切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2017, Vol. 06 ›› Issue (01) : 34 -38. doi: 10.3877/cma.j.issn.2095-3216.2017.01.008

所属专题: 文献

综述

常染色体显性遗传性多囊肾病发病机制及治疗靶点的研究进展
陈熳1, 谢院生2,()   
  1. 1. 100853 北京,解放军总医院肾脏病科、解放军肾脏病研究所、肾脏疾病国家重点实验室、国家慢性肾病临床医学研究中心;300071 天津,南开大学医学院
    2. 100853 北京,解放军总医院肾脏病科、解放军肾脏病研究所、肾脏疾病国家重点实验室、国家慢性肾病临床医学研究中心
  • 收稿日期:2016-12-23 出版日期:2017-02-28
  • 通信作者: 谢院生
  • 基金资助:
    国家自然科学基金项目(81473531); 国家重点研发计划(2016YFC0901502)

Progress of research on pathogenesis and therapeutic targets of autosomal dominant polycystic kidney disease

Man Chen1, Yuansheng Xie2,()   

  1. 1. Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing 100853; Nankai University Medical College, Tianjin 300071, China
    2. Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing 100853
  • Received:2016-12-23 Published:2017-02-28
  • Corresponding author: Yuansheng Xie
  • About author:
    Corresponding author: Xie Yuansheng, Email:
引用本文:

陈熳, 谢院生. 常染色体显性遗传性多囊肾病发病机制及治疗靶点的研究进展[J/OL]. 中华肾病研究电子杂志, 2017, 06(01): 34-38.

Man Chen, Yuansheng Xie. Progress of research on pathogenesis and therapeutic targets of autosomal dominant polycystic kidney disease[J/OL]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2017, 06(01): 34-38.

常染色体显性多囊肾病(ADPKD)是一种常见的遗传性肾脏病,以双肾多发液性囊肿为特征。ADPKD患病率约1/1 000,是尿毒症的第四位病因。大约有50%的多囊肾患者在60岁以前会进入终末期肾病阶段,缺乏特效的治疗措施。近年来,ADPKD分子机制研究的进展,为寻找其治疗靶点提供了新方向,针对不同靶点的药物在动物实验和临床试验中取得了一定的效果。本文将对ADPKD的发病机制及药物研究进展做一综述。

Autosomal dominant polycystic kidney disease (ADPKD) is a common inherited kidney disease, which is characterized by bilateral renal multiple fluid-filled cysts. ADPKD is the fourth cause of uremia, with a prevalence of about 1/1 000. Approximately half of the patients with ADPKD will progress to end-stage renal disease before the age of 60 years, but there has been not any very effective therapies. In recent years, advances in the molecular mechanisms of this disease have provided new directions for seeking the therapeutic targets. Preclinical models and clinical trials of the novel therapies have achieved positive results. This review focused on the progress of studies on pathogenesis and therapies of ADPKD.

图1 针对常染色体显性遗传性多囊肾病发病机制的治疗靶点与药物
[1]
Simms RJ. Autosomal dominant polycystic kidney disease [J]. BMJ, 2016, 352: i679.
[2]
The European Polycystic Kidney Disease Consortium. The polycystic kidney disease 1 gene encodes a 14 kb transcript and lies within a duplicated region on chromosome 16 [J]. Cell, 1994, 78(4): 725.
[3]
Mochizuki T, Wu G, Hayashi T, et al. PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein [J]. Science, 1996, 272(5266): 1339-1342.
[4]
Jin M, Xie Y, Chen Z, et al. System analysis of gene mutations and clinical phenotype in Chinese patients with autosomal-dominant polycystic kidney disease [J]. Sci Rep, 2016, 6: 35945.
[5]
Nauli SM, Alenghat FJ, Luo Y, et al. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells [J]. Nat Genet, 2003, 33(2): 129-137.
[6]
Aguilar A. Polycystic kidney disease: PC2 function: insights from the cold [J]. Nat Rev Nephrol, 2017, 13(3): 136.
[7]
Bankir L, Bichet DG. Polycystic kidney disease: An early urea-selective urine-concentrating defect in ADPKD [J]. Nat Rev Nephrol, 2012,8(8): 437-439.
[8]
Torres VE, Harris PC. Strategies targeting cAMP signaling in the treatment of polycystic kidney disease [J]. J Am Soc Nephrol, 2014, 25(1): 18-32.
[9]
Harris PC, Torres VE. Genetic mechanisms and signaling pathways in autosomal dominant polycystic kidney disease [J]. J Clin Invest, 2014, 124(6): 2315-2324.
[10]
Wu G, D′Agati V, Cai Y, et al. Somatic inactivation of Pkd2 results in polycystic kidney disease [J]. Cell, 1998, 93(2): 177-188.
[11]
Hopp K, Ward CJ, Hommerding CJ, et al. Functional polycystin-1 dosage governs autosomal dominant polycystic kidney disease severity [J]. J Clin Invest, 2012, 122(11): 4257-4273.
[12]
Piontek K, Menezes LF, Garcia-Gonzalez MA, et al. A critical developmental switch defines the kinetics of kidney cyst formation after loss of Pkd1 [J]. Nat Med, 2007, 13(12): 1490-1495.
[13]
Rowe I, Chiaravalli M, Mannella V, et al. Defective glucose metabolism in polycystic kidney disease identifies a new therapeutic strategy [J]. Nat Med, 2013, 19(4): 488-493.
[14]
Werder AA, Amos MA, Nielsen AH, et al. Comparative effects of germfree and ambient environments on the development of cystic kidney disease in CFWwd mice [J]. J Lab Clin Med, 1984, 103(3): 399-407.
[15]
Gardner KD Jr, Burnside JS, Elzinga LW, et al. Cytokines in fluids from polycystic kidneys [J]. Kidney Int, 1991, 39(4): 718-724.
[16]
Leuenroth SJ, Bencivenga N, Igarashi P, et al. Triptolide reduces cystogenesis in a model of ADPKD [J]. J Am Soc Nephrol, 2008, 19(9): 1659-1662.
[17]
Chen D, Ma Y, Wang X, et al. Triptolide-containing formulation in patients with autosomal dominant polycystic kidney disease and proteinuria: an uncontrolled trial [J]. Am J Kidney Dis, 2014, 63(6): 1070-1072.
[18]
Grantham JJ, Chapman AB, Blais J, et al. Tolvaptan suppresses monocyte chemotactic protein-1 excretion in autosomal-dominant polycystic kidney disease [J]. Nephrol Dial Transplant, 2016, [Epub ahead of print].
[19]
Gattone VH 2nd, Wang X, Harris PC, et al. Inhibition of renal cystic disease development and progression by a vasopressin V2 receptor antagonist [J]. Nat Med, 2003, 9(10): 1323-1326.
[20]
Torres VE, Chapman AB, Devuyst O, et al. Tolvaptan in patients with autosomal dominant polycystic kidney disease [J]. N Engl J Med, 2012, 367(25): 2407-2418.
[21]
Erickson KF, Chertow GM, Goldhaber-Fiebert JD. Cost-effectiveness of tolvaptan in autosomal dominant polycystic kidney disease [J]. Ann Intern Med, 2013, 159(6): 382-389.
[22]
Torres VE, Devuyst O, Chapman AB, et al. Rationale and design of a clinical trial investigating tolvaptan safety and efficacy in autosomal dominant polycystic kidney disease [J]. Am J Nephrol, 2017, 45(3): 257-266.
[23]
Masyuk TV, Radtke BN, Stroope AJ, et al. Pasireotide is more effective than octreotide in reducing hepatorenal cystogenesis in rodents with polycystic kidney and liver diseases [J]. Hepatology, 2013, 58(1): 409-421.
[24]
Caroli A, Perico N, Perna A, et al. Effect of long acting somatostatin analogue on kidney and cyst growth in autosomal dominant polycystic kidney disease (ALADIN): a randomised, placebo-controlled, multicentre trial [J]. Lancet, 2013, 382(9903): 1485-1495.
[25]
Hopp K, Hommerding CJ, Wang X, et al. Tolvaptan plus pasireotide shows enhanced efficacy in a PKD1 model [J]. J Am Soc Nephrol, 2015, 26(1): 39-47.
[26]
Sweeney WE Jr, von Vigier RO, Frost P, et al. Src inhibition ameliorates polycystic kidney disease [J]. J Am Soc Nephrol, 2008, 19(7): 1331-1341.
[27]
Elliott J, Zheleznova NN, Wilson PD. c-Src inactivation reduces renal epithelial cell-matrix adhesion, proliferation, and cyst formation [J]. Am J Physiol Cell Physiol, 2011, 301(2): C522-C529.
[28]
Yamaguchi T, Reif GA, Calvet JP, et al. Sorafenib inhibits cAMP-dependent ERK activation, cell proliferation, and in vitro cyst growth of human ADPKD cyst epithelial cells [J]. Am J Physiol Renal Physiol, 2010, 299(5): F944-F951.
[29]
Tao Y, Kim J, Schrier RW, et al. Rapamycin markedly slows disease progression in a rat model of polycystic kidney disease [J]. J Am Soc Nephrol, 2005, 16(1): 46-51.
[30]
Xue C, Dai B, Mei C. Long-term treatment with mammalian target of rapamycin inhibitor does not benefit patients with autosomal dominant polycystic kidney disease: a meta-analysis [J]. Nephron Clin Pract, 2013, 124(1-2): 10-16.
[31]
Novalic Z, van der Wal AM, Leonhard WN, et al. Dose-dependent effects of sirolimus on mTOR signaling and polycystic kidney disease [J]. J Am Soc Nephrol, 2012, 23(5): 842-853.
[32]
Shillingford JM, Leamon CP, Vlahov IR, et al. Folate-conjugated rapamycin slows progression of polycystic kidney disease [J]. J Am Soc Nephrol, 2012, 23(10): 1674-1681.
[33]
Ravichandran K, Zafar I, He Z, et al. An mTOR anti-sense oligonucleotide decreases polycystic kidney disease in mice with a targeted mutation in Pkd2 [J]. Hum Mol Genet, 2014, 23(18): 4919-4931.
[34]
Zhu P, Sieben CJ, Xu X, et al. Autophagy activators suppress cystogenesis in an autosomal dominant polycystic kidney disease model [J]. Hum Mol Genet, 2016, [Epub ahead of print].
[35]
Rowe I, Boletta A. Defective metabolism in polycystic kidney disease: potential for therapy and open questions [J]. Nephrol Dial Transplant, 2014, 29(8): 1480-1486.
[36]
Riwanto M, Kapoor S, Rodriguez D, et al. Inhibition of aerobic glycolysis attenuates disease progression in polycystic kidney disease [J]. PLoS One, 2016, 11(1): e0146654.
[37]
Hallows KR, Raghuram V, Kemp BE, et al. Inhibition of cystic fibrosis transmembrane conductance regulator by novel interaction with the metabolic sensor AMP-activated protein kinase [J]. J Clin Invest, 2000, 105(12): 1711-1721.
[38]
Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control cell growth and survival [J]. Cell, 2003, 115(5): 577-590.
[39]
Takiar V, Nishio S, Seo-Mayer P, et al. Activating AMP-activated protein kinase (AMPK) slows renal cystogenesis [J]. Proc Natl Acad Sci USA, 2011, 108(6): 2462-2467.
[40]
Warner G, Hein KZ, Nin V, et al. Food restriction ameliorates the development of polycystic kidney disease [J]. J Am Soc Nephrol, 2016, 27(5): 1437-1447.
[41]
Kipp KR, Rezaei M, Lin L, et al. A mild reduction of food intake slows disease progression in an orthologous mouse model of polycystic kidney disease [J]. Am J Physiol Renal Physiol, 2016, [Epub ahead of print].
[42]
Weimbs T, Olsan EE, Talbot JJ. Regulation of STATs by polycystin-1 and their role in polycystic kidney disease [J]. JAKSTAT, 2013, 2(2): e23650.
[43]
Takakura A, Nelson EA, Haque N, et al. Pyrimethamine inhibits adult polycystic kidney disease by modulating STAT signaling pathways [J]. Hum Mol Genet, 2011, 20(21): 4143-4154.
[44]
Fragiadaki M, Lannoy M, Themanns M, et al. STAT5 drives abnormal proliferation in autosomal dominant polycystic kidney disease [J]. Kidney Int, 2017, 91(3): 575-586.
[45]
Li X, Magenheimer BS, Xia S, et al. A tumor necrosis factor-alpha-mediated pathway promoting autosomal dominant polycystic kidney disease [J]. Nat Med, 2008, 14(8): 863-868.
[46]
Zhou JX, Fan LX, Li X, et al. TNFalpha signaling regulates cystic epithelial cell proliferation through Akt/mTOR and ERK/MAPK/Cdk2 mediated Id2 signaling [J]. PLoS One, 2015, 10(6): e0131043.
[47]
Wu M, Gu J, Mei S, et al. Resveratrol delays polycystic kidney disease progression through attenuation of nuclear factor kappaB-induced inflammation [J]. Nephrol Dial Transplant, 2016, 31(11): 1826-1834.
[48]
Chen L, Zhou X, Fan LX, et al. Macrophage migration inhibitory factor promotes cyst growth in polycystic kidney disease [J]. J Clin Invest, 2015, 125(6): 2399-2412.
[49]
Karihaloo A, Koraishy F, Huen SC, et al. Macrophages promote cyst growth in polycystic kidney disease [J]. J Am Soc Nephrol, 2011, 22(10): 1809-1814.
[50]
Torres VE, Abebe KZ, Chapman AB, et al. Angiotensin blockade in late autosomal dominant polycystic kidney disease [J]. N Engl J Med, 2014, 371(24): 2267-2276.
[51]
Schrier RW, Abebe KZ, Perrone RD, et al. Blood pressure in early autosomal dominant polycystic kidney disease [J]. N Engl J Med, 2014, 371(24): 2255-2266.
[52]
Saigusa T, Dang Y, Mullick AE, et al. Suppressing angiotensinogen synthesis attenuates kidney cyst formation in a Pkd1 mouse model [J]. FASEB J, 2016, 30(1): 370-379.
[53]
Xia S, Li X, Johnson T, et al. Polycystin-dependent fluid flow sensing targets histone deacetylase 5 to prevent the development of renal cysts [J]. Development, 2010, 137(7): 1075-1084.
[54]
Li X. Epigenetics and autosomal dominant polycystic kidney disease [J]. Biochim Biophys Acta, 2011, 1812(10): 1213-1218.
[55]
Zhou X, Fan LX, Sweeney WE Jr, et al. Sirtuin 1 inhibition delays cyst formation in autosomal-dominant polycystic kidney disease [J]. J Clin Invest, 2013, 123(7): 3084-3098.
[56]
van Dijk MA, Kamper AM, van Veen S, et al. Effect of simvastatin on renal function in autosomal dominant polycystic kidney disease [J]. Nephrol Dial Transplant, 2001, 16(11): 2152-2157.
[57]
Cadnapaphornchai MA, George DM, McFann K, et al. Effect of pravastatin on total kidney volume, left ventricular mass index, and microalbuminuria in pediatric autosomal dominant polycystic kidney disease [J]. Clin J Am Soc Nephrol, 2014, 9(5): 889-896.
[58]
Klawitter J, McFann K, Pennington AT, et al. Pravastatin therapy and biomarker changes in children and young adults with autosomal dominant polycystic kidney disease [J]. Clin J Am Soc Nephrol, 2015, 10(9): 1534-1541.
[1] 史学兵, 谢迎东, 谢霓, 徐超丽, 杨斌, 孙帼. 声辐射力弹性成像对不可切除肝细胞癌门静脉癌栓患者放射治疗效果的评价[J/OL]. 中华医学超声杂志(电子版), 2024, 21(08): 778-784.
[2] 李华志, 曹广, 刘殿刚, 张雅静. 不同入路下行肝切除术治疗原发性肝细胞癌的临床对比[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 52-55.
[3] 陈浩, 王萌. 胃印戒细胞癌的临床病理特征及治疗选择的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 108-111.
[4] 梁孟杰, 朱欢欢, 王行舟, 江航, 艾世超, 孙锋, 宋鹏, 王萌, 刘颂, 夏雪峰, 杜峻峰, 傅双, 陆晓峰, 沈晓菲, 管文贤. 联合免疫治疗的胃癌转化治疗患者预后及术后并发症分析[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 619-623.
[5] 刘柏隆, 周祥福. 压力性尿失禁阶梯治疗的项目介绍[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(01): 125-125.
[6] 刘柏隆. 女性压力性尿失禁阶梯治疗之手术治疗方案选择[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(01): 126-126.
[7] 石海波, 赵旭东, 王聪, 曲巍. 气肿性肾盂肾炎、气肿性膀胱炎并脓毒性休克一例报道并文献复习[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 644-647.
[8] 林逸, 钟文龙, 李锴文, 何旺, 林天歆. 广东省医学会泌尿外科疑难病例多学科会诊(第15期)——转移性膀胱癌的综合治疗[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 648-652.
[9] 王秋生. 胆道良性疾病诊疗策略[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 779-782.
[10] 中华医学会器官移植学分会. 肝移植术后缺血性胆道病变诊断与治疗中国实践指南[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 739-748.
[11] 刘琦, 王守凯, 王帅, 苏雨晴, 马壮, 陈海军, 司丕蕾. 乳腺癌肿瘤内微生物组的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 841-845.
[12] 崔军威, 蔡华丽, 胡艺冰, 胡慧. 亚甲蓝联合金属定位夹及定位钩针标记在乳腺癌辅助化疗后评估腋窝转移淋巴结的临床应用价值探究[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 625-632.
[13] 王誉英, 刘世伟, 王睿, 曾娅玲, 涂禧慧, 张蒲蓉. 老年乳腺癌新辅助治疗病理完全缓解的预测因素分析[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 641-646.
[14] 张平骥, 徐钰, 李天水, 庞文翼, 符师宁, 张梦圆. 重症患者镇静治疗现状及期望的调查研究[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 562-567.
[15] 王昌前, 林婷婷, 宁雨露, 王颖杰, 谭文勇. 光免疫治疗在肿瘤领域的临床应用新进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 575-583.
阅读次数
全文


摘要