切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2016, Vol. 05 ›› Issue (04) : 172 -176. doi: 10.3877/cma.j.issn.2095-3216.2016.04.007

所属专题: 文献

综述

自噬在糖尿病肾病进展中的作用及机制
陈客宏1, 何娅妮1,()   
  1. 1. 400042 重庆,第三军医大学大坪医院肾内科
  • 收稿日期:2016-05-21 出版日期:2016-08-28
  • 通信作者: 何娅妮
  • 基金资助:
    国家自然科学基金(81670661, 81400733)

Role and mechanism of autophagy in progression of diabetic nephropathy

Kehong Chen1, Yani He1,()   

  1. 1. Department of Nephrology, Institute of Field Surgery, Daping Hospital Affiliated to Third Military Medical University, Chongqing 400042, China
  • Received:2016-05-21 Published:2016-08-28
  • Corresponding author: Yani He
  • About author:
    Corresponding author: He Yani, Email:
引用本文:

陈客宏, 何娅妮. 自噬在糖尿病肾病进展中的作用及机制[J/OL]. 中华肾病研究电子杂志, 2016, 05(04): 172-176.

Kehong Chen, Yani He. Role and mechanism of autophagy in progression of diabetic nephropathy[J/OL]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2016, 05(04): 172-176.

糖尿病肾病是导致终末期肾脏疾病的主要病因之一,其发病机制不清。自噬是一种高度保守的细胞学事件,能够降解细胞内异常蛋白和细胞器,维持细胞内环境稳定,在多种急慢性肾脏疾病中发挥着重要的作用。研究发现糖尿病肾病中肾脏自噬功能受损,提示自噬障碍可能参与糖尿病肾病发病。本文将针对肾脏不同类型细胞,对自噬在糖尿病肾病中作用的相关研究进展进行综述。

Diabetic nephropathy is one of the main causes for end-stage renal disease, whose pathogenesis is unclear yet. Autophagy is a highly conserved cytology event which can degrade intracellular abnormal proteins and organelles, maintaining the intracellular homeostasis and playing a critical role in many acute and chronic kidney diseases. It was demonstrated that impairment of autophagy is implicated in the pathogenesis of diabetic nephropathy. Focusing on different types of cells in the kidneys, this article reviewed related progress of research on the role of autophagy in diabetic nephropathy.

[1]
Kimura T,Takabatake Y,Takahashi A, et al. Autophagy protects the proximal tubule from degeneration and acute ischemic injury[J]. J Am Soc Nephrol, 2011, 22(5): 902-913.
[2]
Baisantry A,Bhayana S,Rong S, et al. Autophagy induces prosenescent changes in proximal tubular S3 segments[J]. J Am Soc Nephrol, 2016, 27(6): 1609-1616.
[3]
Inoki K. mTOR signaling in autophagy regulation in the kidney[J]. Semin Nephrol, 2014, 34(1): 2-8.
[4]
Wu WH,Zhang MP,Zhang F, et al. The role of programmed cell death in streptozotocin-induced early diabetic nephropathy[J]. J Endocrinol Invest, 2011, 34(9): e296-e301.
[5]
Peng KY,Horng LY,Sung HC, et al. Hepatocyte growth factor has a role in the amelioration of diabetic vascular complications via autophagic clearance of advanced glycation end products: Dispo85E, an HGF inducer, as a potential botanical drug[J]. Metabolism, 2011, 60(6): 888-892.
[6]
Hartleben B,Godel M,Meyer-Schwesinger C, et al. Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice[J]. J Clin Invest, 2010, 120(4): 1084-1096.
[7]
Fang L,Zhou Y,Cao H, et al. Autophagy attenuates diabetic glomerular damage through protection of hyperglycemia-induced podocyte injury[J]. PLoS One, 2013, 8(4): e60546.
[8]
Tagawa A,Yasuda M,Kume S, et al. Impaired podocyte autophagy exacerbates proteinuria in diabetic nephropathy[J]. Diabetes, 2015, 65(3): 755-767.
[9]
Lenoir O,Jasiek M,Henique C, et al. Endothelial cell and podocyte autophagy synergistically protect from diabetes-induced glomerulosclerosis[J]. Autophagy, 2015, 11(7): 1130-1145.
[10]
Chuang PY,Xu J,Dai Y, et al. In vivo RNA interference models of inducible and reversible Sirt1 knockdown in kidney cells[J]. Am J Pathol, 2014, 184(7): 1940-1956.
[11]
Xiao T,Guan X,Nie L, et al. Rapamycin promotes podocyte autophagy and ameliorates renal injury in diabetic mice[J]. Mol Cell Biochem, 2014, 394(1-2): 145-154.
[12]
Dong C,Zheng H,Huang S, et al. Heme oxygenase-1 enhances autophagy in podocytes as a protective mechanism against high glucose-induced apoptosis[J]. Exp Cell Res, 2015, 337(2): 146-159.
[13]
Inoki K,Mori H,Wang J, et al. mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice[J]. J Clin Invest, 2011, 121(6): 2181-2196.
[14]
Godel M,Hartleben B,Herbach N, et al. Role of mTOR in podocyte function and diabetic nephropathy in humans and mice[J]. J Clin Invest, 2011, 121(6): 2197-2209.
[15]
Liu S,Hartleben B,Kretz O, et al. Autophagy plays a critical role in kidney tubule maintenance, aging and ischemia-reperfusion injury[J]. Autophagy, 2012, 8(5): 826-837.
[16]
Yamahara K,Kume S,Koya D, et al. Obesity-mediated autophagy insufficiency exacerbates proteinuria-induced tubulointerstitial lesions[J]. J Am Soc Nephrol, 2013, 24(11): 1769-1781.
[17]
Zhan M,Usman IM,Sun L, et al. Disruption of renal tubular mitochondrial quality control by Myo-inositol oxygenase in diabetic kidney disease[J]. J Am Soc Nephrol, 2015, 26(6): 1304-1321.
[18]
Huang C,Lin MZ,Cheng D, et al. Thioredoxin-interacting protein mediates dysfunction of tubular autophagy in diabetic kidneys through inhibiting autophagic flux[J]. Lab Invest, 2014, 94(3): 309-320.
[19]
Zhang MZ,Wang Y,Paueksakon P, et al. Epidermal growth factor receptor inhibition slows progression of diabetic nephropathy in association with a decrease in endoplasmic reticulum stress and an increase in autophagy[J]. Diabetes, 2014, 63(6): 2063-2072.
[20]
Zhao X,Liu G,Shen H, et al. Liraglutide inhibits autophagy and apoptosis induced by high glucose through GLP-1R in renal tubular epithelial cells[J]. Int J Mol Med, 2015, 35(3): 684-692.
[21]
Xu Y,Liu L,Xin W, et al. The renoprotective role of autophagy activation in proximal tubular epithelial cells in diabetic nephropathy[J]. J Diabetes Complications, 2015, 29(8): 976-983.
[22]
Kitada M,Takeda A,Nagai T, et al. Dietary restriction ameliorates diabetic nephropathy through anti-inflammatory effects and regulation of the autophagy via restoration of Sirt1 in diabetic Wistar fatty (fa/fa) rats: a model of type 2 diabetes[J]. Exp Diabetes Res, 2011, 2011(1): 908185.
[23]
Vallon V,Rose M,Gerasimova M, et al. Knockout of Na-glucose transporter SGLT2 attenuates hyperglycemia and glomerular hyperfiltration but not kidney growth or injury in diabetes mellitus[J]. Am J Physiol Renal Physiol, 2013, 304(2): F156-F167.
[24]
Liu WJ,Shen TT,Chen RH, et al. Autophagy-lysosome pathway in renal tubular epithelial cells is disrupted by advanced glycation end products in diabetic nephropathy[J]. J Biol Chem, 2015, 290(33): 20499-20510.
[25]
Xin W,Zhao X,Liu L, et al. Acetyl-CoA carboxylase 2 suppression rescues human proximal tubular cells from palmitic acid induced lipotoxicity via autophagy[J]. Biochem Biophys Res Commun, 2015, 463(3): 364-369.
[26]
Hamasaki M,Furuta N,Matsuda A, et al. Autophagosomes form at ER-mitochondria contact sites[J]. Nature, 2013, 495(7441): 389-393.
[27]
Kanwar YS,Sun L,Xie P, et al. A glimpse of various pathogenetic mechanisms of diabetic nephropathy[J]. Annu Rev Pathol, 2011, 6(1): 395-423.
[28]
Fiorentino L,Cavalera M,Menini S, et al. Loss of TIMP3 underlies diabetic nephropathy via FoxO1/STAT1 interplay[J]. EMBO Mol Med, 2013, 5(3): 441-455.
[29]
Wang A,Ren J,Wang CP, et al. Heparin prevents intracellular hyaluronan synthesis and autophagy responses in hyperglycemic dividing mesangial cells and activates synthesis of an extensive extracellular monocyte-adhesive hyaluronan matrix after completing cell division[J]. J Biol Chem, 2014, 289(13): 9418-9429.
[1] 张刚, 秦勇, 黄超, 薛震, 吕松岑. 基于骨关节炎软骨细胞表型转化的新兴治疗靶点[J/OL]. 中华关节外科杂志(电子版), 2024, 18(03): 352-362.
[2] 吴杰, 周志强, 符菁, 李喜功, 张钦. 吸入性氢气对大鼠脊髓损伤后自噬及神经功能的影响[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 363-371.
[3] 诸琴红, 夏典平, 葛芳娣, 崔大伟. 抗氧化和炎症指标在糖尿病肾病患者中的临床意义[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 307-311.
[4] 费扬, 赵晗希, 孙丽琴, 楼琴华, 胡骏程. 银杏叶提取物对糖尿病肾病患者的疗效及其对尿液外泌体miR-342-3p的干预研究[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(03): 219-224.
[5] 许彬, 王丽, 陈瑞, 沈奕, 陆件. 瞬时受体电位粘脂素1介导细胞自噬在远端缺血后处理保护大鼠脑缺血-再灌注损伤中的作用研究[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(03): 180-187.
[6] 李争光, 宰爽嘉, 吴火峰, 孙华, 张永博, 陈浏阳, 戴睿, 张亮. 昼夜节律相关因子在椎间盘退行性变发病机制中作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 457-461.
[7] 廖泽楷, 梁爱琳, 龚启梅. 根尖周病中程序性细胞死亡的研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(03): 150-155.
[8] 中华医学会器官移植学分会, 中国医疗保健国际交流促进会肾脏移植学分会. 中国胰肾联合移植临床诊疗指南[J/OL]. 中华移植杂志(电子版), 2024, 18(03): 129-147.
[9] 史清泉, 苗彬, 王烁, 陶琳, 沈晨. miR-181a-5p 靶向ATG5 抑制雨蛙素诱导的大鼠胰腺腺泡细胞AR42J自噬的机制研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 524-530.
[10] 邱岭, 朱旭丽, 浦坚, 邢苗苗, 吴佳玲. 糖尿病肾病患者肠道菌群生态特点与胃肠道功能障碍的关联性研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 453-458.
[11] 白璐, 李青霞, 冯一卓, 刘雪倩, 刘若琪, 曲卓敏, 赵凌霞. 丁酸盐治疗糖尿病肾病的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(03): 303-308.
[12] 于伟伟, 张国高, 吴军, 胡俊, 黄一宁, 徐晶. 线粒体相关内质网膜相关线粒体功能障碍在阿尔茨海默病中的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(02): 223-230.
[13] 谭莹, 朱鹏飞, 李楠, 黄莉吉, 周希乔, 严倩华, 余江毅. 火把花根片联合黄葵胶囊治疗高或极高进展风险糖尿病肾病的临床探索[J/OL]. 中华临床医师杂志(电子版), 2024, 18(02): 171-177.
[14] 刘霖, 张文欢, 宋雅茹, 姜云璐. Apelin-13 在阿尔茨海默病中的神经保护作用机制研究进展[J/OL]. 中华诊断学电子杂志, 2024, 12(04): 276-280.
[15] 张梅, 陈卉, 李转霞, 王瑞, 李林娟. Metrnl和NLRP3炎症小体:糖尿病肾病的潜在诊断标志物[J/OL]. 中华肥胖与代谢病电子杂志, 2024, 10(03): 193-199.
阅读次数
全文


摘要