切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2016, Vol. 05 ›› Issue (04) : 172 -176. doi: 10.3877/cma.j.issn.2095-3216.2016.04.007

所属专题: 文献

综述

自噬在糖尿病肾病进展中的作用及机制
陈客宏1, 何娅妮1,()   
  1. 1. 400042 重庆,第三军医大学大坪医院肾内科
  • 收稿日期:2016-05-21 出版日期:2016-08-28
  • 通信作者: 何娅妮
  • 基金资助:
    国家自然科学基金(81670661, 81400733)

Role and mechanism of autophagy in progression of diabetic nephropathy

Kehong Chen1, Yani He1,()   

  1. 1. Department of Nephrology, Institute of Field Surgery, Daping Hospital Affiliated to Third Military Medical University, Chongqing 400042, China
  • Received:2016-05-21 Published:2016-08-28
  • Corresponding author: Yani He
  • About author:
    Corresponding author: He Yani, Email:
引用本文:

陈客宏, 何娅妮. 自噬在糖尿病肾病进展中的作用及机制[J]. 中华肾病研究电子杂志, 2016, 05(04): 172-176.

Kehong Chen, Yani He. Role and mechanism of autophagy in progression of diabetic nephropathy[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2016, 05(04): 172-176.

糖尿病肾病是导致终末期肾脏疾病的主要病因之一,其发病机制不清。自噬是一种高度保守的细胞学事件,能够降解细胞内异常蛋白和细胞器,维持细胞内环境稳定,在多种急慢性肾脏疾病中发挥着重要的作用。研究发现糖尿病肾病中肾脏自噬功能受损,提示自噬障碍可能参与糖尿病肾病发病。本文将针对肾脏不同类型细胞,对自噬在糖尿病肾病中作用的相关研究进展进行综述。

Diabetic nephropathy is one of the main causes for end-stage renal disease, whose pathogenesis is unclear yet. Autophagy is a highly conserved cytology event which can degrade intracellular abnormal proteins and organelles, maintaining the intracellular homeostasis and playing a critical role in many acute and chronic kidney diseases. It was demonstrated that impairment of autophagy is implicated in the pathogenesis of diabetic nephropathy. Focusing on different types of cells in the kidneys, this article reviewed related progress of research on the role of autophagy in diabetic nephropathy.

[1]
Kimura T,Takabatake Y,Takahashi A, et al. Autophagy protects the proximal tubule from degeneration and acute ischemic injury[J]. J Am Soc Nephrol, 2011, 22(5): 902-913.
[2]
Baisantry A,Bhayana S,Rong S, et al. Autophagy induces prosenescent changes in proximal tubular S3 segments[J]. J Am Soc Nephrol, 2016, 27(6): 1609-1616.
[3]
Inoki K. mTOR signaling in autophagy regulation in the kidney[J]. Semin Nephrol, 2014, 34(1): 2-8.
[4]
Wu WH,Zhang MP,Zhang F, et al. The role of programmed cell death in streptozotocin-induced early diabetic nephropathy[J]. J Endocrinol Invest, 2011, 34(9): e296-e301.
[5]
Peng KY,Horng LY,Sung HC, et al. Hepatocyte growth factor has a role in the amelioration of diabetic vascular complications via autophagic clearance of advanced glycation end products: Dispo85E, an HGF inducer, as a potential botanical drug[J]. Metabolism, 2011, 60(6): 888-892.
[6]
Hartleben B,Godel M,Meyer-Schwesinger C, et al. Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice[J]. J Clin Invest, 2010, 120(4): 1084-1096.
[7]
Fang L,Zhou Y,Cao H, et al. Autophagy attenuates diabetic glomerular damage through protection of hyperglycemia-induced podocyte injury[J]. PLoS One, 2013, 8(4): e60546.
[8]
Tagawa A,Yasuda M,Kume S, et al. Impaired podocyte autophagy exacerbates proteinuria in diabetic nephropathy[J]. Diabetes, 2015, 65(3): 755-767.
[9]
Lenoir O,Jasiek M,Henique C, et al. Endothelial cell and podocyte autophagy synergistically protect from diabetes-induced glomerulosclerosis[J]. Autophagy, 2015, 11(7): 1130-1145.
[10]
Chuang PY,Xu J,Dai Y, et al. In vivo RNA interference models of inducible and reversible Sirt1 knockdown in kidney cells[J]. Am J Pathol, 2014, 184(7): 1940-1956.
[11]
Xiao T,Guan X,Nie L, et al. Rapamycin promotes podocyte autophagy and ameliorates renal injury in diabetic mice[J]. Mol Cell Biochem, 2014, 394(1-2): 145-154.
[12]
Dong C,Zheng H,Huang S, et al. Heme oxygenase-1 enhances autophagy in podocytes as a protective mechanism against high glucose-induced apoptosis[J]. Exp Cell Res, 2015, 337(2): 146-159.
[13]
Inoki K,Mori H,Wang J, et al. mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice[J]. J Clin Invest, 2011, 121(6): 2181-2196.
[14]
Godel M,Hartleben B,Herbach N, et al. Role of mTOR in podocyte function and diabetic nephropathy in humans and mice[J]. J Clin Invest, 2011, 121(6): 2197-2209.
[15]
Liu S,Hartleben B,Kretz O, et al. Autophagy plays a critical role in kidney tubule maintenance, aging and ischemia-reperfusion injury[J]. Autophagy, 2012, 8(5): 826-837.
[16]
Yamahara K,Kume S,Koya D, et al. Obesity-mediated autophagy insufficiency exacerbates proteinuria-induced tubulointerstitial lesions[J]. J Am Soc Nephrol, 2013, 24(11): 1769-1781.
[17]
Zhan M,Usman IM,Sun L, et al. Disruption of renal tubular mitochondrial quality control by Myo-inositol oxygenase in diabetic kidney disease[J]. J Am Soc Nephrol, 2015, 26(6): 1304-1321.
[18]
Huang C,Lin MZ,Cheng D, et al. Thioredoxin-interacting protein mediates dysfunction of tubular autophagy in diabetic kidneys through inhibiting autophagic flux[J]. Lab Invest, 2014, 94(3): 309-320.
[19]
Zhang MZ,Wang Y,Paueksakon P, et al. Epidermal growth factor receptor inhibition slows progression of diabetic nephropathy in association with a decrease in endoplasmic reticulum stress and an increase in autophagy[J]. Diabetes, 2014, 63(6): 2063-2072.
[20]
Zhao X,Liu G,Shen H, et al. Liraglutide inhibits autophagy and apoptosis induced by high glucose through GLP-1R in renal tubular epithelial cells[J]. Int J Mol Med, 2015, 35(3): 684-692.
[21]
Xu Y,Liu L,Xin W, et al. The renoprotective role of autophagy activation in proximal tubular epithelial cells in diabetic nephropathy[J]. J Diabetes Complications, 2015, 29(8): 976-983.
[22]
Kitada M,Takeda A,Nagai T, et al. Dietary restriction ameliorates diabetic nephropathy through anti-inflammatory effects and regulation of the autophagy via restoration of Sirt1 in diabetic Wistar fatty (fa/fa) rats: a model of type 2 diabetes[J]. Exp Diabetes Res, 2011, 2011(1): 908185.
[23]
Vallon V,Rose M,Gerasimova M, et al. Knockout of Na-glucose transporter SGLT2 attenuates hyperglycemia and glomerular hyperfiltration but not kidney growth or injury in diabetes mellitus[J]. Am J Physiol Renal Physiol, 2013, 304(2): F156-F167.
[24]
Liu WJ,Shen TT,Chen RH, et al. Autophagy-lysosome pathway in renal tubular epithelial cells is disrupted by advanced glycation end products in diabetic nephropathy[J]. J Biol Chem, 2015, 290(33): 20499-20510.
[25]
Xin W,Zhao X,Liu L, et al. Acetyl-CoA carboxylase 2 suppression rescues human proximal tubular cells from palmitic acid induced lipotoxicity via autophagy[J]. Biochem Biophys Res Commun, 2015, 463(3): 364-369.
[26]
Hamasaki M,Furuta N,Matsuda A, et al. Autophagosomes form at ER-mitochondria contact sites[J]. Nature, 2013, 495(7441): 389-393.
[27]
Kanwar YS,Sun L,Xie P, et al. A glimpse of various pathogenetic mechanisms of diabetic nephropathy[J]. Annu Rev Pathol, 2011, 6(1): 395-423.
[28]
Fiorentino L,Cavalera M,Menini S, et al. Loss of TIMP3 underlies diabetic nephropathy via FoxO1/STAT1 interplay[J]. EMBO Mol Med, 2013, 5(3): 441-455.
[29]
Wang A,Ren J,Wang CP, et al. Heparin prevents intracellular hyaluronan synthesis and autophagy responses in hyperglycemic dividing mesangial cells and activates synthesis of an extensive extracellular monocyte-adhesive hyaluronan matrix after completing cell division[J]. J Biol Chem, 2014, 289(13): 9418-9429.
[1] 李康, 冀亮, 赵维, 林乐岷. 自噬在乳腺癌生物学进展中的双重作用[J]. 中华乳腺病杂志(电子版), 2023, 17(04): 195-202.
[2] 孔莹莹, 谢璐涛, 卢晓驰, 徐杰丰, 周光居, 张茂. 丁酸钠对猪心脏骤停复苏后心脑损伤的保护作用及机制研究[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 355-362.
[3] 陈玲, 李楠, 杨建乐. 微小RNA-377-3p调控自噬改善脂多糖/D-半乳糖胺诱导的急性肝衰竭的机制研究[J]. 中华危重症医学杂志(电子版), 2023, 16(02): 89-97.
[4] 周子慧, 李恭驰, 李炳辉, 王知, 刘慧真, 王卉, 邹利军. 细胞自噬在创面愈合中作用的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 542-546.
[5] 张永博, 张亮, 陈浏阳, 戴睿, 孙华, 杨盛, 孟博, 彭晴. 线粒体与椎间盘退变[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 265-269.
[6] 钟文涛, 赵阳, 沈晓菲, 杜峻峰. 自噬在脓毒症中的作用及靶向治疗研究进展[J]. 中华普外科手术学杂志(电子版), 2023, 17(02): 221-225.
[7] 邵浩仁, 郭佳. 铁死亡的分子机制及其在前列腺癌治疗中的研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(03): 294-298.
[8] 程莉, 章晓良. 血尿酸和胱抑素C与糖尿病视网膜病变患者合并糖尿病肾病的关系及影响因素[J]. 中华肾病研究电子杂志, 2023, 12(04): 194-199.
[9] 王小红, 钱晶, 翁文俊, 周国雄, 朱顺星, 祁小鸣, 刘春, 王萍, 沈伟, 程睿智, 秦璟灏. 巯基丙酮酸硫基转移酶调控核因子κB信号介导自噬对重症急性胰腺炎大鼠的影响及机制[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 422-426.
[10] 岑妍慧, 高月, 林江, 刘鹏, 贾微, 杨瑞, 黄威, 刘鑫, 黄泽萍, 宁志莹. 水解南珠液通过Wnt/β-catenin通路调节细胞自噬对人微血管内皮细胞氧化应激损伤的影响[J]. 中华临床医师杂志(电子版), 2023, 17(01): 72-79.
[11] 郭如烨, 孟黎明, 陈楠, 宋玉莹, 尹海燕, 郭岩. Apelin/APJ系统对帕金森病模型的神经保护作用及机制研究进展[J]. 中华诊断学电子杂志, 2023, 11(04): 276-282.
[12] 李民昌, 马长林. 自噬调控的细胞铁死亡及在肿瘤中影响的研究进展[J]. 中华诊断学电子杂志, 2023, 11(02): 140-144.
[13] 李正达, 张艳兵, 刘茂霞, 李玉芳, 杨新静. 艾司洛尔对脓毒症肠损伤的保护作用及对自噬蛋白AMPK表达水平的影响[J]. 中华卫生应急电子杂志, 2023, 09(02): 90-95.
[14] 刘倩影, 刘雪彦, 周佩如, 胡申玲, 叶倩呈, 黄洁微. 糖尿病肾病患者血液透析期间低血糖管理的证据总结[J]. 中华肥胖与代谢病电子杂志, 2023, 09(01): 22-27.
[15] 邱甜, 杨苗娟, 胡波, 郭毅, 何奕涛. 亚低温治疗脑梗死机制的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 518-521.
阅读次数
全文


摘要