切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2015, Vol. 04 ›› Issue (06) : 316 -320. doi: 10.3877/cma.j.issn.2095-3216.2015.06.009

所属专题: 文献

综述

IgA肾病患者IgA1糖基化异常及其致病机制
林淑芃1()   
  1. 1. 100853 北京,解放军总医院肾脏病科、解放军肾脏病研究所、肾脏疾病国家重点实验室、国家慢性肾病临床医学研究中心
  • 出版日期:2015-12-28
  • 通信作者: 林淑芃
  • 基金资助:
    国家自然科学基金(31200589); 海南省自然科学基金(20158332); 三亚市医疗卫生科技创新项目(2014YW33)

The pathopoiesis mechanism of abnormal IgA1 glycosylation in IgA nephropathy patients

Shupeng Lin1,()   

  1. 1. Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing 100853, China
  • Published:2015-12-28
  • Corresponding author: Shupeng Lin
  • About author:
    Corresponding author: Lin Shupeng, Email:
引用本文:

林淑芃. IgA肾病患者IgA1糖基化异常及其致病机制[J/OL]. 中华肾病研究电子杂志, 2015, 04(06): 316-320.

Shupeng Lin. The pathopoiesis mechanism of abnormal IgA1 glycosylation in IgA nephropathy patients[J/OL]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2015, 04(06): 316-320.

IgA肾病(IgAN)是导致终末期肾病最常见的原发性肾小球疾病。其病理特点为IgA1在肾小球系膜区沉积,IgA1分子的异常糖基化是导致IgAN发病的关键因素。多种与IgAN相关的基因位点已经被发现。这些基因编码的细胞因子参与了IgA1糖基化异常的发病机制。此外糖基化酶缺乏、分子伴侣甲基化异常都可能导致IgA1异常糖基化。异常糖基化的IgA1可通过自我聚集或形成免疫复合物沉积于系膜区,进而刺激系膜细胞增殖、分泌系膜基质、细胞因子、趋化因子、生长因子等,导致肾小球损伤。对IgA1异常糖基化的深入研究有助于了解IgA肾病的发病机制并提供新的诊断与治疗措施。

IgA nephropathy (IgAN) is the most common primary glomerular disease that can result in end-stage renal disease, and is histologically characterized by the deposition of IgA1 in the glomerular mesangium. The abnormal IgA1 glycosylation is the key factor in the pathogenesis of IgAN. Multiple genetic loci associated with IgAN have been identified, and the cytokines coded by them are involved in the pathopoiesis mechanism of abnormal IgA1 glycosylation. In addition, the lack of glycosylase and abnormal methylation of molecular chaperone may also be involved in the aberrant glycosylation of IgA1. Abnormally glycosylated IgA1 can deposit in the mesangium through their own assembly together or formation of immunocomplex, which can subsequently stimulate mesangial cell proliferation and secretion of extracellular matrix, cytokines, chemokines, and growth factors, etc, leading to glomerular injury. In-depth research on IgA1 abnormal glycosylation will help to understand the pathogenesis of IgAN and provide new diagnosis and treatment methods.

图1 IgA1分子结构示意图及铰链区的糖链结构
图2 IgA1正常糖基化结构和目前发现的四种糖基化缺失情况
1
Valentijn RM, Radl J, Haaijman JJ, et al. Circulating and mesangial secretory component-binding IgA-1 in primary IgA nephropathy [J]. Kidney Int, 1984, 26(5): 760-766.
2
Novak J, Julian BA, Tomana M, et al. Progress in molecular and genetic studies of IgA nephropathy [J]. J Clin Immunol, 2001, 21(5): 310-327.
3
Tomino Y, Sakai H, Miura M, et al. Detection of polymeric IgA in glomeruli from patients with IgA nephropathy [J]. Clin Exp Immunol, 1982, 49(2): 419-425.
4
Monteiro RC, Halbwachs-Mecarelli L, Roque-Barreira MC, et al. Charge and size of mesangial IgA in IgA nephropathy [J]. Kidney Int, 1985, 28(4): 666-671.
5
Moldoveanu Z, Wyatt RJ, Lee JY, et al. Patients with IgA nephropathy have increased serum galactose-deficient IgA1 levels [J]. Kidney Int, 2007, 71(11): 1148-1154.
6
Hiki Y, Iwase H, Kokubo T, et al. Association of asialo-galactosyl β1-3-N-acetylgalactosamine on the hinge with a conformational instability of Jacalin-reactive immunoglobulin A1 in immunoglobulin A nephropathy [J]. J Am Soc Nephrol, 1996, 7(6), 955-960.
7
Tomana M, Novak J, Julian BA, et al. Circulating immune complexes in IgA nephropathy consist of IgA1 with galactose-deficient hinge region and antiglycan antibodies [J]. J Clin. Invest, 1999, 104(1): 73-81.
8
Conley ME, Cooper MD, Michael AF. Selective deposition of immunoglobulin A1 in immunoglobulin A nephropathy, anaphylactoid purpura nephritis, and systemic lupus erythematosus [J]. J Clin Invest, 1980, 66(6): 1432-1436.
9
Novak J, Moldoveanu Z, Renfrow MB, et al. IgA nephropathy and Henoch-Schoenlein purpura nephritis: aberrant glycosylation of IgA1, formation of IgA1-containing immune complexes, and activation of mesangial cells [J]. Contrib Nephrol, 2007, 157: 134-138.
10
Zhao N, Hou P, Lv J, et al. The level of galactose-deficient IgA1 in the sera of patients with IgA nephropathy is associated with disease progression [J]. Kidney Int, 2012, 82(7): 790-796.
11
Tomana M, Kulhavy R, Mestecky J. Receptor-mediated binding and uptake of immunoglobulin A by human liver [J]. Gastroenterology, 1988, 94(3): 762-770.
12
Tomana M, Phillips JO, Kulhavy R, et al. Carbohydrate-mediated clearance of secretory IgA from the circulation [J]. Mol Immunol, 1985, 22(8): 887-892.
13
Feehally J, Farrall M, Boland A, et al. HLA has strongest association with IgA nephropathy in genome-wide analysis [J]. J Am Soc Nephrol, 2010, 21(10): 1791-1797.
14
Gharavi AG, Kiryluk K, Choi M, et al. Genome-wide association study identifies susceptibility loci for IgA nephropathy [J]. Nat Genet, 2011, 43(4): 321-327.
15
Yu XQ, Li M, Zhang H, et al. A genome-wide association study in Han Chinese identifies multiple susceptibility loci for IgA nephropathy [J]. Nat Genet, 2012, 44(2): 178-182.
16
Fennessy M, Hitman GA, Moore RH, et al. HLA-DQ gene polymorphism in primary IgA nephropathy in three European populations [J]. Kidney Int, 1996, 49(2): 477-480.
17
Heinrich PC, Behrmann I, Haan S, et al. Principles of interleukin (IL)-6-type cytokine signaling and its regulation [J]. Biochem J, 2003, 374(Pt 1): 1-20.
18
Rostoker G, Rymer JC, Bagnard G, et al. Imbalances in serum proinflammatory cytokines and their soluble receptors: a putative role in the progression of idiopathic IgA nephropathy (IgAN) and Henoch-Sch?nlein purpura nephritis, and a potential target of immunoglobulin therapy [J] ? Clin Exp Immunol, 1998, 114(3): 468-476.
19
Suzuki H, Raska M, Yamada K, et al. Cytokines alter IgA1 O-glycosylation by dysregulating C1GalT1 and ST6GalNAc-II enzymes [J]. J Biol Chem, 2014, 289(8): 5330-5339.
20
Reily C, Yamada K, Huang ZQ, et al. Abnormal STAT3 signaling enhances production of autoantigen in an autoimmune disease, IgA nephropathy [Abstract] [J]. J Am Soc Nephrol, 2013, 24: 20A.
21
Suzuki H, Moldoveanu Z, Hall S, et al. Cytokines regulate aberrant glycosylation of IgA1 in cell lines from patients with IgA nephropathy [Abstract] [J]. J Am Soc Nephrol, 2007, 18, 188A.
22
Yamada K, Huang ZQ, Raska M, et al. Effects of leukemia inhibitory factor and oncostatin M on IgA1-producing cells from patients with IgA nephropathy [Abstract] [J]. J Am Soc Nephrol, 2012, 23: 912A.
23
Stein JV, López-Fraga M, Elustondo FA, et al. APRIL modulates B and T cell immunity [J]. J Clin Invest, 2002, 109(12): 1587-1598.
24
McCarthy DD, Kujawa J, Wilson C, et al. Mice overexpressing BAFF develop a commensal flora-dependent, IgA associated nephropathy [J]. J Clin Invest, 2011, 121(10): 3991-4002.
25
Xin G, Shi W, Xu LX, et al. Serum BAFF is elevated in patients with IgA nephropathy and associated with clinical and histopathological features [J]. J Nephrol, 2013, 26(4): 683-690.
26
Allen AC, Topham PS, Harper SJ, et al. Leukocyte β1, 3-galactosyltransferase activity in IgA nephropathy [J]. Nephrol Dial Transplant, 1997, 12(4): 701-706.
27
Greer MR, Barratt J, Harper SJ, et al. The nucleotide sequence of the IgA1 hinge region in IgA nephropathy [J]. Nephrol Dial Transplant, 1998, 13(8): 1980-1983.
28
Qin W, Zhong X, Fan JM, et al. External suppression causes the low expression of the Cosmc gene in IgA nephropathy [J] . Nephrol Dial Transplant, 2008, 23(5): 1608-1614.
29
Suzuki H, Moldoveanu Z, Hall S, et al. IgA1-secreting cell lines from patients with IgA nephropathy produce aberrantly glycosylated IgA1 [J]. J Clin Invest, 2008, 118(2): 629-639.
30
Xie LS, Qin W, Fan JM, et al. The role of C1GALT1C1 in lipopolysaccharide-induced IgA1 aberrant O-glycosylation in IgA nephropathy [J]. Clin Invest Med, 2010, 33(1): 5-13.
31
Berger J, Yaneva H, Nabarra B, et al. Reccurence of mesangial deposition of IgA after renal transplantation [J]. Kidney Int, 1975, 7(4): 232-241.
32
Lai KN, Tang SC, Guh JY, et al. Polymeric IgA1 from patients with IgA nephropathy upregulates transforming growth factor-beta synthesis and signal transduction in human mesangial cells via the renin-angiotensin system [J]. J Am Soc Nephrol, 2003, 14(12): 3127-3137.
33
Chan LY, Leung JC, Tsang AW, et al. Activation of tubular epithelial cells by mesangial-derived TNF-alpha: glomerulotubular communication in IgA nephropathy [J]. Kidney Int, 2005, 67(2): 602-612.
34
Otani M, Nakata J, Kihara M, et al. O-glycosylated IgA rheumatoid factor induces IgA deposits and glomerulonephritis [J]. J Am Soc Nephrol, 2012, 23(3): 438-446.
35
Maillard N, Wyatt RJ, Julian BA, et al. Current understanding of the role of complement in IgA nephropathy [J]. J Am Soc Nephrol, 2015, 26(7): 1503-1512.
36
Roos A, Rastaldi MP, Calvaresi N, et al. Glomerular activation of the lectin pathway of complement in IgA nephropathy is associated with more severe renal disease [J]. J Am Soc Nephrol, 2006, 17(6): 1724-1734.
37
Zhu L, Zhai YL, Wang FM, et al. Variants in complement factor H and complement factor H-related protein genes, CFHR3 and CFHR1, affect complement activation in IgA nephropathy [J]. J Am Soc Nephrol, 2015, 26(5): 1195-1204.
38
Monteiro RC, Van De Winkel JG. IgA Fc receptors [J]. Annu Rev Immunol, 2003, 21: 177-204.
39
Lehoux S, Mi R, Aryal RP, et al. Identification of distinct glycoforms of IgA1 in plasma from patients with immunoglobulin A (IgA) nephropathy and healthy individuals [J]. Mol Cell Proteomics, 2014, 13(11): 3097-3113.
[1] 樊恒, 孙敏, 朱建华. 红景天苷通过抑制PI3K/AKT/mTOR信号通路对大鼠脓毒症急性肾损伤的保护作用[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(03): 188-195.
[2] 唐丹, 姚晓曦, 杨博文, 薛绍龙, 李梦瑶, 韦柳杏, 郄明蓉. 双肾上腺皮质激素样激酶1对子宫内膜样腺癌患者临床特征的影响[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 582-590.
[3] 白若靖, 郭军. 肺炎克雷伯菌肺炎与干扰素信号通路关系研究进展[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(02): 71-74.
[4] 狄静怿, 陈禹江, 陈欣欣, 陈文霞. 基质细胞衍生因子1通过PI3K/AKT1信号通路对巨噬细胞极化的影响[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(02): 89-95.
[5] 李智, 冯芸. NF-κB 与MAPK 信号通路及其潜在治疗靶点在急性呼吸窘迫综合征中的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 840-843.
[6] 张敏, 朱建华, 缪雅芳, 郭锦荣. 菝葜皂苷元对肝癌HepG2细胞抑制作用的机制研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 328-335.
[7] 季加翠, 孙春斌, 罗恩丽. 姜黄素通过调节NF-κB/NLRP3通路减轻LPS诱导小胶质细胞神经炎症损伤[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 193-203.
[8] 李博, 马秀岩, 孙杰. lncRNA TINCR对滋养层HTR-8/SVneo细胞生物学行为的影响及其机制[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 167-172.
[9] 阿卜杜萨拉木·图尔荪麦麦提, 吐尔洪江·吐逊, 温浩. 肝脏缺血-再灌注损伤与cGAS-STING信号通路[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 394-397.
[10] 王素霞. IgA肾病的病理诊断与鉴别诊断[J/OL]. 中华肾病研究电子杂志, 2024, 13(02): 120-120.
[11] 麦麦提依明·托合提, 柳叶, 张诚, 阿卜杜喀迪尔·牙森, 高峰, 王继超, 吴永刚. PEA3EPHA2在脑胶质母细胞瘤中的表达及在Wnt/β-catenin通路的作用[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(02): 73-79.
[12] 靳英, 付小霞, 陈美茹, 袁璐, 郝力瑶. CD147调控MAPK信号通路对结肠癌细胞增殖和凋亡的影响及机制研究[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 474-480.
[13] 孙琳, 韩萍萍, 张碧琳, 张军霞. 血清WISP1水平与2型糖尿病患者血尿酸升高的相关性[J/OL]. 中华临床医师杂志(电子版), 2024, 18(02): 178-182.
[14] 陈秋怡, 林熙, 刘珍银. 淋巴管畸形分子机制的研究进展[J/OL]. 中华介入放射学电子杂志, 2024, 12(04): 374-379.
[15] 姜晓宇, 付迪, 陈雪英, 申程, 甘立军. 胶原在心肌梗死后心脏重构中的研究进展[J/OL]. 中华诊断学电子杂志, 2024, 12(01): 25-30.
阅读次数
全文


摘要