切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2015, Vol. 04 ›› Issue (04) : 212 -214. doi: 10.3877/cma.j.issn.2095-3216.2015.04.010

所属专题: 文献

综述

细胞程序性死亡与糖尿病肾病发病机制研究进展
吴蔚桦1()   
  1. 1. 646000 四川泸州,泸州医学院附属医院肾病内科
  • 出版日期:2015-08-28
  • 通信作者: 吴蔚桦
  • 基金资助:
    国家自然科学基金(81200533); 泸州医学院科研基金(2013ZRQN018,2014ZD-015)

Progress of research on the role of programmed cell death in the pathogenesis of diabetic nephropathy

Weihua Wu1,()   

  1. 1. Department of Nephropathy, Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan, 646000, China
  • Published:2015-08-28
  • Corresponding author: Weihua Wu
  • About author:
    Corresponding author: Wu Weihua, Email:
引用本文:

吴蔚桦. 细胞程序性死亡与糖尿病肾病发病机制研究进展[J]. 中华肾病研究电子杂志, 2015, 04(04): 212-214.

Weihua Wu. Progress of research on the role of programmed cell death in the pathogenesis of diabetic nephropathy[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2015, 04(04): 212-214.

糖尿病肾病是糖尿病常见微血管病变,其发病机制并不完全清楚,研究发现细胞程序性死亡与糖尿病肾病发病机制关系密切,包括内质网应激、线粒体功能异常、糖基化产物毒性、糖原合酶激酶GSK3等机制均认为与糖尿病肾病细胞程序性死亡相关,表现为自噬功能障碍,肾脏固有细胞凋亡增加以及出现某些潜在的新型细胞程序性死亡过程。本综述结合目前国内外研究现状,对这一领域做一总结。

Diabetic nephropathy (DN) is a common microvascular complication of diabetes, and its pathogenesis is not entirely clear yet. It has been reported that programmed cell death (PCD) is closely associated with the pathogenesis of DN through pathways including endoplasmic reticulum stress, mitochondrial dysfunction, glycosylation products toxicity, and glycogen synthase kinase GSK3, which can lead to autophagy dysfunction, apoptosis increase of renal inherent cells, and PCD of some potential new types of cells. This review summarized the current domestic and international research data of this field.

[1]
Yang W, Lu J, Weng J, et al. Prevalence of diabetes among men and women in China [J]. N Engl J Med, 2010, 362(12): 1090-1101.
[2]
Xu Y, Wang L, He J, et al. Prevalence and control of diabetes in Chinese adults [J]. JAMA, 2013, 310(9): 948-959.
[3]
Liu ZH. Nephrology in China [J]. Nat Rev Nephrol, 2013, 9(9): 523-528.
[4]
Lockshin RA, Williams CM. Programmed cell death-Ⅱ. Endocrine potentiation of the breakdown of the intersegmental muscles of silkmoths [J]. J Insect Physiol, 1964, 10(4): 643-649.
[5]
Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer, 1972, 26(4): 239-257.
[6]
Augustin S, Berard M, Kellaf S, et al. Matrix metalloproteinases are involved in both type I (apoptosis) and type II (autophagy) cell death induced by sodium phenylacetate in MDA-MB-231 breast tumour cells [J]. Anticancer Res, 2009, 29(4): 1335-1343.
[7]
Lalaoui N, Lindqvist LM, Sandow JJ, et al. The molecular relationships between apoptosis, autophagy and necroptosis [J]. Semin Cell Dev Biol, 2015, 39: 63-69.
[8]
Souers AJ, Leverson JD, Boghaert ER. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets [J]. Nat Med, 2013, 19(2): 202-208.
[9]
He C, Zhu H, Li H. Dissociation of Bcl-2-Beclin1 complex by activated AMPK enhances cardiac autophagy and protects against cardiomyocyte apoptosis in diabetes [J]. Diabetes, 2013, 62(4): 1270-1281.
[10]
Lu C, Shi Y, Luo Y, et al. MAPKs and Mst1/Caspase-3 pathways contribute to H2B phosphorylation during UVB-induced apoptosis [J]. Sci China Life Sci, 2010, 53(6): 663-668.
[11]
Seldin MM, Lei X, Tan SY. et al. Skeletal muscle-derived myonectin activates the mammalian target of rapamycin (mTOR) pathway to suppress autophagy in liver [J]. J Biol Chem, 2013, 288(50): 36073-36082.
[12]
Wang F, Wang Q, Zhou ZW, et al. Plumbagin induces cell cycle arrest and autophagy and suppresses epithelial to mesenchymal transition involving PI3K/Akt/mTOR-mediated pathway in human pancreatic cancer cells [J]. Drug Des Devel Ther, 2015, 9: 537-560.
[13]
Avruch J, Zhou D, Fitamant J, et al. Protein kinases of the Hippo pathway: regulation and substrates [J]. Semin Cell Dev Biol, 2012, 23(7): 770-784.
[14]
Yu T, Ji J, Guo YL. MST1 activation by curcumin mediates JNK activation, Foxo3a nuclear translocation and apoptosis in melanoma cells [J]. Biochem Biophys Res Commun, 2013, 441(1): 53-58.
[15]
Bi W, Xiao L, Jia Y. c-Jun N-terminal kinase enhances MST1-mediated pro-apoptotic signaling through phosphorylation at serine 82 [J]. J Biol Chem, 2010, 285(9): 6259-6264.
[16]
Maejima Y, Kyoi S, Zhai P.et al. Mst1 inhibits autophagy by promoting the interaction between Beclin1 and Bcl-2 [J]. Nat Med, 2013, 19(11): 1478-1488.
[17]
Novak I. Mitophagy: a complex mechanism of mitochondrial removal [J]. Antioxid Redox Signal, 2012, 17(5): 794-802.
[18]
Wu WH, Zhang MP, Yang SJ,et al. Zhi-Long-Huo-Xue-Tong-Yu modulates mitochondrial fission through the ROCK1 pathway in mitochondrial dysfunction caused by streptozotocin-induced diabetic kidney injury [J]. Genet Mol Res, 2015, 14(2): 4593-4606.
[19]
Ishibashi Y, Matsui T, Ohta K, et al. PEDF inhibits AGE-induced podocyte apoptosis via PPAR-gamma activation [J]. Microvasc Res, 2013, 85: 54-58.
[20]
Pal PB, Sinha K, Sil PC. Mangiferin attenuates diabetic nephropathy by inhibiting oxidative stress mediated signaling cascade, TNFα related and mitochondrial dependent apoptotic pathways in streptozotocin-induced diabetic rats [J]. PLoS One, 2014, 9(9): e107220.
[21]
Zhuang A, Forbes JM. Stress in the kidney is the road to pERdition: is endoplasmic reticulum stress a pathogenic mediator of diabetic nephropathy [J] ? J Endocrinol, 2014, 222(3): R97-R111.
[22]
Qi W, Niu J, Qin Q. Glycated albumin triggers fibrosis and apoptosis via an NADPH oxidase/Nox4-MAPK pathway-dependent mechanism in renal proximal tubular cells [J]. Mol Cell Endocrinol, 2015, 405: 74-83.
[23]
Lindenmeyer MT, Rastaldi MP, Ikehata M, et al. Proteinuria and hyperglycemia induce endoplasmic reticulum stress [J]. J Am Soc Nephrol, 2008, 19(11): 2225-2236.
[24]
Peixoto EB, Papadimitriou A, Teixeira DA, et al. Reduced LRP6 expression and increase in the interaction of GSK3β with p53 contribute to podocyte apoptosis in diabetes mellitus and are prevented by green tea [J]. J Nutr Biochem, 2015, 26(4): 416-430.
[25]
薛玲,吴蔚桦,欧三桃,等. 高糖对大鼠肾小球足细胞表达蛋白酶MST1的影响[J/CD].中华肾病研究电子杂志,2014,3(4):209-213.
[26]
Ardestani A, Paroni F, Azizi Z, et al. MST1 is a key regulator of beta cell apoptosis and dysfunction in diabetes [J]. Nat Med, 2014, 20(4): 385-397.
[27]
Ding Y, Choi ME. Autophagy in diabetic nephropathy [J]. J Endocrinol, 2015, 224(1): R15-R30.
[28]
Wu WH, Zhang MP, Zhang F, et al. The role of programmed cell death in streptozotocin-induced early diabetic nephropathy [J]. J Endocrinol Invest, 2011, 34(9): e296-e301.
[29]
Higgins GC, Coughlan MT. Mitochondrial dysfunction and mitophagy: the beginning and end to diabetic nephropathy [J]? Br J Pharmacol, 2014, 171(8): 1917-1942.
[30]
Xiao T, Guan X, Nie L, et al. Rapamycin promotes podocyte autophagy and ameliorates renal injury in diabetic mice [J]. Mol Cell Biochem, 2014, 394(1-2): 145-154.
[31]
Polak-Jonkisz D, Laszki-Szcząchor K, Rehan L, et al. Nephroprotective action of sirtuin 1 (SIRT1) [J]. J Physiol Biochem, 2013, 69(4): 957-961.
[32]
Tanaka Y, Kume S, Kitada M, Autophagy as a therapeutic target in diabetic nephropathy [J]. Exp Diabetes Res, 2012, 2012: 628978.
[1] 林凌, 李佩, 赵玮. 牛牙样牙发病机制的研究进展[J]. 中华口腔医学研究杂志(电子版), 2023, 17(02): 75-80.
[2] 程莉, 章晓良. 血尿酸和胱抑素C与糖尿病视网膜病变患者合并糖尿病肾病的关系及影响因素[J]. 中华肾病研究电子杂志, 2023, 12(04): 194-199.
[3] 雷建东, 吴林军, 季沙, 蒋志敏. 糖尿病肾病维持性血液透析患者低血糖预测模型及评分量表的建立[J]. 中华肾病研究电子杂志, 2022, 11(06): 311-317.
[4] 吴震宇, 胡亚芬, 董晓芬, 马远方. 血清CTGF、TGF-β1、MMP2水平对糖尿病肾病肾间质纤维化的预测分析[J]. 中华肾病研究电子杂志, 2022, 11(06): 332-337.
[5] 黄嘉明, 段红霞, 赖逾鹏, 王大吉, 刘兴娇, 沈鑫, 王梅英. 狼疮性肾炎慢性化中肾脏固有细胞的间充质化研究进展[J]. 中华肾病研究电子杂志, 2022, 11(06): 347-352.
[6] 王明. 糖尿病肾脏病[J]. 中华肾病研究电子杂志, 2022, 11(05): 300-300.
[7] 徐新丽, 于小勇. 表观遗传——中医药治疗糖尿病肾病新视角[J]. 中华肾病研究电子杂志, 2022, 11(05): 276-280.
[8] 唐凯, 刘正峰, 宋佳蔚, 卢秀珍. 角膜巩膜干凹斑的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 231-235.
[9] 李文捷, 卢弘. 幼年特发性关节炎相关葡萄膜炎的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(01): 40-44.
[10] 张坤淇, 张睿, 徐佳, 康庆林. 漂浮膝损伤的诊治进展[J]. 中华老年骨科与康复电子杂志, 2023, 09(04): 252-256.
[11] 金刚, 李英真, 施维, 李博. 帕金森病在病理生理学中的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 315-319.
[12] 朱艺平, 陈一平, 赵艳英, 陆玮玮, 牙侯军, 苏复霞. 二十味沉香丸调控糖尿病肾病大鼠肠道菌群益生菌构成的机制研究[J]. 中华临床医师杂志(电子版), 2022, 16(06): 572-578.
[13] 王敏, 张妍, 王盈熹, 赵龙, 夏书月. 外泌体在慢性阻塞性肺疾病中的作用[J]. 中华临床实验室管理电子杂志, 2023, 11(01): 45-51.
[14] 刘倩影, 刘雪彦, 周佩如, 胡申玲, 叶倩呈, 黄洁微. 糖尿病肾病患者血液透析期间低血糖管理的证据总结[J]. 中华肥胖与代谢病电子杂志, 2023, 09(01): 22-27.
[15] 郑茂凤, 时晶, 李婷, 徐筱青, 田金洲. 血管性帕金森综合征的临床特征及诊治研究进展[J]. 中华脑血管病杂志(电子版), 2022, 16(05): 347-350.
阅读次数
全文


摘要