, and PCD of some potential new types of cells. This review summarized the current domestic and international research data of this field.

[1]
Yang W, Lu J, Weng J, et al. Prevalence of diabetes among men and women in China [J]. N Engl J Med, 2010, 362(12): 1090-1101.
[2]
Xu Y, Wang L, He J, et al. Prevalence and control of diabetes in Chinese adults [J]. JAMA, 2013, 310(9): 948-959.
[3]
Liu ZH. Nephrology in China [J]. Nat Rev Nephrol, 2013, 9(9): 523-528.
[4]
Lockshin RA, Williams CM. Programmed cell death-Ⅱ. Endocrine potentiation of the breakdown of the intersegmental muscles of silkmoths [J]. J Insect Physiol, 1964, 10(4): 643-649.
[5]
Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer, 1972, 26(4): 239-257.
[6]
Augustin S, Berard M, Kellaf S, et al. Matrix metalloproteinases are involved in both type I (apoptosis) and type II (autophagy) cell death induced by sodium phenylacetate in MDA-MB-231 breast tumour cells [J]. Anticancer Res, 2009, 29(4): 1335-1343.
[7]
Lalaoui N, Lindqvist LM, Sandow JJ, et al. The molecular relationships between apoptosis, autophagy and necroptosis [J]. Semin Cell Dev Biol, 2015, 39: 63-69.
[8]
Souers AJ, Leverson JD, Boghaert ER. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets [J]. Nat Med, 2013, 19(2): 202-208.
[9]
He C, Zhu H, Li H. Dissociation of Bcl-2-Beclin1 complex by activated AMPK enhances cardiac autophagy and protects against cardiomyocyte apoptosis in diabetes [J]. Diabetes, 2013, 62(4): 1270-1281.
[10]
Lu C, Shi Y, Luo Y, et al. MAPKs and Mst1/Caspase-3 pathways contribute to H2B phosphorylation during UVB-induced apoptosis [J]. Sci China Life Sci, 2010, 53(6): 663-668.
[11]
Seldin MM, Lei X, Tan SY. et al. Skeletal muscle-derived myonectin activates the mammalian target of rapamycin (mTOR) pathway to suppress autophagy in liver [J]. J Biol Chem, 2013, 288(50): 36073-36082.
[12]
Wang F, Wang Q, Zhou ZW, et al. Plumbagin induces cell cycle arrest and autophagy and suppresses epithelial to mesenchymal transition involving PI3K/Akt/mTOR-mediated pathway in human pancreatic cancer cells [J]. Drug Des Devel Ther, 2015, 9: 537-560.
[13]
Avruch J, Zhou D, Fitamant J, et al. Protein kinases of the Hippo pathway: regulation and substrates [J]. Semin Cell Dev Biol, 2012, 23(7): 770-784.
[14]
Yu T, Ji J, Guo YL. MST1 activation by curcumin mediates JNK activation, Foxo3a nuclear translocation and apoptosis in melanoma cells [J]. Biochem Biophys Res Commun, 2013, 441(1): 53-58.
[15]
Bi W, Xiao L, Jia Y. c-Jun N-terminal kinase enhances MST1-mediated pro-apoptotic signaling through phosphorylation at serine 82 [J]. J Biol Chem, 2010, 285(9): 6259-6264.
[16]
Maejima Y, Kyoi S, Zhai P.et al. Mst1 inhibits autophagy by promoting the interaction between Beclin1 and Bcl-2 [J]. Nat Med, 2013, 19(11): 1478-1488.
[17]
Novak I. Mitophagy: a complex mechanism of mitochondrial removal [J]. Antioxid Redox Signal, 2012, 17(5): 794-802.
[18]
Wu WH, Zhang MP, Yang SJ,et al. Zhi-Long-Huo-Xue-Tong-Yu modulates mitochondrial fission through the ROCK1 pathway in mitochondrial dysfunction caused by streptozotocin-induced diabetic kidney injury [J]. Genet Mol Res, 2015, 14(2): 4593-4606.
[19]
Ishibashi Y, Matsui T, Ohta K, et al. PEDF inhibits AGE-induced podocyte apoptosis via PPAR-gamma activation [J]. Microvasc Res, 2013, 85: 54-58.
[20]
Pal PB, Sinha K, Sil PC. Mangiferin attenuates diabetic nephropathy by inhibiting oxidative stress mediated signaling cascade, TNFα related and mitochondrial dependent apoptotic pathways in streptozotocin-induced diabetic rats [J]. PLoS One, 2014, 9(9): e107220.
[21]
Zhuang A, Forbes JM. Stress in the kidney is the road to pERdition: is endoplasmic reticulum stress a pathogenic mediator of diabetic nephropathy [J] ? J Endocrinol, 2014, 222(3): R97-R111.
[22]
Qi W, Niu J, Qin Q. Glycated albumin triggers fibrosis and apoptosis via an NADPH oxidase/Nox4-MAPK pathway-dependent mechanism in renal proximal tubular cells [J]. Mol Cell Endocrinol, 2015, 405: 74-83.
[23]
Lindenmeyer MT, Rastaldi MP, Ikehata M, et al. Proteinuria and hyperglycemia induce endoplasmic reticulum stress [J]. J Am Soc Nephrol, 2008, 19(11): 2225-2236.
[24]
Peixoto EB, Papadimitriou A, Teixeira DA, et al. Reduced LRP6 expression and increase in the interaction of GSK3β with p53 contribute to podocyte apoptosis in diabetes mellitus and are prevented by green tea [J]. J Nutr Biochem, 2015, 26(4): 416-430.
[25]
薛玲,吴蔚桦,欧三桃,等. 高糖对大鼠肾小球足细胞表达蛋白酶MST1的影响[J/CD].中华肾病研究电子杂志,2014,3(4):209-213.
[26]
Ardestani A, Paroni F, Azizi Z, et al. MST1 is a key regulator of beta cell apoptosis and dysfunction in diabetes [J]. Nat Med, 2014, 20(4): 385-397.
[27]
Ding Y, Choi ME. Autophagy in diabetic nephropathy [J]. J Endocrinol, 2015, 224(1): R15-R30.
[28]
Wu WH, Zhang MP, Zhang F, et al. The role of programmed cell death in streptozotocin-induced early diabetic nephropathy [J]. J Endocrinol Invest, 2011, 34(9): e296-e301.
[29]
Higgins GC, Coughlan MT. Mitochondrial dysfunction and mitophagy: the beginning and end to diabetic nephropathy [J]? Br J Pharmacol, 2014, 171(8): 1917-1942.
[30]
Xiao T, Guan X, Nie L, et al. Rapamycin promotes podocyte autophagy and ameliorates renal injury in diabetic mice [J]. Mol Cell Biochem, 2014, 394(1-2): 145-154.
[31]
Polak-Jonkisz D, Laszki-Szcząchor K, Rehan L, et al. Nephroprotective action of sirtuin 1 (SIRT1) [J]. J Physiol Biochem, 2013, 69(4): 957-961.
[32]
Tanaka Y, Kume S, Kitada M, Autophagy as a therapeutic target in diabetic nephropathy [J]. Exp Diabetes Res, 2012, 2012: 628978.
[1] 诸琴红, 夏典平, 葛芳娣, 崔大伟. 抗氧化和炎症指标在糖尿病肾病患者中的临床意义[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 307-311.
[2] 费扬, 赵晗希, 孙丽琴, 楼琴华, 胡骏程. 银杏叶提取物对糖尿病肾病患者的疗效及其对尿液外泌体miR-342-3p的干预研究[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(03): 219-224.
[3] 中华医学会器官移植学分会, 中国医疗保健国际交流促进会肾脏移植学分会. 中国胰肾联合移植临床诊疗指南[J/OL]. 中华移植杂志(电子版), 2024, 18(03): 129-147.
[4] 刘璐璐, 何羽. 慢性阻塞性肺病患者睡眠障碍的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 836-839.
[5] 廖江荣, 吴秀琳, 陈光春, 郭亮, 吕慈, 蔡俊, 陈夕. 急性主动脉夹层并发急性肺损伤的研究新进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(03): 488-492.
[6] 赵静, 张嘉欣, 高言, 谢席胜. 微小病变肾病的发病机制及治疗研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(04): 207-212.
[7] 孙鼎, 王滨, 陈香美, 陈意志. 热应激肾病的研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(03): 170-176.
[8] 贾红艳, 王丹, 张冉冉, 马茜, 焦永红. 基于全外显子组测序探寻Möbius综合征发病机制的遗传学研究[J/OL]. 中华眼科医学杂志(电子版), 2024, 14(03): 146-154.
[9] 邱岭, 朱旭丽, 浦坚, 邢苗苗, 吴佳玲. 糖尿病肾病患者肠道菌群生态特点与胃肠道功能障碍的关联性研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 453-458.
[10] 安亚楠, 王端然, 郭甜甜, 武希润. 幽门螺杆菌阴性胃黏膜相关淋巴组织淋巴瘤的研究进展[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(03): 268-274.
[11] 刘琦, 王守凯, 王帅, 苏雨晴, 马壮, 陈海军, 司丕蕾. 乳腺癌肿瘤内微生物组的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 841-845.
[12] 白璐, 李青霞, 冯一卓, 刘雪倩, 刘若琪, 曲卓敏, 赵凌霞. 丁酸盐治疗糖尿病肾病的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(03): 303-308.
[13] 厉若男, 宋进, 王玉忠. 带状疱疹后神经痛的发病机制和诊治研究进展[J/OL]. 中华诊断学电子杂志, 2024, 12(03): 199-205.
[14] 王可涵, 许涛, 周全红. 围术期谵妄与应激的研究进展[J/OL]. 中华老年病研究电子杂志, 2024, 11(03): 45-49.
[15] 张梅, 陈卉, 李转霞, 王瑞, 李林娟. Metrnl和NLRP3炎症小体:糖尿病肾病的潜在诊断标志物[J/OL]. 中华肥胖与代谢病电子杂志, 2024, 10(03): 193-199.
阅读次数
全文


摘要