[1] |
Guariguata L,Whiting DR,Hambleton I, et al. Global estimates of diabetes prevalence for 2013 and projections for 2035[J]. Diabetes Res Clin Pract, 2014, 103(2): 137-149.
|
[2] |
Woroniecka KI,Park AS,Mohtat D, et al. Transcriptome analysis of human diabetic kidney disease[J]. Diabetes, 2011, 60(9): 2354-2369.
|
[3] |
Rathmann W,Giani G. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030[J]. Diabetes Care, 2004, 27(10): 2568-2569.
|
[4] |
The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus[J]. N Engl J Med, 1993, 329(14): 977-986.
|
[5] |
UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33)[J]. Lancet, 1998, 352(9131): 837-853.
|
[6] |
Holman RR,Paul SK,Bethel MA, et al. 10-year follow-up of intensive glucose control in type 2 diabetes[J]. N Engl J Med, 2008, 359(15): 1577-1589.
|
[7] |
Skinner MK. Environmental epigenomics and disease susceptibility[J]. EMBO Rep, 2011, 12(7): 620-622.
|
[8] |
Cantone I,Fisher AG. Epigenetic programming and reprogramming during development[J]. Nat Struct Mol Biol, 2013, 20(3): 282-289.
|
[9] |
Saetrom P,Snove OJ,Rossi JJ. Epigenetics and microRNAs[J]. Pediatr Res, 2007, 61(5 Pt 2): 17R-23R.
|
[10] |
Campbell SA,Hoffman BG. Chromatin regulators in pancreas development and diabetes[J]. Trends Endocrinol Metab, 2016, 27(3): 142-152.
|
[11] |
Butler JS,Koutelou E,Schibler AC, et al. Histone-modifying enzymes: regulators of developmental decisions and drivers of human disease[J]. Epigenomics, 2012, 4(2): 163-177.
|
[12] |
Advani A,Huang Q,Thai K, et al. Long-term administration of the histone deacetylase inhibitor vorinostat attenuates renal injury in experimental diabetes through an endothelial nitric oxide synthase-dependent mechanism[J]. Am J Pathol, 2011, 178(5): 2205-2214.
|
[13] |
Zhou J,Peng R,Li T, et al. A potentially functional polymorphism in the regulatory region of let-7a-2 is associated with an increased risk for diabetic nephropathy[J]. Gene, 2013, 527(2): 456-461.
|
[14] |
Thomas MC. Advanced glycation end products[J]. Contrib Nephrol, 2011, 170: 66-74.
|
[15] |
Jirtle RL,Skinner MK. Environmental epigenomics and disease susceptibility[J]. Nat Rev Genet, 2007, 8(4): 253-262.
|
[16] |
Toperoff G,Kark JD,Aran D, et al. Premature aging of leukocyte DNA methylation is associated with type 2 diabetes prevalence[J]. Clin Epigenetics, 2015, 7(1): 35.
|
[17] |
Vanderjagt TA,Neugebauer MH,Morgan M, et al. Epigenetic profiles of pre-diabetes transitioning to type 2 diabetes and nephropathy[J]. World J Diabetes, 2015, 6(9): 1113-1121.
|
[18] |
Ren F,Tang L,Cai Y, et al. Meta-analysis: the efficacy and safety of combined treatment with ARB and ACEI on diabetic nephropathy[J]. Ren Fail, 2015, 37(4): 548-561.
|
[19] |
Li LM,Hou DX,Guo YL, et al. Role of microRNA-214-targeting phosphatase and tensin homolog in advanced glycation end product-induced apoptosis delay in monocytes[J]. J Immunol, 2011, 186(4): 2552-2560.
|
[20] |
Xiao L,Wang M,Yang S, et al. A glimpse of the pathogenetic mechanisms of Wnt/beta-catenin signaling in diabetic nephropathy[J]. Biomed Res Int, 2013, 2013: 987064.
|
[21] |
Bechtel W,Mcgoohan S,Zeisberg EM, et al. Methylation determines fibroblast activation and fibrogenesis in the kidney[J]. Nat Med, 2010, 16(5): 544-550.
|
[22] |
Ross S,Cheung E,Petrakis TG, et al. Smads orchestrate specific histone modifications and chromatin remodeling to activate transcription[J]. EMBO J, 2006, 25(19): 4490-4502.
|
[23] |
Yuan H,Reddy MA,Sun G, et al. Involvement of p300/CBP and epigenetic histone acetylation in TGF-beta1-mediated gene transcription in mesangial cells[J]. Am J Physiol Renal Physiol, 2013, 304(5): F601-F613.
|
[24] |
Yuan H,Reddy MA,Sun G, et al. Involvement of p300/CBP and epigenetic histone acetylation in TGF-beta1-mediated gene transcription in mesangial cells[J]. Am J Physiol Renal Physiol, 2013, 304(5): F601-F613.
|
[25] |
Sun G,Reddy MA,Yuan H, et al. Epigenetic histone methylation modulates fibrotic gene expression[J]. J Am Soc Nephrol, 2010, 21(12): 2069-2080.
|
[26] |
Khan S,Jena G,Tikoo K. Sodium valproate ameliorates diabetes-induced fibrosis and renal damage by the inhibition of histone deacetylases in diabetic rat[J]. Exp Mol Pathol, 2015, 98(2): 230-239.
|
[27] |
Kato M,Zhang J,Wang M, et al. MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors[J]. Proc Natl Acad Sci USA, 2007, 104(9): 3432-3437.
|
[28] |
Putta S,Lanting L,Sun G, et al. Inhibiting microRNA-192 ameliorates renal fibrosis in diabetic nephropathy[J]. J Am Soc Nephrol, 2012, 23(3): 458-469.
|
[29] |
Wang Q,Wang Y,Minto AW, et al. MicroRNA-377 is up-regulated and can lead to increased fibronectin production in diabetic nephropathy[J]. FASEB J, 2008, 22(12): 4126-4135.
|
[30] |
Krupa A,Jenkins R,Luo DD, et al. Loss of microRNA-192 promotes fibrogenesis in diabetic nephropathy[J]. J Am Soc Nephrol, 2010, 21(3): 438-447.
|
[31] |
Wang B,Koh P,Winbanks C, et al. miR-200a prevents renal fibrogenesis through repression of TGF-beta2 expression[J]. Diabetes, 2011, 60(1): 280-287.
|
[32] |
Wang B,Komers R,Carew R, et al. Suppression of microRNA-29 expression by TGF-beta1 promotes collagen expression and renal fibrosis[J]. J Am Soc Nephrol, 2012, 23(2): 252-265.
|
[33] |
Wang B,Jha JC,Hagiwara S, et al. Transforming growth factor-beta1-mediated renal fibrosis is dependent on the regulation of transforming growth factor receptor 1 expression by let-7b[J]. Kidney Int, 2014, 85(2): 352-361.
|
[34] |
Brennan EP,Nolan KA,Borgeson E, et al. Lipoxins attenuate renal fibrosis by inducing let-7c and suppressing TGFbetaR1[J]. J Am Soc Nephrol, 2013, 24(4): 627-637.
|
[35] |
Alvarez ML,Distefano JK. Functional characterization of the plasmacytoma variant translocation 1 gene (PVT1) in diabetic nephropathy[J]. PLoS One, 2011, 6(4): e18671.
|
[36] |
Alvarez ML,Khosroheidari M,Eddy E, et al. Role of microRNA 1207-5P and its host gene, the long non-coding RNA Pvt1, as mediators of extracellular matrix accumulation in the kidney: implications for diabetic nephropathy[J]. PLoS One, 2013, 8(10): e77468.
|
[37] |
Simar D,Versteyhe S,Donkin I, et al. DNA methylation is altered in B and NK lymphocytes in obese and type 2 diabetic human[J]. Metabolism, 2014, 63(9): 1188-1197.
|
[38] |
Zhao J,Goldberg J,Bremner JD, et al. Global DNA methylation is associated with insulin resistance: a monozygotic twin study[J]. Diabetes, 2012, 61(2): 542-546.
|
[39] |
Reddy MA,Natarajan R. Epigenetic mechanisms in diabetic vascular complications[J]. Cardiovasc Res, 2011, 90(3): 421-429.
|
[40] |
Shanmugam N,Reddy MA,Guha M, et al. High glucose-induced expression of proinflammatory cytokine and chemokine genes in monocytic cells[J]. Diabetes, 2003, 52(5): 1256-1264.
|
[41] |
Miao F,Gonzalo IG,Lanting L, et al. In vivo chromatin remodeling events leading to inflammatory gene transcription under diabetic conditions[J]. J Biol Chem, 2004, 279(17): 18091-18097.
|
[42] |
Miao F,Chen Z,Genuth S, et al. Evaluating the role of epigenetic histone modifications in the metabolic memory of type 1 diabetes[J]. Diabetes, 2014, 63(5): 1748-1762.
|
[43] |
Villeneuve LM,Reddy MA,Lanting LL, et al. Epigenetic histone H3 lysine 9 methylation in metabolic memory and inflammatory phenotype of vascular smooth muscle cells in diabetes[J]. Proc Natl Acad Sci USA, 2008, 105(26): 9047-9052.
|
[44] |
Huang Y,Liu Y,Li L, et al. Involvement of inflammation-related miR-155 and miR-146a in diabetic nephropathy: implications for glomerular endothelial injury[J]. BMC Nephrol, 2014, 15: 142.
|
[45] |
Zhong Q,Kowluru RA. Regulation of matrix metalloproteinase-9 by epigenetic modifications and the development of diabetic retinopathy[J]. Diabetes, 2013, 62(7): 2559-2568.
|
[46] |
El-Osta A,Brasacchio D,Yao D, et al. Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia[J]. J Exp Med, 2008, 205(10): 2409-2417.
|
[47] |
Brownlee M. Biochemistry and molecular cell biology of diabetic complications[J]. Nature, 2001, 414(6865): 813-820.
|
[48] |
Zhong Q,Kowluru RA. Epigenetic modification of Sod2 in the development of diabetic retinopathy and in the metabolic memory: role of histone methylation[J]. Invest Ophthalmol Vis Sci, 2013, 54(1): 244-250.
|
[49] |
Bock F,Shahzad K,Wang H, et al. Activated protein C ameliorates diabetic nephropathy by epigenetically inhibiting the redox enzyme p66Shc[J]. Proc Natl Acad Sci USA, 2013, 110(2): 648-653.
|
[50] |
Siddiqi FS,Majumder S,Thai K, et al. The histone methyltransferase enzyme enhancer of zeste homolog 2 protects against podocyte oxidative stress and renal injury in diabetes[J]. J Am Soc Nephrol, 2016, 27(7): 2021-2034.
|
[51] |
Chau BN,Xin C,Hartner J, et al. MicroRNA-21 promotes fibrosis of the kidney by silencing metabolic pathways[J]. Sci Transl Med, 2012, 4(121): 118r-121r.
|
[52] |
Thallas-Bonke V,Jandeleit-Dahm KA,Cooper ME. Nox-4 and progressive kidney disease[J]. Curr Opin Nephrol Hypertens, 2015, 24(1): 74-80.
|
[53] |
Yang BT,Dayeh TA,Kirkpatrick CL, et al. Insulin promoter DNA methylation correlates negatively with insulin gene expression and positively with HbA(1c) levels in human pancreatic islets[J]. Diabetologia, 2011, 54(2): 360-367.
|
[54] |
Barres R,Osler ME,Yan J, et al. Non-CpG methylation of the PGC-1alpha promoter through DNMT3B controls mitochondrial density[J]. Cell Metab, 2009, 10(3): 189-198.
|
[55] |
Kumar S,Pamulapati H,Tikoo K. Fatty acid induced metabolic memory involves alterations in renal histone H3K36me2 and H3K27me3[J]. Mol Cell Endocrinol, 2016, 422: 233-242.
|
[56] |
Gupta J,Kumar S,Li J, et al. Histone H3 lysine 4 monomethylation (H3K4me1) and H3 lysine 9 monomethylation (H3K9me1): distribution and their association in regulating gene expression under hyperglycaemic/hyperinsulinemic conditions in 3T3 cells[J]. Biochimie, 2012, 94(12): 2656-2664.
|
[57] |
Wu H,Min J,Lunin VV, et al. Structural biology of human H3K9 methyltransferases[J]. PLoS One, 2010, 5(1): e8570.
|