切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2015, Vol. 04 ›› Issue (06) : 316 -320. doi: 10.3877/cma.j.issn.2095-3216.2015.06.009

所属专题: 文献

综述

IgA肾病患者IgA1糖基化异常及其致病机制
林淑芃1()   
  1. 1. 100853 北京,解放军总医院肾脏病科、解放军肾脏病研究所、肾脏疾病国家重点实验室、国家慢性肾病临床医学研究中心
  • 出版日期:2015-12-28
  • 通信作者: 林淑芃
  • 基金资助:
    国家自然科学基金(31200589); 海南省自然科学基金(20158332); 三亚市医疗卫生科技创新项目(2014YW33)

The pathopoiesis mechanism of abnormal IgA1 glycosylation in IgA nephropathy patients

Shupeng Lin1,()   

  1. 1. Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing 100853, China
  • Published:2015-12-28
  • Corresponding author: Shupeng Lin
  • About author:
    Corresponding author: Lin Shupeng, Email:
引用本文:

林淑芃. IgA肾病患者IgA1糖基化异常及其致病机制[J]. 中华肾病研究电子杂志, 2015, 04(06): 316-320.

Shupeng Lin. The pathopoiesis mechanism of abnormal IgA1 glycosylation in IgA nephropathy patients[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2015, 04(06): 316-320.

IgA肾病(IgAN)是导致终末期肾病最常见的原发性肾小球疾病。其病理特点为IgA1在肾小球系膜区沉积,IgA1分子的异常糖基化是导致IgAN发病的关键因素。多种与IgAN相关的基因位点已经被发现。这些基因编码的细胞因子参与了IgA1糖基化异常的发病机制。此外糖基化酶缺乏、分子伴侣甲基化异常都可能导致IgA1异常糖基化。异常糖基化的IgA1可通过自我聚集或形成免疫复合物沉积于系膜区,进而刺激系膜细胞增殖、分泌系膜基质、细胞因子、趋化因子、生长因子等,导致肾小球损伤。对IgA1异常糖基化的深入研究有助于了解IgA肾病的发病机制并提供新的诊断与治疗措施。

IgA nephropathy (IgAN) is the most common primary glomerular disease that can result in end-stage renal disease, and is histologically characterized by the deposition of IgA1 in the glomerular mesangium. The abnormal IgA1 glycosylation is the key factor in the pathogenesis of IgAN. Multiple genetic loci associated with IgAN have been identified, and the cytokines coded by them are involved in the pathopoiesis mechanism of abnormal IgA1 glycosylation. In addition, the lack of glycosylase and abnormal methylation of molecular chaperone may also be involved in the aberrant glycosylation of IgA1. Abnormally glycosylated IgA1 can deposit in the mesangium through their own assembly together or formation of immunocomplex, which can subsequently stimulate mesangial cell proliferation and secretion of extracellular matrix, cytokines, chemokines, and growth factors, etc, leading to glomerular injury. In-depth research on IgA1 abnormal glycosylation will help to understand the pathogenesis of IgAN and provide new diagnosis and treatment methods.

图1 IgA1分子结构示意图及铰链区的糖链结构
图2 IgA1正常糖基化结构和目前发现的四种糖基化缺失情况
1
Valentijn RM, Radl J, Haaijman JJ, et al. Circulating and mesangial secretory component-binding IgA-1 in primary IgA nephropathy [J]. Kidney Int, 1984, 26(5): 760-766.
2
Novak J, Julian BA, Tomana M, et al. Progress in molecular and genetic studies of IgA nephropathy [J]. J Clin Immunol, 2001, 21(5): 310-327.
3
Tomino Y, Sakai H, Miura M, et al. Detection of polymeric IgA in glomeruli from patients with IgA nephropathy [J]. Clin Exp Immunol, 1982, 49(2): 419-425.
4
Monteiro RC, Halbwachs-Mecarelli L, Roque-Barreira MC, et al. Charge and size of mesangial IgA in IgA nephropathy [J]. Kidney Int, 1985, 28(4): 666-671.
5
Moldoveanu Z, Wyatt RJ, Lee JY, et al. Patients with IgA nephropathy have increased serum galactose-deficient IgA1 levels [J]. Kidney Int, 2007, 71(11): 1148-1154.
6
Hiki Y, Iwase H, Kokubo T, et al. Association of asialo-galactosyl β1-3-N-acetylgalactosamine on the hinge with a conformational instability of Jacalin-reactive immunoglobulin A1 in immunoglobulin A nephropathy [J]. J Am Soc Nephrol, 1996, 7(6), 955-960.
7
Tomana M, Novak J, Julian BA, et al. Circulating immune complexes in IgA nephropathy consist of IgA1 with galactose-deficient hinge region and antiglycan antibodies [J]. J Clin. Invest, 1999, 104(1): 73-81.
8
Conley ME, Cooper MD, Michael AF. Selective deposition of immunoglobulin A1 in immunoglobulin A nephropathy, anaphylactoid purpura nephritis, and systemic lupus erythematosus [J]. J Clin Invest, 1980, 66(6): 1432-1436.
9
Novak J, Moldoveanu Z, Renfrow MB, et al. IgA nephropathy and Henoch-Schoenlein purpura nephritis: aberrant glycosylation of IgA1, formation of IgA1-containing immune complexes, and activation of mesangial cells [J]. Contrib Nephrol, 2007, 157: 134-138.
10
Zhao N, Hou P, Lv J, et al. The level of galactose-deficient IgA1 in the sera of patients with IgA nephropathy is associated with disease progression [J]. Kidney Int, 2012, 82(7): 790-796.
11
Tomana M, Kulhavy R, Mestecky J. Receptor-mediated binding and uptake of immunoglobulin A by human liver [J]. Gastroenterology, 1988, 94(3): 762-770.
12
Tomana M, Phillips JO, Kulhavy R, et al. Carbohydrate-mediated clearance of secretory IgA from the circulation [J]. Mol Immunol, 1985, 22(8): 887-892.
13
Feehally J, Farrall M, Boland A, et al. HLA has strongest association with IgA nephropathy in genome-wide analysis [J]. J Am Soc Nephrol, 2010, 21(10): 1791-1797.
14
Gharavi AG, Kiryluk K, Choi M, et al. Genome-wide association study identifies susceptibility loci for IgA nephropathy [J]. Nat Genet, 2011, 43(4): 321-327.
15
Yu XQ, Li M, Zhang H, et al. A genome-wide association study in Han Chinese identifies multiple susceptibility loci for IgA nephropathy [J]. Nat Genet, 2012, 44(2): 178-182.
16
Fennessy M, Hitman GA, Moore RH, et al. HLA-DQ gene polymorphism in primary IgA nephropathy in three European populations [J]. Kidney Int, 1996, 49(2): 477-480.
17
Heinrich PC, Behrmann I, Haan S, et al. Principles of interleukin (IL)-6-type cytokine signaling and its regulation [J]. Biochem J, 2003, 374(Pt 1): 1-20.
18
Rostoker G, Rymer JC, Bagnard G, et al. Imbalances in serum proinflammatory cytokines and their soluble receptors: a putative role in the progression of idiopathic IgA nephropathy (IgAN) and Henoch-Sch?nlein purpura nephritis, and a potential target of immunoglobulin therapy [J] ? Clin Exp Immunol, 1998, 114(3): 468-476.
19
Suzuki H, Raska M, Yamada K, et al. Cytokines alter IgA1 O-glycosylation by dysregulating C1GalT1 and ST6GalNAc-II enzymes [J]. J Biol Chem, 2014, 289(8): 5330-5339.
20
Reily C, Yamada K, Huang ZQ, et al. Abnormal STAT3 signaling enhances production of autoantigen in an autoimmune disease, IgA nephropathy [Abstract] [J]. J Am Soc Nephrol, 2013, 24: 20A.
21
Suzuki H, Moldoveanu Z, Hall S, et al. Cytokines regulate aberrant glycosylation of IgA1 in cell lines from patients with IgA nephropathy [Abstract] [J]. J Am Soc Nephrol, 2007, 18, 188A.
22
Yamada K, Huang ZQ, Raska M, et al. Effects of leukemia inhibitory factor and oncostatin M on IgA1-producing cells from patients with IgA nephropathy [Abstract] [J]. J Am Soc Nephrol, 2012, 23: 912A.
23
Stein JV, López-Fraga M, Elustondo FA, et al. APRIL modulates B and T cell immunity [J]. J Clin Invest, 2002, 109(12): 1587-1598.
24
McCarthy DD, Kujawa J, Wilson C, et al. Mice overexpressing BAFF develop a commensal flora-dependent, IgA associated nephropathy [J]. J Clin Invest, 2011, 121(10): 3991-4002.
25
Xin G, Shi W, Xu LX, et al. Serum BAFF is elevated in patients with IgA nephropathy and associated with clinical and histopathological features [J]. J Nephrol, 2013, 26(4): 683-690.
26
Allen AC, Topham PS, Harper SJ, et al. Leukocyte β1, 3-galactosyltransferase activity in IgA nephropathy [J]. Nephrol Dial Transplant, 1997, 12(4): 701-706.
27
Greer MR, Barratt J, Harper SJ, et al. The nucleotide sequence of the IgA1 hinge region in IgA nephropathy [J]. Nephrol Dial Transplant, 1998, 13(8): 1980-1983.
28
Qin W, Zhong X, Fan JM, et al. External suppression causes the low expression of the Cosmc gene in IgA nephropathy [J] . Nephrol Dial Transplant, 2008, 23(5): 1608-1614.
29
Suzuki H, Moldoveanu Z, Hall S, et al. IgA1-secreting cell lines from patients with IgA nephropathy produce aberrantly glycosylated IgA1 [J]. J Clin Invest, 2008, 118(2): 629-639.
30
Xie LS, Qin W, Fan JM, et al. The role of C1GALT1C1 in lipopolysaccharide-induced IgA1 aberrant O-glycosylation in IgA nephropathy [J]. Clin Invest Med, 2010, 33(1): 5-13.
31
Berger J, Yaneva H, Nabarra B, et al. Reccurence of mesangial deposition of IgA after renal transplantation [J]. Kidney Int, 1975, 7(4): 232-241.
32
Lai KN, Tang SC, Guh JY, et al. Polymeric IgA1 from patients with IgA nephropathy upregulates transforming growth factor-beta synthesis and signal transduction in human mesangial cells via the renin-angiotensin system [J]. J Am Soc Nephrol, 2003, 14(12): 3127-3137.
33
Chan LY, Leung JC, Tsang AW, et al. Activation of tubular epithelial cells by mesangial-derived TNF-alpha: glomerulotubular communication in IgA nephropathy [J]. Kidney Int, 2005, 67(2): 602-612.
34
Otani M, Nakata J, Kihara M, et al. O-glycosylated IgA rheumatoid factor induces IgA deposits and glomerulonephritis [J]. J Am Soc Nephrol, 2012, 23(3): 438-446.
35
Maillard N, Wyatt RJ, Julian BA, et al. Current understanding of the role of complement in IgA nephropathy [J]. J Am Soc Nephrol, 2015, 26(7): 1503-1512.
36
Roos A, Rastaldi MP, Calvaresi N, et al. Glomerular activation of the lectin pathway of complement in IgA nephropathy is associated with more severe renal disease [J]. J Am Soc Nephrol, 2006, 17(6): 1724-1734.
37
Zhu L, Zhai YL, Wang FM, et al. Variants in complement factor H and complement factor H-related protein genes, CFHR3 and CFHR1, affect complement activation in IgA nephropathy [J]. J Am Soc Nephrol, 2015, 26(5): 1195-1204.
38
Monteiro RC, Van De Winkel JG. IgA Fc receptors [J]. Annu Rev Immunol, 2003, 21: 177-204.
39
Lehoux S, Mi R, Aryal RP, et al. Identification of distinct glycoforms of IgA1 in plasma from patients with immunoglobulin A (IgA) nephropathy and healthy individuals [J]. Mol Cell Proteomics, 2014, 13(11): 3097-3113.
[1] 王一淼, 何培杰. 成纤维细胞在增生性瘢痕形成中的作用及调控因素[J]. 中华损伤与修复杂志(电子版), 2023, 18(01): 78-85.
[2] 毛永欢, 奚玲, 陆晨, 刘理想, 喻春钊, 沈晓菲. PI3K/Akt信号通路通过Plk1影响胰腺癌细胞PANC-1对吉西他滨的化疗敏感性[J]. 中华普外科手术学杂志(电子版), 2023, 17(02): 135-138.
[3] 刘先勇. 胃Lgr5+干细胞、Mist1+干细胞和Cck2r+干细胞癌变的分子机制[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 183-188.
[4] 王湘, 陈良熠, 虞烽伟, 王正熙, 李秋彤, 李玉红. 骨形态发生蛋白在皮肤创面修复中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(02): 101-107.
[5] 周逸凡, 金颖. ERK信号通路在人多能干细胞的多能性状态调控中的作用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(01): 27-35.
[6] 范博洋, 王宁, 张骞, 王贵玉. 结直肠癌转移调控的环状RNA分子机制研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(05): 426-430.
[7] 李思佳, 苏晓乐, 王利华. 通过抑制Wnt/β-catenin信号通路延缓肾间质纤维化研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 224-228.
[8] 邓荣珍, 罗宇珍, 赵若蓓, 邓杨, 廖蕴华, 潘玲. 血脂与IgA肾病患者肾脏预后的相关性研究[J]. 中华肾病研究电子杂志, 2023, 12(01): 13-19.
[9] 樱峰, 王静, 刘雪清, 李潇. 水通道蛋白1对人角膜内皮细胞增殖、迁移及凋亡影响的实验研究[J]. 中华眼科医学杂志(电子版), 2023, 13(03): 146-151.
[10] 朱泽超, 杨新宇, 李侑埕, 潘鹏宇, 梁国标. 染料木黄酮通过SIRT1/p53信号通路对蛛网膜下腔出血后早期脑损伤的作用[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 261-269.
[11] 王蕾, 姜岱山, 朱保锋, 贾寒雨, 沈君华, 张毅. 基于GEO数据库的热射病神经损伤相关基因的生物信息学分析[J]. 中华神经创伤外科电子杂志, 2023, 09(02): 76-84.
[12] 崔刚, 王德亮, 付茂武, 田璧铭, 王莹, 段虎斌. 创伤性脑损伤后鼠脑内RHO/ROCK信号通路与神经炎症反应及病理性损伤关系的研究[J]. 中华神经创伤外科电子杂志, 2022, 08(06): 324-328.
[13] 吴萌, 吴国仲, 王贵红, 端靓靓, 施杰, 王旭, 余婷, 刘伟. IgA肾病患者中性粒细胞-淋巴细胞比值与肾小管萎缩/间质纤维化相关性分析[J]. 中华临床医师杂志(电子版), 2023, 17(9): 972-979.
[14] 杨思雨, 杨晶晶, 张平, 刘巧, 吴杰, 黄香金, 王怡洁, 付景云. 瘦素通过α1肾上腺素受体介导CaMKKβ-AMPKα信号通路在GT1-7细胞系中的作用[J]. 中华临床医师杂志(电子版), 2023, 17(05): 569-574.
[15] 何敏, 黄桢. 加减知柏地黄丸对特发性中枢性性早熟小鼠骨细胞骨形成蛋白-Smads信号通路的影响[J]. 中华临床实验室管理电子杂志, 2023, 11(04): 214-220.
阅读次数
全文


摘要