切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2015, Vol. 04 ›› Issue (06) : 309 -315. doi: 10.3877/cma.j.issn.2095-3216.2015.06.008

所属专题: 文献

综述

特发性膜性肾病的分子发病机制
谢丽君1, 廖蕴华1,()   
  1. 1. 530021 广西医科大学第一附属医院肾内科
  • 出版日期:2015-12-28
  • 通信作者: 廖蕴华

The molecular pathogenesis of idiopathic membranous nephropathy

Lijun Xie1, Yunhua Liao1,()   

  1. 1. Department of Nephropathy, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
  • Published:2015-12-28
  • Corresponding author: Yunhua Liao
  • About author:
    Corresponding author: Liao Yunhua, Email:
引用本文:

谢丽君, 廖蕴华. 特发性膜性肾病的分子发病机制[J/OL]. 中华肾病研究电子杂志, 2015, 04(06): 309-315.

Lijun Xie, Yunhua Liao. The molecular pathogenesis of idiopathic membranous nephropathy[J/OL]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2015, 04(06): 309-315.

特发性膜性肾病( IMN)是国内外常见的引起成人肾病综合征的病理类型之一。在中国人群中,近年来特发性膜性肾病在原发性肾小球疾病中所占比例明显升高。由于病因及发病机制仍不清楚,以及缺乏预测疾病活动性的生物学标志物,因此目前治疗所带来的经济负担以及药物毒性仍具有争议和挑战。IMN是一种器官特异性的自身免疫性疾病,非炎症性自身抗体与足细胞上的靶抗原结合,在基底膜外侧上皮下形成原位免疫复合物,激活补体,从而引起足细胞损伤和蛋白尿。Heymann肾炎模型是经典的膜性肾病动物模型,然而其靶抗原Megalin并不是人类膜性肾病发生的原因。之后,中性肽链内切酶(NEP)被证实为母胎同种异体产前膜性肾病的靶抗原。直到2009年,磷脂酶A2受体(PLA2R)被证实为IMN的靶抗原。在IMN患者血浆中检测到抗PLA2R-IgG4,其特异性高达100%,敏感性约为70%~80%。抗PLA2R-IgG4滴度可以预测疾病的活动性,其与PLA2R抗原结合形成原位免疫复合物,激活补体凝集素途径,形成C5b-9膜攻击复合物沉积在足细胞上,引起足细胞损伤,导致蛋白尿形成。HLA-DQA1与PLA2R基因多态性均与IMN的发病相关,二者的风险基因具有叠加效应。综上所述,IMN的发生是多种因素共同作用的结果,包括易感基因、靶抗原、自身抗体、补体等,这些研究进展对于IMN的诊断和治疗具有重要意义。

Idiopathic membranous nephropathy (IMN) is one of the common pathological types of adult nephrotic syndrome in the world. In China, the proportion of IMN among primary glomerular diseases increased obviously in recent years. Because the etiology and the pathogenesis of IMN are not well-known, and there is a lack of biomarkers for predicting activity of IMN, the economic burden and drugs toxicity caused by the treatment remain to be controversial and challenging. IMN is an organ-specific autoimmune disease, in which non-inflammatory autoantibodies can bind target antigens on podocytes, forming subepithelial in-situ immunocomplex on the outside of the glomerular basement membrane that provokes local complement activation so as to cause podocyte injury and proteinuria. The Heymann nephritis model is a classical animal model for MN. However, megalin, which was the target antigen of this model, was not the cause of human IMN. Then, neutral endopeptidase (NEP) was found to be the target antigen of maternal-fetal alloimmunization with antenatal MN. To 2009, phospholipase A2 receptor (PLA2R) was confirmed as the target antigen of IMN. Anti-PLA2R-IgG4 was detected in serum with high specificity of 100% and sensitivity of 70%-80% in IMN patients. Anti-PLA2R-IgG4 could bind PLA2R antigen. Complement lectin pathway was activated by these in-situ immune complex and C5b-9 was generated. C5b-9 membrane attack complex could cause podocytes injury and production of proteinuria. In addition, the level of anti-PLA2R antibodies can predict the activity of the disease. HLA-DQA1 and PLA2R loci are associated with the onset of IMN, and the risk allels of both genes have additive effects. All in all, many factors are involved in the onset of IMN, such as genetic predisposition, target antigens, autoantibodies and complement, etc. These findings are of great significance for the diagnosis and treatment of IMN .

图1 磷脂酶A2受体相关特发性膜性肾病的发病机制
1
Debiec H, Ronco P. Immunopathogenesis of membranous nephropathy: an update [J]. Semin Immunopathol, 2014, 36(4): 381-397.
2
Zhu P, Zhou FD, Wang SX, et al. Increasing frequency of idiopathic membranous nephropathy in primary glomerular disease: A 10-year renal biopsy study from a single Chinese nephrology centre [J]. Nephrology (Carlton), 2015, 20(8): 560-566.
3
Polanco N, Gutierrez E, Rivera F, et al. Spontaneous remission of nephrotic syndrome in membranous nephropathy with chronic renal impairment [J]. Nephrol Dial Transplant, 2012, 27(1): 231-234.
4
Polanco N, Gutierrez E, Covarsi A, et al. Spontaneous remission of nephrotic syndrome in idiopathic membranous nephropathy [J]. J Am Soc Nephrol, 2010, 21(4): 697-704.
5
Glassock RJ. Diagnosis and natural course of membranous nephropathy [J]. Semin Nephrol, 2003, 23(4): 324-332.
6
Hofstra JM, Fervenza FC, Wetzels JF. Treatment of idiopathic membranous nephropathy [J]. Nat Rev Nephrol, 2013, 9(8): 443-458.
7
Waldman M, Austin HR. Controversies in the treatment of idiopathic membranous nephropathy [J]. Nat Rev Nephrol, 2009, 5(8): 469-479.
8
Beck LJ, Bonegio RG, Lambeau G, et al. M-type phospholipase A2 receptor as target antigen in idiopathic membranous nephropathy [J]. N Engl J Med, 2009, 361(1): 11-21.
9
Kanigicherla D, Gummadova J, Mckenzie EA, et al. Anti-PLA2R antibodies measured by ELISA predict long-term outcome in a prevalent population of patients with idiopathic membranous nephropathy [J]. Kidney Int, 2013, 83(5): 940-948.
10
Stanescu HC, Arcos-Burgos M, Medlar A, et al. Risk HLA-DQA1 and PLA2R1 alleles in idiopathic membranous nephropathy [J]. N Engl J Med, 2011, 364(7): 616-626.
11
Heymann W, Hackel DB, Harwood S, et al. Production of nephrotic syndrome in rats by Freund's adjuvants and rat kidney suspensions [J]. Proc Soc Exp Biol Med, 1959, 100(4): 660-664.
12
Kerjaschki D, Farquhar MG. The pathogenic antigen of Heymann nephritis is a membrane glycoprotein of the renal proximal tubule brush border [J]. Proc Natl Acad Sci USA, 1982, 79(18): 5557-5561.
13
Prabakaran T, Nielsen R, Larsen JV, et al. Receptor-mediated endocytosis of alpha-galactosidase A in human podocytes in Fabry disease [J]. PLoS One, 2011, 6(9): e25065.
14
Ronco P, Debiec H. Pathophysiological advances in membranous nephropathy: time for a shift in patient's care [J]. Lancet, 2015, 385(9981): 1983-1992.
15
Border WA, Ward HJ, Kamil ES, et al. Induction of membranous nephropathy in rabbits by administration of an exogenous cationic antigen [J]. J Clin Invest, 1982, 69(2): 451-461.
16
Adler SG, Wang H, Ward HJ, et al. Electrical charge. Its role in the pathogenesis and prevention of experimental membranous nephropathy in the rabbit [J]. J Clin Invest, 1983, 71(3): 487-499.
17
Zhang JJ, Malekpour M, Luo W, et al. Murine membranous nephropathy: immunization with alpha3 (IV) collagen fragment induces subepithelial immune complexes and Fc gamma R-independent nephrotic syndrome [J]. J Immunol, 2012, 188(7): 3268-3277.
18
Jia XY, Hu SY, Chen JL, et al. The clinical and immunological features of patients with combined anti-glomerular basement membrane disease and membranous nephropathy [J]. Kidney Int, 2014, 85(4): 945-952.
19
Debiec H, Guigonis V, Mougenot B, et al. Antenatal membranous glomerulonephritis due to anti-neutral endopeptidase antibodies [J]. N Engl J Med, 2002, 346(26): 2053-2060.
20
Ronco P, Debiec H, Guigonis V. Mechanisms of disease: Alloimmunization in renal diseases [J]. Nat Clin Pract Nephrol, 2006, 2(7): 388-397.
21
Debiec H, Nauta J, Coulet F, et al. Role of truncating mutations in MME gene in fetomaternal alloimmunisation and antenatal glomerulopathies [J]. Lancet, 2004, 364(9441): 1252-1259.
22
Ronco P, Debiec H. Molecular pathomechanisms of membranous nephropathy: from Heymann nephritis to alloimmunization [J]. J Am Soc Nephrol, 2005, 16(5): 1205-1213.
23
Vivarelli M, Emma F, Pelle T, et al. Genetic homogeneity but IgG subclass-dependent clinical variability of alloimmune membranous nephropathy with anti-neutral endopeptidase antibodies [J]. Kidney Int, 2015, 87(3): 602-609.
24
Nortier JL, Debiec H, Tournay Y, et al. Neonatal disease in neutral endopeptidase alloimmunization: lessons for immunological monitoring [J]. Pediatr Nephrol, 2006, 21(10): 1399-1405.
25
Ancian P, Lambeau G, Mattei MG, et al. The human 180-kDa receptor for secretory phospholipases A2. Molecular cloning, identification of a secreted soluble form, expression, and chromosomal localization [J]. J Biol Chem, 1995, 270(15): 8963-8970.
26
Beck LJ, Salant DJ. Membranous nephropathy: from models to man [J]. J Clin Invest, 2014, 124(6): 2307-2314.
27
Pan Y, Wan J, Liu Y, et al. sPLA2 IB induces human podocyte apoptosis via the M-type phospholipase A2 receptor [J]. Sci Rep, 2014, 4: 6660.
28
Augert A, Payre C, de Launoit Y, et al. The M-type receptor PLA2R regulates senescence through the p53 pathway [J]. EMBO Rep, 2009, 10(3): 271-277.
29
Sis B, Tasanarong A, Khoshjou F, et al. Accelerated expression of senescence associated cell cycle inhibitor p16INK4A in kidneys with glomerular disease [J]. Kidney Int, 2007, 71(3): 218-226.
30
Hofstra JM, Debiec H, Short CD, et al. Antiphospholipase A2 receptor antibody titer and subclass in idiopathic membranous nephropathy [J]. J Am Soc Nephrol, 2012, 23(10): 1735-1743.
31
Zvaritch E, Lambeau G, Lazdunski M. Endocytic properties of the M-type 180-kDa receptor for secretory phospholipases A2 [J]. J Biol Chem, 1996, 271(1): 250-257.
32
Kao L, Lam V, Waldman M, et al. Identification of the immunodominant epitope region in phospholipase A2 receptor-mediating autoantibody binding in idiopathic membranous nephropathy [J]. J Am Soc Nephrol, 2015, 26(2): 291-301.
33
Fresquet M, Jowitt TA, Gummadova J, et al. Identification of a major epitope recognized by PLA2R autoantibodies in primary membranous nephropathy [J]. J Am Soc Nephrol, 2015, 26(2): 302-313.
34
Seitz-Polski B, Dolla G, Payre C, et al. Epitope Spreading of autoantibody response to PLA2R associates with poor prognosis in membranous nephropathy [J]. J Am Soc Nephrol, 2015, Epub ahead of print.
35
Debiec H, Lefeu F, Kemper MJ, et al. Early-childhood membranous nephropathy due to cationic bovine serum albumin [J]. N Engl J Med, 2011, 364(22): 2101-2110.
36
Sathe SK, Teuber SS, Roux KH. Effects of food processing on the stability of food allergens [J]. Biotechnol Adv, 2005, 23(6): 423-429.
37
van Elburg RM, Fetter WP, Bunkers CM, et al. Intestinal permeability in relation to birth weight and gestational and postnatal age [J]. Arch Dis Child Fetal Neonatal Ed, 2003, 88(1): F52-F55.
38
Tomas NM, Beck LJ, Meyer-Schwesinger C, et al. Thrombospondin type-1 domain-containing 7A in idiopathic membranous nephropathy [J]. N Engl J Med, 2014, 371(24): 2277-2287.
39
Prunotto M, Carnevali ML, Candiano G, et al. Autoimmunity in membranous nephropathy targets aldose reductase and SOD2 [J]. J Am Soc Nephrol, 2010, 21(3): 507-519.
40
Vivarelli M, Emma F, Pelle T, et al. Genetic homogeneity but IgG subclass-dependent clinical variability of alloimmune membranous nephropathy with anti-neutral endopeptidase antibodies [J]. Kidney Int, 2015, 87(3): 602-609.
41
van der Zee JS, van Swieten P, Aalberse RC. Inhibition of complement activation by IgG4 antibodies [J]. Clin Exp Immunol, 1986, 64(2): 415-422.
42
Aalberse RC, Schuurman J. IgG4 breaking the rules [J]. Immunology, 2002, 105(1): 9-19.
43
Huang CC, Lehman A, Albawardi A, et al. IgG subclass staining in renal biopsies with membranous glomerulonephritis indicates subclass switch during disease progression [J]. Mod Pathol. 2013, 26(6): 799-805.
44
Lhotta K, Wurzner R, Konig P. Glomerular deposition of mannose-binding lectin in human glomerulonephritis [J]. Nephrol Dial Transplant, 1999, 14(4): 881-886.
45
Espinosa-Hernandez M, Ortega-Salas R, Lopez-Andreu M, et al. C4d as a diagnostic tool in membranous nephropathy [J]. Nefrologia, 2012, 32(3): 295-299.
46
Malhotra R, Wormald MR, Rudd PM, et al. Glycosylation changes of IgG associated with rheumatoid arthritis can activate complement via the mannose-binding protein [J]. Nat Med, 1995, 1(3): 237-243.
47
Kerjaschki D. Pathomechanisms and molecular basis of membranous glomerulopathy [J]. Lancet, 2004, 364(9441): 1194-1196.
48
Vangelista A, Tazzari R, Bonomini V. Idiopathic membranous nephropathy in 2 twin brothers [J]. Nephron, 1988, 50(1): 79-80.
49
Bockenhauer D, Debiec H, Sebire N, et al. Familial membranous nephropathy: an X-linked genetic susceptibility [J] ? Nephron Clin Pract, 2008, 108(1): c10-c15.
50
Chen JS, Chen A, Chang LC, et al. Mouse model of membranous nephropathy induced by cationic bovine serum albumin: antigen dose-response relations and strain differences [J]. Nephrol Dial Transplant, 2004, 19(11): 2721-2728.
51
Bagchus WM, Hoedemaeker PJ, Vos JT, et al. Thymocytes reacting with heterologous antibodies against GP 330 in autologous immune complex glomerulopathy (AICG) in the rat. The relation between susceptibility for AICG and anti-GP 330-binding thymocytes [J]. Immunobiology, 1989, 179(4-5): 432-444.
52
Klouda PT, Manos J, Acheson EJ, et al. Strong association between idiopathic membranous nephropathy and HLA-DRW3 [J]. Lancet, 1979, 2(8146): 770-771.
53
Papiha SS, Pareek SK, Rodger RS, et al. HLA-A, B, DR and Bf allotypes in patients with idiopathic membranous nephropathy (IMN) [J]. Kidney Int, 1987, 31(1): 130-134.
54
Hiki Y, Kobayashi Y, Itoh I, et al. Strong association of HLA-DR2 and MT1 with idiopathic membranous nephropathy in Japan [J]. Kidney Int, 1984, 25(6): 953-957.
55
Lv J, Hou W, Zhou X, et al. Interaction between PLA2R1 and HLA-DQA1 variants associates with anti-PLA2R antibodies and membranous nephropathy [J]. J Am Soc Nephrol, 2013, 24(8): 1323-1329.
56
Kanigicherla D, Gummadova J, Mckenzie EA, et al. Anti-PLA2R antibodies measured by ELISA predict long-term outcome in a prevalent population of patients with idiopathic membranous nephropathy [J]. Kidney Int, 2013, 83(5): 940-948.
57
Bullich G, Ballarin J, Oliver A, et al. HLA-DQA1 and PLA2R1 polymorphisms and risk of idiopathic membranous nephropathy [J]. Clin J Am Soc Nephrol, 2014, 9(2): 335-343.
58
Coenen MJ, Hofstra JM, Debiec H, et al. Phospholipase A2 receptor (PLA2R1) sequence variants in idiopathic membranous nephropathy [J]. J Am Soc Nephrol, 2013, 24(4): 677-683.
[1] 刘逸群, 朱家安, 熊钰, 辛雨薇, 曲琳琳, 杨力, 李文雪, 田辉. 超声造影定量分析大鼠肝急性移植物抗宿主病的实验研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(01): 75-81.
[2] 黄钰清, 武杜杜, 潘菲, 王俊康, 钟兆明, 黎檀实, 吕发勤. 掌上超声在枪弹伤致髂动脉破裂大出血建模中的应用研究[J/OL]. 中华医学超声杂志(电子版), 2022, 19(10): 1112-1117.
[3] 李传举, 刘林月, 王美, 李昕, 韩祥辉, 贾海永. 乙型肝炎病毒感染模型研究进展[J/OL]. 中华实验和临床感染病杂志(电子版), 2022, 16(06): 361-365.
[4] 张子旭, 郑俊炯, 罗云, 林天歆. 腹腔镜肾部分切除术离体猪肾培训模型的构建[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(03): 277-283.
[5] 唐瑞政, 李舒珏, 吴文起. 果蝇模型在肾结石研究中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(03): 214-218.
[6] 张礼刚, 邹志辉, 许顺, 蔡可可, 胡永涛, 梁朝朝. 酒精对慢性非细菌性前列腺炎中T淋巴细胞变化的影响研究[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(01): 74-81.
[7] 邵世锋, 伍正彬, 段朝霞, 张良潮, 王耀丽, 李琦, 王建民. 山羊高原重度原发性肺冲击伤模型的建立[J/OL]. 中华肺部疾病杂志(电子版), 2022, 15(05): 637-642.
[8] 袁楠, 黄梦杰, 白云凤, 李晓帆, 罗从娟, 陈健文. 急性肾损伤-慢性肾脏病转化小鼠模型制备的教学要点及学习效果分析[J/OL]. 中华肾病研究电子杂志, 2024, 13(04): 226-230.
[9] 李青霖, 宋仁杰, 周飞虎. 一种重型劳力性热射病相关急性肾损伤小鼠模型的建立与探讨[J/OL]. 中华肾病研究电子杂志, 2023, 12(05): 265-270.
[10] 陈业煌, 陈恺钦, 薛亮, 吴箭午, 黄预备, 魏梁锋, 曾炳香, 王守森. 改良大鼠挫伤型脊髓损伤模型的制备与评估[J/OL]. 中华神经创伤外科电子杂志, 2023, 09(06): 325-332.
[11] 初晨宇, 徐强, 饶军华, 李岳锋. 眶上锁孔入路手术建立食蟹猴大脑中动脉闭塞模型[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(01): 8-13.
[12] 李世凯, 梁佳, 何艳艳, 于毅, 李天晓, 常金龙, 贺迎坤. 兔颈动脉粥样硬化性狭窄模型在介入治疗的应用进展[J/OL]. 中华介入放射学电子杂志, 2023, 11(04): 357-362.
[13] 高飞, 李惠凯, 冯秀雪, 杜晨, 韩珂, 柴宁莉, 令狐恩强. 3%聚桂醇消融动物囊性肿瘤模型的有效性和安全性研究[J/OL]. 中华胃肠内镜电子杂志, 2023, 10(01): 31-36.
[14] 赵敏娴, 李海云, 王浦, 郑若彤, 申英末, 杨慧琪. 猪食管裂孔疝动物模型的建立及其应用与研究进展[J/OL]. 中华胃食管反流病电子杂志, 2023, 10(04): 196-200.
[15] 买买提·依斯热依力, 阿孜古丽·阿力木江, 吾布力卡斯木·吾拉木, 阿巴伯克力·乌斯曼, 王永康, 克力木·阿不都热依木. 结合胃食管反流病特征建立实验动物模型在培养医学研究生科研能力教学中的应用[J/OL]. 中华胃食管反流病电子杂志, 2023, 10(03): 147-150.
阅读次数
全文


摘要