切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2017, Vol. 06 ›› Issue (01) : 39 -43. doi: 10.3877/cma.j.issn.2095-3216.2017.01.009

所属专题: 文献

综述

饮食限制对肾损伤的保护作用
王思扬1, 蔡广研1,()   
  1. 1. 100853 北京,解放军总医院肾脏病科、解放军肾脏病研究所、肾脏疾病国家重点实验室、国家慢性肾病临床医学研究中心
  • 收稿日期:2016-12-09 出版日期:2017-02-28
  • 通信作者: 蔡广研
  • 基金资助:
    国家科技支撑计划课题(2015BAI12B06); 国家973计划课题(2013CB530805)

Dietary restriction in renal protection

Siyang Wang1, Guangyan Cai1,()   

  1. 1. Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing 100853, China
  • Received:2016-12-09 Published:2017-02-28
  • Corresponding author: Guangyan Cai
  • About author:
    Corresponding author: Cai Guangyan, Email:
引用本文:

王思扬, 蔡广研. 饮食限制对肾损伤的保护作用[J]. 中华肾病研究电子杂志, 2017, 06(01): 39-43.

Siyang Wang, Guangyan Cai. Dietary restriction in renal protection[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2017, 06(01): 39-43.

饮食限制(DR)又名为热量限制(CR),现已成为一种新的干预方式被广泛研究。其延长寿命作用已被充分证明,如可明显延长如果蝇、蠕虫、啮齿类及哺乳类动物模型的寿命。调整饮食总的热量或者其中某些营养组分的摄入以及模拟限食药物对衰老相关肾脏疾病和急性、慢性肾脏损伤同样具有预防或者干预作用。其机制涉及增加自噬,减轻炎症和氧化应激,增加胰岛素敏感性,上调SIRT1等。通过对CR相关机制的深入研究,进而提出更加精准的饮食或药物干预方案,对于肾脏的保护具有重要意义。

Dietary restriction, also called calorie restriction, is now widely studied as a new intervention. Its effect of prolonging life has been fully demonstrated. For example, it can significantly extend lifespan of the fly, worms, rodents, and mammalian models. Adjusting the intake of total calorie or some nutrients also has prophylactic or therapeutic effects on aging-related kidney disease and acute or chronic kidney injury. Calorie restriction mimetics has also been studied deeply. The mechanisms of the protection involve increased autophagy, reduced inflammation and oxidative stress, increased insulin sensitivity, and up-regulation of SIRT1, etc. It is important to carry out deep researches on the mechanism of calorie restriction so as to recommend more accurate intervention plans of diets or drugs.

[1]
Xu XM, Cai GY, Bu R, et al. Beneficial effects of caloric restriction on chronic kidney disease in rodent models: a meta-analysis and systematic review[J]. PLoS One, 2015, 10(12): e0144442.
[2]
Khorakova M, Deil Z, Khausman D, et al. Effect of carbohydrate-enriched diet and subsequent food restriction on life prolongation in Fischer 344 male rats] [J]. Fiziol Zh, 1990, 36(5): 16-21.
[3]
Shimokawa I, Higami Y, Yu BP, et al. Influence of dietary components on occurrence of and mortality due to neoplasms in male F344 rats [J]. Aging (Milan, Italy), 1996, 8(4): 254-262.
[4]
Sanchez-Roman I, Barja G. Regulation of longevity and oxidative stress by nutritional interventions: role of methionine restriction [J]. Exp Gerontol, 2013, 48(10): 1030-1042.
[5]
Grandison RC, Piper MD, Partridge L. Amino-acid imbalance explains extension of lifespan by dietary restriction in Drosophila [J]. Nature, 2009, 462(7276): 1061-1064.
[6]
Mccay CM, Crowell MF, Maynard LA. The effect of retarded growth upon the length of life span and upon the ultimate body size [J]. Nutrition, 1989, 5(3): 63-79.
[7]
Yu BP, Masoro EJ, Mcmahan CA. Nutritional influences on aging of Fischer 344 rats: I. Physical, metabolic, and longevity characteristics [J]. J Gerontol, 1985, 40(6): 657-670.
[8]
Kirk KL. Dietary restriction and aging [J]. J Am Geriatr Soc, 1993, 41(9): 994-999.
[9]
Colman RJ, Anderson RM, Johnson SC, et al. Caloric restriction delays disease onset and mortality in rhesus monkeys [J]. Science, 2009, 325(5937): 201-204.
[10]
Wiggins J, Bitzer M. Slowing the aging process [J]. Clin Geriatr Med, 2013, 29(3): 721-730.
[11]
Giordani I, Malandrucco I, Donno S, et al. Acute caloric restriction improves glomerular filtration rate in patients with morbid obesity and type 2 diabetes [J]. Diabetes Metab, 2014, 40(2): 158-160.
[12]
Morales E, Valero MA, Leon M, et al. Beneficial effects of weight loss in overweight patients with chronic proteinuric nephropathies [J]. Am J Kidney Dis, 2003, 41(2): 319-327.
[13]
Kume S, Yamahara K, Yasuda M, et al. Autophagy: emerging therapeutic target for diabetic nephropathy [J]. Semin Nephrol, 2014, 34(1): 9-16.
[14]
Kume S, Uzu T, Horiike K, et al. Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney [J]. J Clin Invest, 2010, 120(4): 1043-1055.
[15]
Cui J, Shi S, Sun X, et al. Mitochondrial autophagy involving renal injury and aging is modulated by caloric intake in aged rat kidneys [J]. PLoS One, 2013, 8(7): e69720.
[16]
Kim HJ, Jung KJ, Ji SY, et al. The inflammatory process in aging [J]. Antioxid Redox Signal, 2006, 8(3-4): 572-581.
[17]
Salminen A, Huuskonen J, Ojala J, et al. Activation of innate immunity system during aging: NF-kB signaling is the molecular culprit of inflamm-aging [J]. Ageing Res Rev, 2008, 7(2): 83-105.
[18]
Csiszar A, Gautam T, Sosnowska D, et al. Caloric restriction confers persistent anti-oxidative, pro-angiogenic, and anti-inflammatory effects and promotes anti-aging miRNA expression profile in cerebromicrovascular endothelial cells of aged rats [J]. Am J Physiol Heart Circ Physiol, 2014, 307(3): H292-H306.
[19]
Mohammadi M, Ghaznavi R, Keyhanmanesh R, et al. Caloric restriction prevents lead-induced oxidative stress and inflammation in rat liver [J]. ScientificWorldJournal, 2014, 2014: 821524.
[20]
Mitchell JR, Verweij M, Brand K, et al. Short-term dietary restriction and fasting precondition against ischemia reperfusion injury in mice [J]. Aging cell, 2010, 9(1): 40-53.
[21]
Xu XM, Ning YC, Wang WJ, et al. Anti-inflamm-aging effects of long-term caloric restriction via overexpression of SIGIRR to inhibit NF-kappaB signaling pathway [J]. Cell Physiol Biochem, 2015, 37(4): 1257-1270.
[22]
Harman D. The aging process [J]. Proc Natl Acad Sci USA, 1981, 78(11): 7124-7128.
[23]
Liu J, Wang X, Shigenaga MK, et al. Immobilization stress causes oxidative damage to lipid, protein, and DNA in the brain of rats [J]. FASEB J, 1996, 10(13): 1532-1538.
[24]
Shimazu T, Hirschey MD, Newman J, et al. Suppression of oxidative stress by beta-hydroxybutyrate, an endogenous histone deacetylase inhibitor [J]. Science, 2013, 339(6116): 211-214.
[25]
Hine C, Harputlugil E, Zhang Y, et al. Endogenous hydrogen sulfide production is essential for dietary restriction benefits [J]. Cell, 2015, 160(1-2): 132-144.
[26]
Wang WJ, Cai GY, Ning YC, et al. Hydrogen sulfide mediates the protection of dietary restriction against renal senescence in aged F344 rats [J]. Sci Rep, 2016, 6: 30292.
[27]
Li J, Qu X, Ricardo SD, et al. Resveratrol inhibits renal fibrosis in the obstructed kidney : potential role in deacetylation of Smad3 [J]. Am J Pathol, 2010, 177(3): 1065-1071.
[28]
Liang F, Kume S, Koya D. SIRT1 and insulin resistance [J]. Nat Rev Endocrinol, 2009, 5(7): 367-373.
[29]
Kitada M, Takeda A, Nagai T, et al. Dietary restriction ameliorates diabetic nephropathy through anti-inflammatory effects and regulation of the autophagy via restoration of Sirt1 in diabetic Wistar fatty (fa/fa) rats: a model of type 2 diabetes [J]. Exp Diabetes Res, 2011, 2011: 908185.
[30]
Sakao Y, Kato A, Tsuji T, et al. Cisplatin induces Sirt1 in association with histone deacetylation and increased Werner syndrome protein in the kidney [J]. Clin Exp Nephrol, 2011, 15(3): 363-372.
[31]
Ning YC, Cai GY, Zhuo L, et al. Beneficial effects of short-term calorie restriction against cisplatin-induced acute renal injury in aged rats [J]. Nephron Exp Nephrol, 2013, 124(3-4): 19-27.
[32]
Yoshizaki T, Schenk S, Imamura T, et al. SIRT1 inhibits inflammatory pathways in macrophages and modulates insulin sensitivity [J]. Am J Physiol Endocrinol Metab, 2010, 298(3): E419-E428.
[33]
Kume S, Kitada M, Kanasaki K, et al. Anti-aging molecule, Sirt1: a novel therapeutic target for diabetic nephropathy [J]. Arch Pharm Res, 2013, 36(2): 230-236.
[34]
Kumagai H, Katoh S, Hirosawa K, et al. Renal tubulointerstitial injury in weanling rats with hyperhomocysteinemia [J]. Kidney Int, 2002, 62(4): 1219-1228.
[35]
Gomez J, Caro P, Sanchez I, et al. Effect of methionine dietary supplementation on mitochondrial oxygen radical generation and oxidative DNA damage in rat liver and heart [J]. J Bioenerg Biomembr, 2009, 41(3): 309-321.
[36]
Caro P, Gomez J, Sanchez I, et al. Forty percent methionine restriction decreases mitochondrial oxygen radical production and leak at complex I during forward electron flow and lowers oxidative damage to proteins and mitochondrial DNA in rat kidney and brain mitochondria [J]. Rejuvenation Res, 2009, 12(6): 421-434.
[37]
Naudí A, Jové M, Ayala V, et al. Regulation of membrane unsaturation as antioxidant adaptive mechanism in long-lived animal species [J]. Free Radic Antioxid, 2011, 1(3) : 3-12.
[38]
Ingram DK, Zhu M, Mamczarz J, et al. Calorie restriction mimetics: an emerging research field [J]. Aging cell, 2006, 5(2): 97-108.
[39]
Dowling RJ, Zakikhani M, Fantus IG, et al. Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells [J]. Cancer Res, 2007, 67(22): 10804-10812.
[40]
Anisimov VN, Berstein LM, Egormin PA, et al. Metformin slows down aging and extends life span of female SHR mice [J]. Cell Cycle (Georgetown, Tex), 2008, 7(17): 2769-2773.
[41]
Cufi S, Vazquez-Martin A, Oliveras-Ferraros C, et al. Metformin against TGFbeta-induced epithelial-to-mesenchymal transition (EMT): from cancer stem cells to aging-associated fibrosis [J]. Cell Cycle (Georgetown, Tex), 2010, 9(22): 4461-4468.
[42]
Takiyama Y, Harumi T, Watanabe J, et al. Tubular injury in a rat model of type 2 diabetes is prevented by metformin: a possible role of HIF-1alpha expression and oxygen metabolism [J]. Diabetes, 2011, 60(3): 981-992.
[43]
Kitada M, Kume S, Takeda-Watanabe A, et al. Sirtuins and renal diseases: relationship with aging and diabetic nephropathy [J]. Clin Sci (London, England : 1979), 2013, 124(3): 153-164.
[44]
Kitada M, Koya D. Renal protective effects of resveratrol [J]. Oxid Med Cell Longev, 2013, 2013: 568093.
[45]
Godel M, Hartleben B, Herbach N, et al. Role of mTOR in podocyte function and diabetic nephropathy in humans and mice [J]. J Clin Invest, 2011, 121(6): 2197-2209.
[46]
Inoki K, Mori H, Wang J, et al. mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice [J]. J Clin Invest, 2011, 121(6): 2181-2196.
[47]
Liu M, Wilk SA, Wang A, et al. Resveratrol inhibits mTOR signaling by promoting the interaction between mTOR and DEPTOR [J]. J Biol Chem, 2010, 285(47): 36387-36394.
[1] 韩圣瑾, 周正武, 翁云龙, 黄鑫. 碳酸氢钠林格液联合连续性肾脏替代疗法对创伤合并急性肾损伤患者炎症水平及肾功能的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 376-381.
[2] 张秋彬, 张楠, 林清婷, 徐军, 朱华栋, 姜辉. 急性胰腺炎合并急性肾损伤患者的预后评估[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 382-389.
[3] 韩李念, 王君. 放射性皮肤损伤治疗的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 533-537.
[4] 朱良振, 于永刚, 陈杲, 廖松柏. 儿童高级别闭合性肾损伤肾动脉栓塞与手术探查的疗效比较[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 461-465,475.
[5] 吴庆华, 冒勇, 闫效坤. AECOPD并发AKI的危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 529-531.
[6] 李晔, 何洁, 胡锦秀, 王金祥, 田川, 潘杭, 陈梦蝶, 赵晓娟, 叶丽, 张敏, 潘兴华. 高活性间充质干细胞干预猕猴卵巢衰老的研究[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 210-219.
[7] 李青霖, 宋仁杰, 周飞虎. 一种重型劳力性热射病相关急性肾损伤小鼠模型的建立与探讨[J]. 中华肾病研究电子杂志, 2023, 12(05): 265-270.
[8] 任加发, 邬步云, 邢昌赢, 毛慧娟. 2022年急性肾损伤领域基础与临床研究进展[J]. 中华肾病研究电子杂志, 2023, 12(05): 276-281.
[9] 李金璞, 饶向荣. 抗病毒药物和急性肾损伤[J]. 中华肾病研究电子杂志, 2023, 12(05): 287-290.
[10] 程庆砾. 新冠病毒感染与肾脏[J]. 中华肾病研究电子杂志, 2023, 12(04): 240-240.
[11] 苗软昕, 乔晞. Toll样受体在脓毒症性急性肾损伤中的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 210-214.
[12] 李娜, 朱国贞. 肠道菌群及其代谢产物在急性肾损伤中的作用研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 215-219.
[13] 宋艳琪, 任雪景, 王文娟, 韩秋霞, 续玥, 庄凯婷, 肖拓, 蔡广研. 间充质干细胞对顺铂诱导的小鼠急性肾损伤中细胞铁死亡的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 187-193.
[14] 易成, 韦伟, 赵宇亮. 急性肾脏病的概念沿革[J]. 中华临床医师杂志(电子版), 2023, 17(08): 906-910.
[15] 连立超, 范子玥, 张昕, 白丽. 尿KIM-1、NGAL、RBP联合检测在慢性乙肝患者早期肾损伤中的预测价值[J]. 中华临床医师杂志(电子版), 2023, 17(04): 414-418.
阅读次数
全文


摘要