切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2017, Vol. 06 ›› Issue (02) : 88 -91. doi: 10.3877/cma.j.issn.2095-3216.2017.02.009

所属专题: 文献

综述

早产儿和出生低体重儿肾损害的易感性及发生机制
曹静1, 谢院生1,()   
  1. 1. 100853 北京,解放军总医院肾脏病科、解放军肾脏病研究所、肾脏疾病国家重点实验室、国家慢性肾病临床医学研究中心
  • 收稿日期:2017-01-09 出版日期:2017-04-28
  • 通信作者: 谢院生
  • 基金资助:
    国家重点研发计划(2016YFC0901502); 国家重大科学研究计划项目(2011CB944004); 北京市自然科学基金项目(7152138); 国家自然科学基金项目(81473531)

Susceptibility to kidney injury in premature / low birth weight infants and its mechanism

Jing Cao1, Yuansheng Xie1,()   

  1. 1. Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing 100853, China
  • Received:2017-01-09 Published:2017-04-28
  • Corresponding author: Yuansheng Xie
  • About author:
    Corresponding author: Xie Yuansheng, Email:
引用本文:

曹静, 谢院生. 早产儿和出生低体重儿肾损害的易感性及发生机制[J/OL]. 中华肾病研究电子杂志, 2017, 06(02): 88-91.

Jing Cao, Yuansheng Xie. Susceptibility to kidney injury in premature / low birth weight infants and its mechanism[J/OL]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2017, 06(02): 88-91.

影响胎儿肾脏发育的因素很多,如母亲的营养状况、健康状态以及用药等其他因素。早产儿和出生低体重儿(LBWI)肾小球、肾小管发育不成熟,肾单位减少,未成年时期容易发生肾脏疾病,比较常见的类型包括急性肾损伤、局灶节段性肾小球硬化等。此外,早产儿和LBWI成年时期易患高血压和糖尿病,可累及肾脏。揭示早产儿和LBWI肾损害的发生发展机制,有利于早期干预及延缓肾脏病的进展。

Many factors could affect the development of fetal kidneys, such as maternal nutritional status, health, medication, and so on. Premature and low birth weight infants (LBWI) have immature glomeruli and tubules as well as reduced nephrons, and are prone to renal diseases during their minority, including acute renal injury, focal segmental glomerular sclerosis, etc. In addition, premature infants and LBWI will be susceptible to hypertension and diabetes during their adult period, which may lead to kidney injury. Revealing the pathogenesis and development mechanism of kidney injury in premature infants and LBWI will be helpful for early intervention and delaying the progression of kidney diseases.

[1]
邵肖梅,叶鸿帽,丘小汕. 实用新生儿学[M]. 第4版. 北京:人民卫生出版社,2011:59-70.
[2]
Baum M. Role of the kidney in the prenatal and early postnatal programming of hypertension [J]. Am J Physiol Renal Physiol, 2010, 298(2): F235-F247.
[3]
Wlodek ME, Mibus A, Tan A, et al. Normal lactational environment restores nephron endowment and prevents hypertension after placental restriction in the rat [J]. J Am Soc Nephrol, 2007, 18(6): 1688-1696.
[4]
Luyckx VA, Brenner BM. The clinical importance of nephron mass [J]. J Am Soc Nephrol, 2010, 21(6): 898-910.
[5]
Bhutta ZA, Das JK, Rizvi A, et al. Evidence-based interventions for improvement of maternal and child nutrition: what can be done and at what cost? [J]. Lancet, 2013, 382(9890): 452-477.
[6]
Drake KA, Sauerbry MJ, Blohowiak SE, et al. Iron deficiency and renal development in the newborn rat [J]. Pediatr Res, 2009, 66(6): 619-624.
[7]
Tomat AL, Inserra F, Veiras L, et al. Moderate zinc restriction during fetal and postnatal growth of rats: effects on adult arterial blood pressure and kidney [J]. Am J Physiol Regul Integr Comp Physiol, 2008, 295(2): R543-R549.
[8]
齐焰,谢院生.视黄酸的结构、代谢、受体及其与器官发育的关系[J/CD]. 中华肾病研究电子杂志,2015,4(5): 257-260.
[9]
Hsu CW, Yamamoto KT, Henry RK, et al. Prenatal risk factors for childhood CKD [J]. J Am Soc Nephrol, 2014, 25(9): 2105-2111.
[10]
Bilano VL, Ota E, Ganchimeg T, et al. Risk factors of pre-eclampsia/eclampsia and its adverse outcomes in low- and middle-income countries: a WHO secondary analysis [J]. PLoS One, 2014, 9(3): e91198.
[11]
Tran S, Chen YW, Chenier I, et al. Maternal diabetes modulates renal morphogenesis in offspring [J]. J Am Soc Nephrol, 2008, 19(5): 943-952.
[12]
Aceti A, Santhakumaran S, Logan KM, et al. The diabetic pregnancy and offspring blood pressure in childhood: a systematic review and meta-analysis [J]. Diabetologia, 2012, 55(11): 3114-3127.
[13]
Vidal AC, Murphy SK, Murtha AP, et al. Associations between antibiotic exposure during pregnancy, birth weight and aberrant methylation at imprinted genes among offspring [J]. Int J Obes (Lond), 2013, 37(7): 907-913.
[14]
Nathanson S, Moreau E, Merlet-Benichou C, et al. In utero and in vitro exposure to beta-lactams impair kidney development in the rat [J]. J Am Soc Nephrol, 2000, 11(5): 874-884.
[15]
Tendron-Franzin A, Gouyon JB, Guignard JP, et al. Long-term effects of in utero exposure to cyclosporin A on renal function in the rabbit [J]. J Am Soc Nephrol, 2004, 15(10): 2687-2693.
[16]
Nykjaer C, Alwan NA, Greenwood DC, et al. Maternal alcohol intake prior to and during pregnancy and risk of adverse birth outcomes: evidence from a British cohort [J]. J Epidemiol Community Health, 2014, 68(6): 542-549.
[17]
Jagadapillai R, Chen J, Canales L, et al. Developmental cigarette smoke exposure: kidney proteome profile alterations in low birth weight pups [J]. Toxicology, 2012, 299(2-3): 80-89.
[18]
White SL, Perkovic V, Cass A, et al. Is low birth weight an antecedent of CKD in later life? A systematic review of observational studies [J]. Am J Kidney Dis, 2009, 54(2): 248-261.
[19]
Das SK, Mannan M, Faruque AS, et al. Effect of birth weight on adulthood renal function: A bias-adjusted meta-analytic approach [J]. Nephrology (Carlton), 2016, 21(7): 547-565.
[20]
Ichikawa T, Fukuda M, Wakamatsu-Yamanaka T, et al. Low birth weight and end-stage renal disease: demographic analysis by region in Japan [J]. Clin Exp Nephrol, 2012, 16(4): 596-603.
[21]
Flynn JT, Ng DK, Chan GJ, et al. The effect of abnormal birth history on ambulatory blood pressure and disease progression in children with chronic kidney disease [J]. J Pediatr, 2014, 165(1): 154-162.
[22]
de Jong F, Monuteaux MC, van Elburg RM, et al. Systematic review and meta-analysis of preterm birth and later systolic blood pressure [J]. Hypertension, 2012, 59(2): 226-234.
[23]
Mu M, Wang SF, Sheng J, et al. Birth weight and subsequent blood pressure: a meta-analysis [J]. Arch Cardiovasc Dis, 2012, 105(2): 99-113.
[24]
Chong E, Yosypiv IV. Developmental programming of hypertension and kidney disease [J]. Int J Nephrol, 2012, 2012: 760580.
[25]
Desai M, Beall M, Ross MG. Developmental origins of obesity: programmed adipogenesis [J]. Curr Diab Rep, 2013, 13(1): 27-33.
[26]
Barker DJ, Osmond C, Forsen TJ, et al. Maternal and social origins of hypertension [J]. Hypertension, 2007, 50(3): 565-571.
[27]
Barker DJ. The developmental origins of insulin resistance [J]. Horm Res, 2005, 64(Suppl 3): 2-7.
[28]
Barker DJ. Fetal origins of coronary heart disease [J]. BMJ, 1995, 311(6998): 171-174.
[29]
Hoy WE, Hughson MD, Bertram JF, et al. Nephron number, hypertension, renal disease, and renal failure [J]. J Am Soc Nephrol, 2005, 16(9): 2557-2564.
[30]
Luyckx VA, Brenner BM. Low birth weight, nephron number, and kidney disease [J]. Kidney Int, 2005, Suppl(97): S68-S77.
[31]
Helal I, Fick-Brosnahan GM, Reed-Gitomer B, et al. Glomerular hyperfiltration: definitions, mechanisms and clinical implications [J]. Nat Rev Nephrol, 2012, 8(5): 293-300.
[32]
Carmody JB, Charlton JR. Short-term gestation, long-term risk: prematurity and chronic kidney disease [J]. Pediatrics, 2013, 131(6): 1168-1179.
[33]
Coca SG, Singanamala S, Parikh CR. Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis [J]. Kidney Int, 2012, 81(5): 442-448.
[34]
Fogo AB. Causes and pathogenesis of focal segmental glomerulosclerosis [J]. Nat Rev Nephrol, 2015, 11(2): 76-87.
[35]
Canaud G, Delville M, Legendre C. Recurrence of focal and segmental glomerulosclerosis after transplantation [J]. Transplantation, 2016, 100(2): 284-287.
[36]
D′Agati VD. Podocyte injury in focal segmental glomerulosclerosis: Lessons from animal models (a play in five acts) [J]. Kidney Int, 2008, 73(4): 399-406.
[37]
Ikezumi Y, Suzuki T, Karasawa T, et al. Low birthweight and premature birth are risk factors for podocytopenia and focal segmental glomerulosclerosis [J]. Am J Nephrol, 2013, 38(2): 149-157.
[38]
Morrison JL, Duffield JA, Muhlhausler BS, et al. Fetal growth restriction, catch-up growth and the early origins of insulin resistance and visceral obesity [J]. Pediatr Nephrol, 2010, 25(4): 669-677.
[39]
Salgado CM, Jardim PC, Teles FB, et al. Low birth weight as a marker of changes in ambulatory blood pressure monitoring [J]. Arq Bras Cardiol, 2009, 92(2): 107-121.
[40]
Strufaldi MW, Silva EM, Franco MC, et al. Blood pressure levels in childhood: probing the relative importance of birth weight and current size [J]. Eur J Pediatr, 2009, 168(5): 619-624.
[41]
Spence D, Stewart MC, Alderdice FA, et al. Intra-uterine growth restriction and increased risk of hypertension in adult life: a follow-up study of 50-year-olds [J]. Public Health, 2012, 126(7): 561-565.
[42]
Vehaskari VM, Aviles DH, Manning J. Prenatal programming of adult hypertension in the rat [J]. Kidney Int, 2001, 59(1): 238-245.
[43]
Stewart T, Ascani J, Craver RD, et al. Role of postnatal dietary sodium in prenatally programmed hypertension [J]. Pediatr Nephrol, 2009, 24(9): 1727-1733.
[44]
Simonetti GD, Raio L, Surbek D, et al. Salt sensitivity of children with low birth weight [J]. Hypertension, 2008, 52(4): 625-630.
[45]
de Boer MP, Ijzerman RG, de Jongh RT, et al. Birth weight relates to salt sensitivity of blood pressure in healthy adults [J]. Hypertension, 2008, 51(4): 928-932.
[46]
Peter S, Biro L, Nemeth A, et al. Association between birth weight and childhoodobesity in a Budapest metropolitan survey [J]. Orv Hetil, 2008, 149(9): 407-410.
[47]
Gupta M, Gupta R, Pareek A, et al. Low birth weight and insulin resistance in mid and late childhood [J]. Indian Pediatr, 2007, 44(3): 177-184.
[1] 曹雯佳, 刘学兵, 罗安果, 钟释敏, 邓岚, 王玉琳, 李赵欢. 超声矢量血流成像对2型糖尿病患者颈动脉壁剪切应力的研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(07): 709-717.
[2] 费一鸣, 刘卓, 张丽娟. 组学分析在早产分子机制中的研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 504-510.
[3] 黄蓉, 梁自毓, 祁文瑾. NLRP3炎症小体在胎膜早破孕妇血清中的表达及其意义[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 540-548.
[4] 王杰, 袁泉, 王玥琦, 乔佳君, 谭春丽, 夏仲元, 刘守尧. 溃疡油在糖尿病足溃疡治疗中的应用效果及安全性观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 480-484.
[5] 徐志刚, 曹涛, 何亭, 李博奥, 魏婧韬, 张栋梁, 官浩, 杨薛康. 采用抗生素骨水泥治疗糖尿病患者心脏术后胸骨骨髓炎的临床效果观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 498-502.
[6] 姜珊, 李湘燕, 田硕涵, 温冰, 何睿, 齐心. 采用优化抗感染治疗模式改善糖尿病足感染预后的临床观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 398-403.
[7] 别瑶, 曹志斌, 辛静, 王健楠, 惠宗光. 应用基质血管成分细胞治疗糖尿病足溃疡的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 453-456.
[8] 孟令凯, 李大勇, 王宁, 王桂明, 张炳南, 李若彤, 潘立峰. 袖状胃切除术对肥胖伴2型糖尿病大鼠的作用及机制研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 638-642.
[9] 严虹霞, 王晓娟, 张毅勋. 2 型糖尿病对结直肠癌患者肿瘤标记物、临床病理及预后的影响[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 483-487.
[10] 周学锋, 董哲毅, 冯哲, 蔡广研, 陈香美. 糖尿病肾脏疾病中西医结合诊疗指南计划书[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 301-305.
[11] 杜军霞, 赵小淋, 王浩然, 高志远, 王曼茜, 万楠熙, 张冬, 丁潇楠, 任琴琴, 段颖洁, 汤力, 朱晗玉. 2 型糖尿病的血液透析患者肠道微生物组学高通量测序分析[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 313-320.
[12] 崔文鹏. 腹膜透析在老年终末期肾脏疾病患者中的应用[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 300-300.
[13] 邱岭, 朱旭丽, 浦坚, 邢苗苗, 吴佳玲. 糖尿病肾病患者肠道菌群生态特点与胃肠道功能障碍的关联性研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 453-458.
[14] 王璇, 娜扎开提·尼加提, 雒洋洋, 蒋升. 皮肤晚期糖基化终末产物浓度与2型糖尿病微血管并发症的相关性[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 447-454.
[15] 王星, 陈园, 热孜万古丽·乌斯曼, 郭艳英. T2DM、Obesity、NASH、PCOS共同致病因素相关的分子机制[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 481-490.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?