[1] |
邵肖梅,叶鸿帽,丘小汕. 实用新生儿学[M]. 第4版. 北京:人民卫生出版社,2011:59-70.
|
[2] |
Baum M. Role of the kidney in the prenatal and early postnatal programming of hypertension [J]. Am J Physiol Renal Physiol, 2010, 298(2): F235-F247.
|
[3] |
Wlodek ME, Mibus A, Tan A, et al. Normal lactational environment restores nephron endowment and prevents hypertension after placental restriction in the rat [J]. J Am Soc Nephrol, 2007, 18(6): 1688-1696.
|
[4] |
Luyckx VA, Brenner BM. The clinical importance of nephron mass [J]. J Am Soc Nephrol, 2010, 21(6): 898-910.
|
[5] |
Bhutta ZA, Das JK, Rizvi A, et al. Evidence-based interventions for improvement of maternal and child nutrition: what can be done and at what cost? [J]. Lancet, 2013, 382(9890): 452-477.
|
[6] |
Drake KA, Sauerbry MJ, Blohowiak SE, et al. Iron deficiency and renal development in the newborn rat [J]. Pediatr Res, 2009, 66(6): 619-624.
|
[7] |
Tomat AL, Inserra F, Veiras L, et al. Moderate zinc restriction during fetal and postnatal growth of rats: effects on adult arterial blood pressure and kidney [J]. Am J Physiol Regul Integr Comp Physiol, 2008, 295(2): R543-R549.
|
[8] |
齐焰,谢院生.视黄酸的结构、代谢、受体及其与器官发育的关系[J/CD]. 中华肾病研究电子杂志,2015,4(5): 257-260.
|
[9] |
Hsu CW, Yamamoto KT, Henry RK, et al. Prenatal risk factors for childhood CKD [J]. J Am Soc Nephrol, 2014, 25(9): 2105-2111.
|
[10] |
Bilano VL, Ota E, Ganchimeg T, et al. Risk factors of pre-eclampsia/eclampsia and its adverse outcomes in low- and middle-income countries: a WHO secondary analysis [J]. PLoS One, 2014, 9(3): e91198.
|
[11] |
Tran S, Chen YW, Chenier I, et al. Maternal diabetes modulates renal morphogenesis in offspring [J]. J Am Soc Nephrol, 2008, 19(5): 943-952.
|
[12] |
Aceti A, Santhakumaran S, Logan KM, et al. The diabetic pregnancy and offspring blood pressure in childhood: a systematic review and meta-analysis [J]. Diabetologia, 2012, 55(11): 3114-3127.
|
[13] |
Vidal AC, Murphy SK, Murtha AP, et al. Associations between antibiotic exposure during pregnancy, birth weight and aberrant methylation at imprinted genes among offspring [J]. Int J Obes (Lond), 2013, 37(7): 907-913.
|
[14] |
Nathanson S, Moreau E, Merlet-Benichou C, et al. In utero and in vitro exposure to beta-lactams impair kidney development in the rat [J]. J Am Soc Nephrol, 2000, 11(5): 874-884.
|
[15] |
Tendron-Franzin A, Gouyon JB, Guignard JP, et al. Long-term effects of in utero exposure to cyclosporin A on renal function in the rabbit [J]. J Am Soc Nephrol, 2004, 15(10): 2687-2693.
|
[16] |
Nykjaer C, Alwan NA, Greenwood DC, et al. Maternal alcohol intake prior to and during pregnancy and risk of adverse birth outcomes: evidence from a British cohort [J]. J Epidemiol Community Health, 2014, 68(6): 542-549.
|
[17] |
Jagadapillai R, Chen J, Canales L, et al. Developmental cigarette smoke exposure: kidney proteome profile alterations in low birth weight pups [J]. Toxicology, 2012, 299(2-3): 80-89.
|
[18] |
White SL, Perkovic V, Cass A, et al. Is low birth weight an antecedent of CKD in later life? A systematic review of observational studies [J]. Am J Kidney Dis, 2009, 54(2): 248-261.
|
[19] |
Das SK, Mannan M, Faruque AS, et al. Effect of birth weight on adulthood renal function: A bias-adjusted meta-analytic approach [J]. Nephrology (Carlton), 2016, 21(7): 547-565.
|
[20] |
Ichikawa T, Fukuda M, Wakamatsu-Yamanaka T, et al. Low birth weight and end-stage renal disease: demographic analysis by region in Japan [J]. Clin Exp Nephrol, 2012, 16(4): 596-603.
|
[21] |
Flynn JT, Ng DK, Chan GJ, et al. The effect of abnormal birth history on ambulatory blood pressure and disease progression in children with chronic kidney disease [J]. J Pediatr, 2014, 165(1): 154-162.
|
[22] |
de Jong F, Monuteaux MC, van Elburg RM, et al. Systematic review and meta-analysis of preterm birth and later systolic blood pressure [J]. Hypertension, 2012, 59(2): 226-234.
|
[23] |
Mu M, Wang SF, Sheng J, et al. Birth weight and subsequent blood pressure: a meta-analysis [J]. Arch Cardiovasc Dis, 2012, 105(2): 99-113.
|
[24] |
Chong E, Yosypiv IV. Developmental programming of hypertension and kidney disease [J]. Int J Nephrol, 2012, 2012: 760580.
|
[25] |
Desai M, Beall M, Ross MG. Developmental origins of obesity: programmed adipogenesis [J]. Curr Diab Rep, 2013, 13(1): 27-33.
|
[26] |
Barker DJ, Osmond C, Forsen TJ, et al. Maternal and social origins of hypertension [J]. Hypertension, 2007, 50(3): 565-571.
|
[27] |
Barker DJ. The developmental origins of insulin resistance [J]. Horm Res, 2005, 64(Suppl 3): 2-7.
|
[28] |
Barker DJ. Fetal origins of coronary heart disease [J]. BMJ, 1995, 311(6998): 171-174.
|
[29] |
Hoy WE, Hughson MD, Bertram JF, et al. Nephron number, hypertension, renal disease, and renal failure [J]. J Am Soc Nephrol, 2005, 16(9): 2557-2564.
|
[30] |
Luyckx VA, Brenner BM. Low birth weight, nephron number, and kidney disease [J]. Kidney Int, 2005, Suppl(97): S68-S77.
|
[31] |
Helal I, Fick-Brosnahan GM, Reed-Gitomer B, et al. Glomerular hyperfiltration: definitions, mechanisms and clinical implications [J]. Nat Rev Nephrol, 2012, 8(5): 293-300.
|
[32] |
Carmody JB, Charlton JR. Short-term gestation, long-term risk: prematurity and chronic kidney disease [J]. Pediatrics, 2013, 131(6): 1168-1179.
|
[33] |
Coca SG, Singanamala S, Parikh CR. Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis [J]. Kidney Int, 2012, 81(5): 442-448.
|
[34] |
Fogo AB. Causes and pathogenesis of focal segmental glomerulosclerosis [J]. Nat Rev Nephrol, 2015, 11(2): 76-87.
|
[35] |
Canaud G, Delville M, Legendre C. Recurrence of focal and segmental glomerulosclerosis after transplantation [J]. Transplantation, 2016, 100(2): 284-287.
|
[36] |
D′Agati VD. Podocyte injury in focal segmental glomerulosclerosis: Lessons from animal models (a play in five acts) [J]. Kidney Int, 2008, 73(4): 399-406.
|
[37] |
Ikezumi Y, Suzuki T, Karasawa T, et al. Low birthweight and premature birth are risk factors for podocytopenia and focal segmental glomerulosclerosis [J]. Am J Nephrol, 2013, 38(2): 149-157.
|
[38] |
Morrison JL, Duffield JA, Muhlhausler BS, et al. Fetal growth restriction, catch-up growth and the early origins of insulin resistance and visceral obesity [J]. Pediatr Nephrol, 2010, 25(4): 669-677.
|
[39] |
Salgado CM, Jardim PC, Teles FB, et al. Low birth weight as a marker of changes in ambulatory blood pressure monitoring [J]. Arq Bras Cardiol, 2009, 92(2): 107-121.
|
[40] |
Strufaldi MW, Silva EM, Franco MC, et al. Blood pressure levels in childhood: probing the relative importance of birth weight and current size [J]. Eur J Pediatr, 2009, 168(5): 619-624.
|
[41] |
Spence D, Stewart MC, Alderdice FA, et al. Intra-uterine growth restriction and increased risk of hypertension in adult life: a follow-up study of 50-year-olds [J]. Public Health, 2012, 126(7): 561-565.
|
[42] |
Vehaskari VM, Aviles DH, Manning J. Prenatal programming of adult hypertension in the rat [J]. Kidney Int, 2001, 59(1): 238-245.
|
[43] |
Stewart T, Ascani J, Craver RD, et al. Role of postnatal dietary sodium in prenatally programmed hypertension [J]. Pediatr Nephrol, 2009, 24(9): 1727-1733.
|
[44] |
Simonetti GD, Raio L, Surbek D, et al. Salt sensitivity of children with low birth weight [J]. Hypertension, 2008, 52(4): 625-630.
|
[45] |
de Boer MP, Ijzerman RG, de Jongh RT, et al. Birth weight relates to salt sensitivity of blood pressure in healthy adults [J]. Hypertension, 2008, 51(4): 928-932.
|
[46] |
Peter S, Biro L, Nemeth A, et al. Association between birth weight and childhoodobesity in a Budapest metropolitan survey [J]. Orv Hetil, 2008, 149(9): 407-410.
|
[47] |
Gupta M, Gupta R, Pareek A, et al. Low birth weight and insulin resistance in mid and late childhood [J]. Indian Pediatr, 2007, 44(3): 177-184.
|