切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2016, Vol. 05 ›› Issue (03) : 128 -134. doi: 10.3877/cma.j.issn.2095-3216.2016.03.008

所属专题: 文献

论著

长链非编码RNA-MALAT1在高糖诱导的人腹膜间皮细胞纤维化过程中的作用
石田田1, 何丽洁1, 孙世仁1, 王汉民1,()   
  1. 1. 710032 西安,第四军医大学西京医院肾脏内科
  • 收稿日期:2016-04-21 出版日期:2016-06-28
  • 通信作者: 王汉民

Role of long noncoding RNA-MALAT1 in human peritoneal mesothelial cells fibrosis induced with high glucose

Tiantian Shi1, Lijie He1, Shiren Sun1, Hanmin Wang1,()   

  1. 1. Department of Nephrology, Xijing Hospital Affiliated to Fourth Military Medical University, Xi′an 710032, China
  • Received:2016-04-21 Published:2016-06-28
  • Corresponding author: Hanmin Wang
  • About author:
    Corresponding author: Wang Hanmin, Email:
引用本文:

石田田, 何丽洁, 孙世仁, 王汉民. 长链非编码RNA-MALAT1在高糖诱导的人腹膜间皮细胞纤维化过程中的作用[J]. 中华肾病研究电子杂志, 2016, 05(03): 128-134.

Tiantian Shi, Lijie He, Shiren Sun, Hanmin Wang. Role of long noncoding RNA-MALAT1 in human peritoneal mesothelial cells fibrosis induced with high glucose[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2016, 05(03): 128-134.

目的

探讨长链非编码RNA(lncRNA)- MALAT1在人腹膜间皮细胞(HPMCs)高糖损伤导致的腹膜纤维化中的作用。

方法

将永生化的HPMCs分为对照组及高糖(50 mmol/L葡萄糖)刺激1、3、5、7 d组,使用实时荧光定量PCR及Western印迹方法,检测MALAT1、表型转换及纤维化相关分子E-钙黏素(E-cad)、ɑ-平滑肌肌动蛋白(ɑ-SMA)、胶原蛋白I(ColⅠ)、胶原蛋白Ⅲ(Col Ⅲ)、纤连蛋白(Fn)、结缔组织生长因子(CTGF)在mRNA及蛋白水平的表达变化;给予HPMCs转染MALAT1的过表达慢病毒,检测MALAT1、表型转换及纤维化相关分子E-cad、ɑ-SMA、ColⅠ、ColⅢ、Fn、CTGF在mRNA及蛋白水平的表达变化;给予高糖刺激72 h后的HPMCs转染MALAT1siRNA,再检测以上成分的mRNA及蛋白水平的表达变化。采用SPSS 18.0统计软件进行数据分析。

结果

高糖刺激HPMCs后,随时间的延长,MALAT1及间质标志分子ɑ-SMA、纤维化相关分子ColⅠ、ColⅢ、Fn、CTGF的表达明显增加与对照组比较差异有统计学意义(mRNA水平MALAT1、α-SMA、ColⅠ、ColⅢ、Fn、CTGF第7天时分别为t= 7.080、t=6.325、t=7.205、t=11.70、t=5.739、t=9.221,P<0.05;蛋白水平α-SMA、ColⅠ、ColⅢ、Fn、CTGF第7天时分别为t=3.429、t=3.846、t=5.274、t=3.751、t=4.093,P<0.05),上皮标志分子E-cad mRNA及蛋白水平表达逐渐下降(第7天时mRNA t=7.270、P=0.0019,蛋白水平t=5.658、P=0.0048);慢病毒转染使MALAT1上调后,MALAT1、ɑ-SMA、ColⅠ、ColⅢ、Fn、CTGF的表达增加(mRNA水平MALAT1 α-SMA、ColⅠ、ColⅢ、Fn、CTGF分别为t=7.151、t=6.495、t=6.068、t=8.660、t=5.283、t=3.230,P<0.05;蛋白水平α-SMA、ColⅠ、ColⅢ、Fn、CTGF分别为t=3.980、t=3.623、t=3.351、t=4.965、t=5.804,P<0.05),E-cad表达下降(mRNA水平t=5.511,P=0.0053;蛋白水平t=6.397, P=0.0031);使用siRNA下调MALAT1后,MALAT1、ɑ-SMA、ColⅠ、ColⅢ、Fn、CTGF的表达下降(mRNA水平MALAT1、ɑ-SMA、ColⅠ、ColⅢ、Fn、CTGF分别为t=2.854、t=5.511、t=3.442、t=2.442、t=4.407、t=6.556,P< 0.05;蛋白水平ɑ-SMA、ColⅠ、ColⅢ、Fn、CTGF分别为t=3.241、t=7.589、t=7.427、t=4.319、t=3.976,P< 0.05), E-cad表达增加(mRNA水平t=2.865、P= 0.0457;蛋白水平t=2.823、P=0.0477)。

结论

MALAT1参与高糖刺激所引起的HPMCs的纤维化过程,并且可以促进腹膜纤维化的发生。

Objective

To study the role of long noncoding RNA-MALAT1 in human peritoneal mesothelial cells (HPMCs) fibrosis induced with high glucose (HG).

Methods

The expression of MALAT1, E-cadherin, alpha-smooth muscle actin (ɑ-SMA), collagenⅠ, collagen Ⅲ, fibronectin, and connective tissue growth factor (CTGF) were tested by real-time PCR and Western blot in HPMCs incubated with HG medium (50 mmol/L glucose) or in control medium for different time (for 0, 1, 3, 5, and 7 days). The expression of MALAT1, E-cadherin, ɑ-SMA, collagenⅠ, collagenⅢ, fibronectin, and CTGF were also assayed by real-time PCR and Western blot in HPMCs after transfection with MALAT1 lentivirus, or control lentivirus. MALAT1 small interfering RNA (siRNA), or control siRNA was transfected into HPMCs that had been cultured with HG medium for 72 hours.

Results

The expression of MALAT1, ɑ-SMA, collagenⅠ, collagenⅢ, fibronectin, and CTGF in HPMCs cultured with HG medium for 72 hours were significantly increased (P<0.05), but E-cadherin decreased with the stimulation time of HG (P<0.05). Compared with control lentivirus, the expression of MALAT1, ɑ-SMA, collagenⅠ, collagenⅢ, fibronectin, and CTGF were increased, but E-cadherin was reduced after transfection with the MALAT1 lentivirus (P<0.01), suggesting that overexpression of MALAT1 might lead to an increase in epithelial-mesenchymal transition (EMT) and fibrosis of HPMCs. The expression of MALAT1, ɑ-SMA, collagen, collagenⅢ, fibronectin, and CTGF decreased (P<0.05), but E-cadherin increased (P<0.05) after silencing the expression of MALAT1 by siRNA compared with the control cells, demonstrating that down-regulation of MALAT1 could inhibit EMT and fibrosis in HG-induced HPMCs.

Conclusion

MALAT1 might participate in and promote the HG-induced fibrosis and damage of HPMCs.

表1 实时荧光定量PCR引物序列
图1 高糖刺激不同时间MALAT1、细胞表型转换及纤维化相关分子的mRNA及蛋白水平表达(实时荧光定量PCR, Western印迹)
图2 MALAT1过表达慢病毒转染后MALAT1、细胞表型转换及纤维化相关分子在mRNA、蛋白水平的表达(实时荧光定量PCR,Western印迹)
图3 MALAT1 siRNA转染后MALAT1、细胞表型转换及纤维化相关分子在mRNA、蛋白水平的表达变化(实时荧光定量PCR,Western印迹)
[1]
Garcia-Lopez E,Lindholm B,Davies S. An update on peritoneal dialysis solutions[J]. Nat Rev Nephrol, 2012, 8(4): 224-233.
[2]
Liem YS,Wong JB,Hunink MG, et al. Comparison of hemodialysis and peritoneal dialysis survival in The Netherlands[J]. Kidney Int, 2007, 71(2): 153-158.
[3]
Higuchi C,Nishimura H,Sanaka T. Biocompatibility of peritoneal dialysis fluid and influence of compositions on peritoneal fibrosis[J]. Ther Apher Dial, 2006, 10(4): 372-379.
[4]
Williams JD,Craig KJ,Topley N, et al. Morphologic changes in the peritoneal membrane of patients with renal disease[J]. J Am Soc Nephrol, 2002, 13(2): 470-479.
[5]
Witowski J,Wisniewska J,Korybalska K, et al. Prolonged exposure to glucose degradation products impairs viability and function of human peritoneal mesothelial cells[J]. J Am Soc Nephrol, 2001, 12(11): 2434-2441.
[6]
Morgan LW,Wieslander A,Davies M, et al. Glucose degradation products (GDP) retard remesothelialization independently of D-glucose concentration[J]. Kidney Int, 2003, 64(5): 1854-1866.
[7]
Mittelmaier S,Niwa T,Pischetsrieder M. Chemical and physiological relevance of glucose degradation products in peritoneal dialysis[J]. J Ren Nutr, 2012, 22(1): 181-185.
[8]
Yanez-Mo M,Lara-Pezzi E,Selgas R, et al. Peritoneal dialysis and epithelial-to-mesenchymal transition of mesothelial cells[J]. N Engl J Med, 2003, 348(5): 403-413.
[9]
Aroeira LS,Aguilera A,Sanchez-Tomero JA, et al. Epithelial to mesenchymal transition and peritoneal membrane failure in peritoneal dialysis patients: pathologic significance and potential therapeutic interventions[J]. J Am Soc Nephrol, 2007, 18(7): 2004-2013.
[10]
Krediet RT,Struijk DG. Peritoneal changes in patients on long-term peritoneal dialysis[J]. Nat Rev Nephrol, 2013, 9(7): 419-429.
[11]
Veneziano D,Nigita G,Ferro A. Computational approaches for the analysis of ncRNA through deep sequencing techniques[J]. Front Bioeng Biotechnol, 2015, 3: 77.
[12]
Mercer TR,Dinger ME,Mattick JS. Long non-coding RNAs: insights into functions[J]. Nat Rev Genet, 2009, 10(3): 155-159.
[13]
Batista PJ,Chang HY. Long noncoding RNAs: cellular address codes in development and disease[J]. Cell, 2013, 152(6): 1298-1307.
[14]
Yang L,Froberg JE,Lee JT. Long noncoding RNAs: fresh perspectives into the RNA world[J]. Trends Biochem Sci, 2014, 39(1): 35-43.
[15]
Hu L,Wu Y,Tan D, et al. Up-regulation of long noncoding RNA MALAT1 contributes to proliferation and metastasis in esophageal squamous cell carcinoma[J]. J Exp Clin Cancer Res, 2015, 34: 7.
[16]
Zhou S,Wang J,Zhang Z. An emerging understanding of long noncoding RNAs in kidney cancer[J]. J Cancer Res Clin Oncol, 2014, 140(12): 1989-1995.
[17]
Bernard D,Prasanth KV,Tripathi V, et al. A long nuclear-retained non-coding RNA regulates synaptogenesis by modulating gene expression[J]. EMBO J, 2010, 29(18): 3082-3093.
[18]
Ji P,Diederichs S,Wang W, et al. MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer[J]. Oncogene, 2003, 22(39): 8031-8041.
[19]
Hutchinson JN,Ensminger AW,Clemson CM, et al. A screen for nuclear transcripts identifies two linked noncoding RNAs associated with SC35 splicing domains[J]. BMC Genomics, 2007, 8: 39.
[20]
Lin R,Maeda S,Liu C, et al. A large noncoding RNA is a marker for murine hepatocellular carcinomas and a spectrum of human carcinomas[J]. Oncogene, 2007, 26(6): 851-858.
[21]
Sun R,Qin C,Jiang B, et al. Down-regulation of MALAT1 inhibits cervical cancer cell invasion and metastasis by inhibition of epithelial-mesenchymal transition[J]. Mol Biosyst, 2016, 12(3): 952-962.
[22]
Grassmann A,Gioberge S,Moeller S, et al. ESRD patients in 2004: global overview of patient numbers, treatment modalities and associated trends[J]. Nephrol Dial Transplant, 2005, 20(12): 2587-2593.
[23]
Moresco RN,Speeckaert MM,Delanghe JR. Diagnosis and monitoring of IgA nephropathy: the role of biomarkers as an alternative to renal biopsy[J]. Autoimmun Rev, 2015, 14(10): 847-853.
[24]
Fang XY,Pan HF,Leng RX, et al. Long noncoding RNAs: novel insights into gastric cancer[J]. Cancer Lett, 2015, 356(2 Pt B): 357-366.
[25]
Nakagawa S,Ip JY,Shioi G, et al. Malat1 is not an essential component of nuclear speckles in mice[J]. RNA, 2012, 18(8): 1487-1499.
[26]
Michalik KM,You X,Manavski Y, et al. Long noncoding RNA MALAT1 regulates endothelial cell function and vessel growth[J]. Circ Res, 2014, 114(9): 1389-1397.
[27]
Bamodu OA,Huang WC,Lee WH, et al. Aberrant KDM5B expression promotes aggressive breast cancer through MALAT1 overexpression and downregulation of hsa-miR-448[J]. BMC Cancer, 2016, 16: 160.
[28]
Xiao H,Tang K,Liu P, et al. LncRNA MALAT1 functions as a competing endogenous RNA to regulate ZEB2 expression by sponging miR-200s in clear cell kidney carcinoma[J]. Oncotarget, 2015, 6(35): 38005-38015.
[29]
Feng T,Shao F,Wu Q, et al. miR-124 downregulation leads to breast cancer progression via LncRNA-MALAT1 regulation and CDK4/E2F1 signal activation[J]. Oncotarget, 2016, 7(13): 16205-16216.
[30]
Ma J,Wang P,Yao Y, et al. Knockdown of long non-coding RNA MALAT1 increases the blood-tumor barrier permeability by up-regulating miR-140[J]. Biochim Biophys Acta, 2016, 1859(2): 324-338.
[31]
Salmena L,Poliseno L,Tay Y, et al. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language?[J]. Cell, 2011, 146(3): 353-358.
[1] 乐元洁, 王卫栋, 贲志飞. 二维斑点追踪超声心动图联合lncRNA-肺腺癌转移相关转录因子1对脓毒症心肌病的早期诊断价值[J]. 中华危重症医学杂志(电子版), 2022, 15(03): 183-188.
[2] 朱韵莹, 高晓琳, 戈艳萍, 王张嵩, 林钊宇, 李劲松, 武东辉. 缺氧相关的长链非编码RNA LINC00970在唾液腺腺样囊性癌中的表达及其作用[J]. 中华口腔医学研究杂志(电子版), 2023, 17(03): 210-217.
[3] 左雯鑫, 袁理, 杨天慧, 汤剑明, 周芷伊, 何飞. 长链非编码RNA基因芯片技术筛选口腔扁平苔藓唾液外泌体差异表达基因[J]. 中华口腔医学研究杂志(电子版), 2022, 16(04): 208-218.
[4] 张博, 韩威, 郝少龙, 李泽乾, 纪智礼. 竞争内源性RNA在胰腺癌研究中的进展[J]. 中华普外科手术学杂志(电子版), 2023, 17(02): 213-216.
[5] 唐国军, 洪余德, 赵崇玉, 李辽源. 基于TCGA数据库Wnt相关长链非编码RNA构建肾乳头状细胞癌预后模型[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(03): 270-275.
[6] 黄军杰, 王烈, 赵虎, 夏印, 张再重. lncRNA作为ceRNA参与婴幼儿血管瘤发生发展机制的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(06): 360-366.
[7] 王楚风, 蒋安. 原发性肝癌的分子诊断[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 499-503.
[8] 莫建涛, 杨沛泽, 曹瑞奇, 马清涌, 王铮, 仵正, 周灿灿. 基于生物信息学分析构建肝内胆管细胞癌患者铁死亡相关lncRNA预后模型[J]. 中华肝脏外科手术学电子杂志, 2023, 12(02): 185-189.
[9] 罗阳燕, 王少清, 高芳, 沈艳, 张万军, 李莉. 尿毒清颗粒对腹膜透析患者残余肾功能及腹透液纤连蛋白和TGF-β1水平的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 200-204.
[10] 陈客宏. 干细胞外泌体防治腹膜透析腹膜纤维化新技术研究[J]. 中华肾病研究电子杂志, 2023, 12(03): 180-180.
[11] 方蕊, 宋旭东. 非编码核糖核酸与白内障相关的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(02): 94-98.
[12] 王建鹏, 廖勇仕, 丁文聪, 李冲, 陈锐. lncRNA在创伤性脑损伤中的研究进展[J]. 中华神经创伤外科电子杂志, 2022, 08(06): 365-370.
[13] 王健, 赵海剑, 孙静, 张晓雨, 陈柏羽. LncRNA SNHG4表达与结直肠癌预后的关系[J]. 中华消化病与影像杂志(电子版), 2023, 13(03): 139-144.
[14] 张慧锋, 张弸, 朱晓蔚, 于鸿. 外泌体长链非编码RNA在胃癌中的研究进展[J]. 中华消化病与影像杂志(电子版), 2023, 13(01): 46-49.
[15] 高福来, 赵东强. 长链非编码RNA在胃肠道间质瘤中的研究进展[J]. 中华胃肠内镜电子杂志, 2022, 09(03): 152-155.
阅读次数
全文


摘要