[1] |
Xu XM, Cai GY, Bu R, et al. Beneficial effects of caloric restriction on chronic kidney disease in rodent models: a meta-analysis and systematic review[J]. PLoS One, 2015, 10(12): e0144442.
|
[2] |
Khorakova M, Deil Z, Khausman D, et al. Effect of carbohydrate-enriched diet and subsequent food restriction on life prolongation in Fischer 344 male rats] [J]. Fiziol Zh, 1990, 36(5): 16-21.
|
[3] |
Shimokawa I, Higami Y, Yu BP, et al. Influence of dietary components on occurrence of and mortality due to neoplasms in male F344 rats [J]. Aging (Milan, Italy), 1996, 8(4): 254-262.
|
[4] |
Sanchez-Roman I, Barja G. Regulation of longevity and oxidative stress by nutritional interventions: role of methionine restriction [J]. Exp Gerontol, 2013, 48(10): 1030-1042.
|
[5] |
Grandison RC, Piper MD, Partridge L. Amino-acid imbalance explains extension of lifespan by dietary restriction in Drosophila [J]. Nature, 2009, 462(7276): 1061-1064.
|
[6] |
Mccay CM, Crowell MF, Maynard LA. The effect of retarded growth upon the length of life span and upon the ultimate body size [J]. Nutrition, 1989, 5(3): 63-79.
|
[7] |
Yu BP, Masoro EJ, Mcmahan CA. Nutritional influences on aging of Fischer 344 rats: I. Physical, metabolic, and longevity characteristics [J]. J Gerontol, 1985, 40(6): 657-670.
|
[8] |
Kirk KL. Dietary restriction and aging [J]. J Am Geriatr Soc, 1993, 41(9): 994-999.
|
[9] |
Colman RJ, Anderson RM, Johnson SC, et al. Caloric restriction delays disease onset and mortality in rhesus monkeys [J]. Science, 2009, 325(5937): 201-204.
|
[10] |
Wiggins J, Bitzer M. Slowing the aging process [J]. Clin Geriatr Med, 2013, 29(3): 721-730.
|
[11] |
Giordani I, Malandrucco I, Donno S, et al. Acute caloric restriction improves glomerular filtration rate in patients with morbid obesity and type 2 diabetes [J]. Diabetes Metab, 2014, 40(2): 158-160.
|
[12] |
Morales E, Valero MA, Leon M, et al. Beneficial effects of weight loss in overweight patients with chronic proteinuric nephropathies [J]. Am J Kidney Dis, 2003, 41(2): 319-327.
|
[13] |
Kume S, Yamahara K, Yasuda M, et al. Autophagy: emerging therapeutic target for diabetic nephropathy [J]. Semin Nephrol, 2014, 34(1): 9-16.
|
[14] |
Kume S, Uzu T, Horiike K, et al. Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney [J]. J Clin Invest, 2010, 120(4): 1043-1055.
|
[15] |
Cui J, Shi S, Sun X, et al. Mitochondrial autophagy involving renal injury and aging is modulated by caloric intake in aged rat kidneys [J]. PLoS One, 2013, 8(7): e69720.
|
[16] |
Kim HJ, Jung KJ, Ji SY, et al. The inflammatory process in aging [J]. Antioxid Redox Signal, 2006, 8(3-4): 572-581.
|
[17] |
Salminen A, Huuskonen J, Ojala J, et al. Activation of innate immunity system during aging: NF-kB signaling is the molecular culprit of inflamm-aging [J]. Ageing Res Rev, 2008, 7(2): 83-105.
|
[18] |
Csiszar A, Gautam T, Sosnowska D, et al. Caloric restriction confers persistent anti-oxidative, pro-angiogenic, and anti-inflammatory effects and promotes anti-aging miRNA expression profile in cerebromicrovascular endothelial cells of aged rats [J]. Am J Physiol Heart Circ Physiol, 2014, 307(3): H292-H306.
|
[19] |
Mohammadi M, Ghaznavi R, Keyhanmanesh R, et al. Caloric restriction prevents lead-induced oxidative stress and inflammation in rat liver [J]. ScientificWorldJournal, 2014, 2014: 821524.
|
[20] |
Mitchell JR, Verweij M, Brand K, et al. Short-term dietary restriction and fasting precondition against ischemia reperfusion injury in mice [J]. Aging cell, 2010, 9(1): 40-53.
|
[21] |
Xu XM, Ning YC, Wang WJ, et al. Anti-inflamm-aging effects of long-term caloric restriction via overexpression of SIGIRR to inhibit NF-kappaB signaling pathway [J]. Cell Physiol Biochem, 2015, 37(4): 1257-1270.
|
[22] |
Harman D. The aging process [J]. Proc Natl Acad Sci USA, 1981, 78(11): 7124-7128.
|
[23] |
Liu J, Wang X, Shigenaga MK, et al. Immobilization stress causes oxidative damage to lipid, protein, and DNA in the brain of rats [J]. FASEB J, 1996, 10(13): 1532-1538.
|
[24] |
Shimazu T, Hirschey MD, Newman J, et al. Suppression of oxidative stress by beta-hydroxybutyrate, an endogenous histone deacetylase inhibitor [J]. Science, 2013, 339(6116): 211-214.
|
[25] |
Hine C, Harputlugil E, Zhang Y, et al. Endogenous hydrogen sulfide production is essential for dietary restriction benefits [J]. Cell, 2015, 160(1-2): 132-144.
|
[26] |
Wang WJ, Cai GY, Ning YC, et al. Hydrogen sulfide mediates the protection of dietary restriction against renal senescence in aged F344 rats [J]. Sci Rep, 2016, 6: 30292.
|
[27] |
Li J, Qu X, Ricardo SD, et al. Resveratrol inhibits renal fibrosis in the obstructed kidney : potential role in deacetylation of Smad3 [J]. Am J Pathol, 2010, 177(3): 1065-1071.
|
[28] |
Liang F, Kume S, Koya D. SIRT1 and insulin resistance [J]. Nat Rev Endocrinol, 2009, 5(7): 367-373.
|
[29] |
Kitada M, Takeda A, Nagai T, et al. Dietary restriction ameliorates diabetic nephropathy through anti-inflammatory effects and regulation of the autophagy via restoration of Sirt1 in diabetic Wistar fatty (fa/fa) rats: a model of type 2 diabetes [J]. Exp Diabetes Res, 2011, 2011: 908185.
|
[30] |
Sakao Y, Kato A, Tsuji T, et al. Cisplatin induces Sirt1 in association with histone deacetylation and increased Werner syndrome protein in the kidney [J]. Clin Exp Nephrol, 2011, 15(3): 363-372.
|
[31] |
Ning YC, Cai GY, Zhuo L, et al. Beneficial effects of short-term calorie restriction against cisplatin-induced acute renal injury in aged rats [J]. Nephron Exp Nephrol, 2013, 124(3-4): 19-27.
|
[32] |
Yoshizaki T, Schenk S, Imamura T, et al. SIRT1 inhibits inflammatory pathways in macrophages and modulates insulin sensitivity [J]. Am J Physiol Endocrinol Metab, 2010, 298(3): E419-E428.
|
[33] |
Kume S, Kitada M, Kanasaki K, et al. Anti-aging molecule, Sirt1: a novel therapeutic target for diabetic nephropathy [J]. Arch Pharm Res, 2013, 36(2): 230-236.
|
[34] |
Kumagai H, Katoh S, Hirosawa K, et al. Renal tubulointerstitial injury in weanling rats with hyperhomocysteinemia [J]. Kidney Int, 2002, 62(4): 1219-1228.
|
[35] |
Gomez J, Caro P, Sanchez I, et al. Effect of methionine dietary supplementation on mitochondrial oxygen radical generation and oxidative DNA damage in rat liver and heart [J]. J Bioenerg Biomembr, 2009, 41(3): 309-321.
|
[36] |
Caro P, Gomez J, Sanchez I, et al. Forty percent methionine restriction decreases mitochondrial oxygen radical production and leak at complex I during forward electron flow and lowers oxidative damage to proteins and mitochondrial DNA in rat kidney and brain mitochondria [J]. Rejuvenation Res, 2009, 12(6): 421-434.
|
[37] |
Naudí A, Jové M, Ayala V, et al. Regulation of membrane unsaturation as antioxidant adaptive mechanism in long-lived animal species [J]. Free Radic Antioxid, 2011, 1(3) : 3-12.
|
[38] |
Ingram DK, Zhu M, Mamczarz J, et al. Calorie restriction mimetics: an emerging research field [J]. Aging cell, 2006, 5(2): 97-108.
|
[39] |
Dowling RJ, Zakikhani M, Fantus IG, et al. Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells [J]. Cancer Res, 2007, 67(22): 10804-10812.
|
[40] |
Anisimov VN, Berstein LM, Egormin PA, et al. Metformin slows down aging and extends life span of female SHR mice [J]. Cell Cycle (Georgetown, Tex), 2008, 7(17): 2769-2773.
|
[41] |
Cufi S, Vazquez-Martin A, Oliveras-Ferraros C, et al. Metformin against TGFbeta-induced epithelial-to-mesenchymal transition (EMT): from cancer stem cells to aging-associated fibrosis [J]. Cell Cycle (Georgetown, Tex), 2010, 9(22): 4461-4468.
|
[42] |
Takiyama Y, Harumi T, Watanabe J, et al. Tubular injury in a rat model of type 2 diabetes is prevented by metformin: a possible role of HIF-1alpha expression and oxygen metabolism [J]. Diabetes, 2011, 60(3): 981-992.
|
[43] |
Kitada M, Kume S, Takeda-Watanabe A, et al. Sirtuins and renal diseases: relationship with aging and diabetic nephropathy [J]. Clin Sci (London, England : 1979), 2013, 124(3): 153-164.
|
[44] |
Kitada M, Koya D. Renal protective effects of resveratrol [J]. Oxid Med Cell Longev, 2013, 2013: 568093.
|
[45] |
Godel M, Hartleben B, Herbach N, et al. Role of mTOR in podocyte function and diabetic nephropathy in humans and mice [J]. J Clin Invest, 2011, 121(6): 2197-2209.
|
[46] |
Inoki K, Mori H, Wang J, et al. mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice [J]. J Clin Invest, 2011, 121(6): 2181-2196.
|
[47] |
Liu M, Wilk SA, Wang A, et al. Resveratrol inhibits mTOR signaling by promoting the interaction between mTOR and DEPTOR [J]. J Biol Chem, 2010, 285(47): 36387-36394.
|