[1] |
Kimura T,Takabatake Y,Takahashi A, et al. Autophagy protects the proximal tubule from degeneration and acute ischemic injury[J]. J Am Soc Nephrol, 2011, 22(5): 902-913.
|
[2] |
Baisantry A,Bhayana S,Rong S, et al. Autophagy induces prosenescent changes in proximal tubular S3 segments[J]. J Am Soc Nephrol, 2016, 27(6): 1609-1616.
|
[3] |
Inoki K. mTOR signaling in autophagy regulation in the kidney[J]. Semin Nephrol, 2014, 34(1): 2-8.
|
[4] |
Wu WH,Zhang MP,Zhang F, et al. The role of programmed cell death in streptozotocin-induced early diabetic nephropathy[J]. J Endocrinol Invest, 2011, 34(9): e296-e301.
|
[5] |
Peng KY,Horng LY,Sung HC, et al. Hepatocyte growth factor has a role in the amelioration of diabetic vascular complications via autophagic clearance of advanced glycation end products: Dispo85E, an HGF inducer, as a potential botanical drug[J]. Metabolism, 2011, 60(6): 888-892.
|
[6] |
Hartleben B,Godel M,Meyer-Schwesinger C, et al. Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice[J]. J Clin Invest, 2010, 120(4): 1084-1096.
|
[7] |
Fang L,Zhou Y,Cao H, et al. Autophagy attenuates diabetic glomerular damage through protection of hyperglycemia-induced podocyte injury[J]. PLoS One, 2013, 8(4): e60546.
|
[8] |
Tagawa A,Yasuda M,Kume S, et al. Impaired podocyte autophagy exacerbates proteinuria in diabetic nephropathy[J]. Diabetes, 2015, 65(3): 755-767.
|
[9] |
Lenoir O,Jasiek M,Henique C, et al. Endothelial cell and podocyte autophagy synergistically protect from diabetes-induced glomerulosclerosis[J]. Autophagy, 2015, 11(7): 1130-1145.
|
[10] |
Chuang PY,Xu J,Dai Y, et al. In vivo RNA interference models of inducible and reversible Sirt1 knockdown in kidney cells[J]. Am J Pathol, 2014, 184(7): 1940-1956.
|
[11] |
Xiao T,Guan X,Nie L, et al. Rapamycin promotes podocyte autophagy and ameliorates renal injury in diabetic mice[J]. Mol Cell Biochem, 2014, 394(1-2): 145-154.
|
[12] |
Dong C,Zheng H,Huang S, et al. Heme oxygenase-1 enhances autophagy in podocytes as a protective mechanism against high glucose-induced apoptosis[J]. Exp Cell Res, 2015, 337(2): 146-159.
|
[13] |
Inoki K,Mori H,Wang J, et al. mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice[J]. J Clin Invest, 2011, 121(6): 2181-2196.
|
[14] |
Godel M,Hartleben B,Herbach N, et al. Role of mTOR in podocyte function and diabetic nephropathy in humans and mice[J]. J Clin Invest, 2011, 121(6): 2197-2209.
|
[15] |
Liu S,Hartleben B,Kretz O, et al. Autophagy plays a critical role in kidney tubule maintenance, aging and ischemia-reperfusion injury[J]. Autophagy, 2012, 8(5): 826-837.
|
[16] |
Yamahara K,Kume S,Koya D, et al. Obesity-mediated autophagy insufficiency exacerbates proteinuria-induced tubulointerstitial lesions[J]. J Am Soc Nephrol, 2013, 24(11): 1769-1781.
|
[17] |
Zhan M,Usman IM,Sun L, et al. Disruption of renal tubular mitochondrial quality control by Myo-inositol oxygenase in diabetic kidney disease[J]. J Am Soc Nephrol, 2015, 26(6): 1304-1321.
|
[18] |
Huang C,Lin MZ,Cheng D, et al. Thioredoxin-interacting protein mediates dysfunction of tubular autophagy in diabetic kidneys through inhibiting autophagic flux[J]. Lab Invest, 2014, 94(3): 309-320.
|
[19] |
Zhang MZ,Wang Y,Paueksakon P, et al. Epidermal growth factor receptor inhibition slows progression of diabetic nephropathy in association with a decrease in endoplasmic reticulum stress and an increase in autophagy[J]. Diabetes, 2014, 63(6): 2063-2072.
|
[20] |
Zhao X,Liu G,Shen H, et al. Liraglutide inhibits autophagy and apoptosis induced by high glucose through GLP-1R in renal tubular epithelial cells[J]. Int J Mol Med, 2015, 35(3): 684-692.
|
[21] |
Xu Y,Liu L,Xin W, et al. The renoprotective role of autophagy activation in proximal tubular epithelial cells in diabetic nephropathy[J]. J Diabetes Complications, 2015, 29(8): 976-983.
|
[22] |
Kitada M,Takeda A,Nagai T, et al. Dietary restriction ameliorates diabetic nephropathy through anti-inflammatory effects and regulation of the autophagy via restoration of Sirt1 in diabetic Wistar fatty (fa/fa) rats: a model of type 2 diabetes[J]. Exp Diabetes Res, 2011, 2011(1): 908185.
|
[23] |
Vallon V,Rose M,Gerasimova M, et al. Knockout of Na-glucose transporter SGLT2 attenuates hyperglycemia and glomerular hyperfiltration but not kidney growth or injury in diabetes mellitus[J]. Am J Physiol Renal Physiol, 2013, 304(2): F156-F167.
|
[24] |
Liu WJ,Shen TT,Chen RH, et al. Autophagy-lysosome pathway in renal tubular epithelial cells is disrupted by advanced glycation end products in diabetic nephropathy[J]. J Biol Chem, 2015, 290(33): 20499-20510.
|
[25] |
Xin W,Zhao X,Liu L, et al. Acetyl-CoA carboxylase 2 suppression rescues human proximal tubular cells from palmitic acid induced lipotoxicity via autophagy[J]. Biochem Biophys Res Commun, 2015, 463(3): 364-369.
|
[26] |
Hamasaki M,Furuta N,Matsuda A, et al. Autophagosomes form at ER-mitochondria contact sites[J]. Nature, 2013, 495(7441): 389-393.
|
[27] |
Kanwar YS,Sun L,Xie P, et al. A glimpse of various pathogenetic mechanisms of diabetic nephropathy[J]. Annu Rev Pathol, 2011, 6(1): 395-423.
|
[28] |
Fiorentino L,Cavalera M,Menini S, et al. Loss of TIMP3 underlies diabetic nephropathy via FoxO1/STAT1 interplay[J]. EMBO Mol Med, 2013, 5(3): 441-455.
|
[29] |
Wang A,Ren J,Wang CP, et al. Heparin prevents intracellular hyaluronan synthesis and autophagy responses in hyperglycemic dividing mesangial cells and activates synthesis of an extensive extracellular monocyte-adhesive hyaluronan matrix after completing cell division[J]. J Biol Chem, 2014, 289(13): 9418-9429.
|