切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2017, Vol. 06 ›› Issue (02) : 88 -91. doi: 10.3877/cma.j.issn.2095-3216.2017.02.009

所属专题: 文献

综述

早产儿和出生低体重儿肾损害的易感性及发生机制
曹静1, 谢院生1,()   
  1. 1. 100853 北京,解放军总医院肾脏病科、解放军肾脏病研究所、肾脏疾病国家重点实验室、国家慢性肾病临床医学研究中心
  • 收稿日期:2017-01-09 出版日期:2017-04-28
  • 通信作者: 谢院生
  • 基金资助:
    国家重点研发计划(2016YFC0901502); 国家重大科学研究计划项目(2011CB944004); 北京市自然科学基金项目(7152138); 国家自然科学基金项目(81473531)

Susceptibility to kidney injury in premature / low birth weight infants and its mechanism

Jing Cao1, Yuansheng Xie1,()   

  1. 1. Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing 100853, China
  • Received:2017-01-09 Published:2017-04-28
  • Corresponding author: Yuansheng Xie
  • About author:
    Corresponding author: Xie Yuansheng, Email:
引用本文:

曹静, 谢院生. 早产儿和出生低体重儿肾损害的易感性及发生机制[J]. 中华肾病研究电子杂志, 2017, 06(02): 88-91.

Jing Cao, Yuansheng Xie. Susceptibility to kidney injury in premature / low birth weight infants and its mechanism[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2017, 06(02): 88-91.

影响胎儿肾脏发育的因素很多,如母亲的营养状况、健康状态以及用药等其他因素。早产儿和出生低体重儿(LBWI)肾小球、肾小管发育不成熟,肾单位减少,未成年时期容易发生肾脏疾病,比较常见的类型包括急性肾损伤、局灶节段性肾小球硬化等。此外,早产儿和LBWI成年时期易患高血压和糖尿病,可累及肾脏。揭示早产儿和LBWI肾损害的发生发展机制,有利于早期干预及延缓肾脏病的进展。

Many factors could affect the development of fetal kidneys, such as maternal nutritional status, health, medication, and so on. Premature and low birth weight infants (LBWI) have immature glomeruli and tubules as well as reduced nephrons, and are prone to renal diseases during their minority, including acute renal injury, focal segmental glomerular sclerosis, etc. In addition, premature infants and LBWI will be susceptible to hypertension and diabetes during their adult period, which may lead to kidney injury. Revealing the pathogenesis and development mechanism of kidney injury in premature infants and LBWI will be helpful for early intervention and delaying the progression of kidney diseases.

[1]
邵肖梅,叶鸿帽,丘小汕. 实用新生儿学[M]. 第4版. 北京:人民卫生出版社,2011:59-70.
[2]
Baum M. Role of the kidney in the prenatal and early postnatal programming of hypertension [J]. Am J Physiol Renal Physiol, 2010, 298(2): F235-F247.
[3]
Wlodek ME, Mibus A, Tan A, et al. Normal lactational environment restores nephron endowment and prevents hypertension after placental restriction in the rat [J]. J Am Soc Nephrol, 2007, 18(6): 1688-1696.
[4]
Luyckx VA, Brenner BM. The clinical importance of nephron mass [J]. J Am Soc Nephrol, 2010, 21(6): 898-910.
[5]
Bhutta ZA, Das JK, Rizvi A, et al. Evidence-based interventions for improvement of maternal and child nutrition: what can be done and at what cost? [J]. Lancet, 2013, 382(9890): 452-477.
[6]
Drake KA, Sauerbry MJ, Blohowiak SE, et al. Iron deficiency and renal development in the newborn rat [J]. Pediatr Res, 2009, 66(6): 619-624.
[7]
Tomat AL, Inserra F, Veiras L, et al. Moderate zinc restriction during fetal and postnatal growth of rats: effects on adult arterial blood pressure and kidney [J]. Am J Physiol Regul Integr Comp Physiol, 2008, 295(2): R543-R549.
[8]
齐焰,谢院生.视黄酸的结构、代谢、受体及其与器官发育的关系[J/CD]. 中华肾病研究电子杂志,2015,4(5): 257-260.
[9]
Hsu CW, Yamamoto KT, Henry RK, et al. Prenatal risk factors for childhood CKD [J]. J Am Soc Nephrol, 2014, 25(9): 2105-2111.
[10]
Bilano VL, Ota E, Ganchimeg T, et al. Risk factors of pre-eclampsia/eclampsia and its adverse outcomes in low- and middle-income countries: a WHO secondary analysis [J]. PLoS One, 2014, 9(3): e91198.
[11]
Tran S, Chen YW, Chenier I, et al. Maternal diabetes modulates renal morphogenesis in offspring [J]. J Am Soc Nephrol, 2008, 19(5): 943-952.
[12]
Aceti A, Santhakumaran S, Logan KM, et al. The diabetic pregnancy and offspring blood pressure in childhood: a systematic review and meta-analysis [J]. Diabetologia, 2012, 55(11): 3114-3127.
[13]
Vidal AC, Murphy SK, Murtha AP, et al. Associations between antibiotic exposure during pregnancy, birth weight and aberrant methylation at imprinted genes among offspring [J]. Int J Obes (Lond), 2013, 37(7): 907-913.
[14]
Nathanson S, Moreau E, Merlet-Benichou C, et al. In utero and in vitro exposure to beta-lactams impair kidney development in the rat [J]. J Am Soc Nephrol, 2000, 11(5): 874-884.
[15]
Tendron-Franzin A, Gouyon JB, Guignard JP, et al. Long-term effects of in utero exposure to cyclosporin A on renal function in the rabbit [J]. J Am Soc Nephrol, 2004, 15(10): 2687-2693.
[16]
Nykjaer C, Alwan NA, Greenwood DC, et al. Maternal alcohol intake prior to and during pregnancy and risk of adverse birth outcomes: evidence from a British cohort [J]. J Epidemiol Community Health, 2014, 68(6): 542-549.
[17]
Jagadapillai R, Chen J, Canales L, et al. Developmental cigarette smoke exposure: kidney proteome profile alterations in low birth weight pups [J]. Toxicology, 2012, 299(2-3): 80-89.
[18]
White SL, Perkovic V, Cass A, et al. Is low birth weight an antecedent of CKD in later life? A systematic review of observational studies [J]. Am J Kidney Dis, 2009, 54(2): 248-261.
[19]
Das SK, Mannan M, Faruque AS, et al. Effect of birth weight on adulthood renal function: A bias-adjusted meta-analytic approach [J]. Nephrology (Carlton), 2016, 21(7): 547-565.
[20]
Ichikawa T, Fukuda M, Wakamatsu-Yamanaka T, et al. Low birth weight and end-stage renal disease: demographic analysis by region in Japan [J]. Clin Exp Nephrol, 2012, 16(4): 596-603.
[21]
Flynn JT, Ng DK, Chan GJ, et al. The effect of abnormal birth history on ambulatory blood pressure and disease progression in children with chronic kidney disease [J]. J Pediatr, 2014, 165(1): 154-162.
[22]
de Jong F, Monuteaux MC, van Elburg RM, et al. Systematic review and meta-analysis of preterm birth and later systolic blood pressure [J]. Hypertension, 2012, 59(2): 226-234.
[23]
Mu M, Wang SF, Sheng J, et al. Birth weight and subsequent blood pressure: a meta-analysis [J]. Arch Cardiovasc Dis, 2012, 105(2): 99-113.
[24]
Chong E, Yosypiv IV. Developmental programming of hypertension and kidney disease [J]. Int J Nephrol, 2012, 2012: 760580.
[25]
Desai M, Beall M, Ross MG. Developmental origins of obesity: programmed adipogenesis [J]. Curr Diab Rep, 2013, 13(1): 27-33.
[26]
Barker DJ, Osmond C, Forsen TJ, et al. Maternal and social origins of hypertension [J]. Hypertension, 2007, 50(3): 565-571.
[27]
Barker DJ. The developmental origins of insulin resistance [J]. Horm Res, 2005, 64(Suppl 3): 2-7.
[28]
Barker DJ. Fetal origins of coronary heart disease [J]. BMJ, 1995, 311(6998): 171-174.
[29]
Hoy WE, Hughson MD, Bertram JF, et al. Nephron number, hypertension, renal disease, and renal failure [J]. J Am Soc Nephrol, 2005, 16(9): 2557-2564.
[30]
Luyckx VA, Brenner BM. Low birth weight, nephron number, and kidney disease [J]. Kidney Int, 2005, Suppl(97): S68-S77.
[31]
Helal I, Fick-Brosnahan GM, Reed-Gitomer B, et al. Glomerular hyperfiltration: definitions, mechanisms and clinical implications [J]. Nat Rev Nephrol, 2012, 8(5): 293-300.
[32]
Carmody JB, Charlton JR. Short-term gestation, long-term risk: prematurity and chronic kidney disease [J]. Pediatrics, 2013, 131(6): 1168-1179.
[33]
Coca SG, Singanamala S, Parikh CR. Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis [J]. Kidney Int, 2012, 81(5): 442-448.
[34]
Fogo AB. Causes and pathogenesis of focal segmental glomerulosclerosis [J]. Nat Rev Nephrol, 2015, 11(2): 76-87.
[35]
Canaud G, Delville M, Legendre C. Recurrence of focal and segmental glomerulosclerosis after transplantation [J]. Transplantation, 2016, 100(2): 284-287.
[36]
D′Agati VD. Podocyte injury in focal segmental glomerulosclerosis: Lessons from animal models (a play in five acts) [J]. Kidney Int, 2008, 73(4): 399-406.
[37]
Ikezumi Y, Suzuki T, Karasawa T, et al. Low birthweight and premature birth are risk factors for podocytopenia and focal segmental glomerulosclerosis [J]. Am J Nephrol, 2013, 38(2): 149-157.
[38]
Morrison JL, Duffield JA, Muhlhausler BS, et al. Fetal growth restriction, catch-up growth and the early origins of insulin resistance and visceral obesity [J]. Pediatr Nephrol, 2010, 25(4): 669-677.
[39]
Salgado CM, Jardim PC, Teles FB, et al. Low birth weight as a marker of changes in ambulatory blood pressure monitoring [J]. Arq Bras Cardiol, 2009, 92(2): 107-121.
[40]
Strufaldi MW, Silva EM, Franco MC, et al. Blood pressure levels in childhood: probing the relative importance of birth weight and current size [J]. Eur J Pediatr, 2009, 168(5): 619-624.
[41]
Spence D, Stewart MC, Alderdice FA, et al. Intra-uterine growth restriction and increased risk of hypertension in adult life: a follow-up study of 50-year-olds [J]. Public Health, 2012, 126(7): 561-565.
[42]
Vehaskari VM, Aviles DH, Manning J. Prenatal programming of adult hypertension in the rat [J]. Kidney Int, 2001, 59(1): 238-245.
[43]
Stewart T, Ascani J, Craver RD, et al. Role of postnatal dietary sodium in prenatally programmed hypertension [J]. Pediatr Nephrol, 2009, 24(9): 1727-1733.
[44]
Simonetti GD, Raio L, Surbek D, et al. Salt sensitivity of children with low birth weight [J]. Hypertension, 2008, 52(4): 625-630.
[45]
de Boer MP, Ijzerman RG, de Jongh RT, et al. Birth weight relates to salt sensitivity of blood pressure in healthy adults [J]. Hypertension, 2008, 51(4): 928-932.
[46]
Peter S, Biro L, Nemeth A, et al. Association between birth weight and childhoodobesity in a Budapest metropolitan survey [J]. Orv Hetil, 2008, 149(9): 407-410.
[47]
Gupta M, Gupta R, Pareek A, et al. Low birth weight and insulin resistance in mid and late childhood [J]. Indian Pediatr, 2007, 44(3): 177-184.
[1] 何金梅, 尹立雪, 谭静, 张文军, 王锐, 任梅, 廖明娇. 超声心肌做功技术对2型糖尿病患者潜在左心室心肌收缩功能损伤的评价[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1029-1035.
[2] 王珏, 陈赛君, 贲志飞, 詹锦勇, 徐开颖. 剪切波弹性成像联合极速脉搏波技术评估颈动脉弹性对糖尿病性视网膜病变的预测价值[J]. 中华医学超声杂志(电子版), 2023, 20(06): 636-641.
[3] 王洁, 丁泊文, 尹健. 糖尿病性乳腺病52例临床分析[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 285-289.
[4] 陈絮, 詹玉茹, 王纯华. 孕妇ABO血型联合甲状腺功能检测对预测妊娠期糖尿病的临床价值[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 604-610.
[5] 周梦玲, 薛志伟, 周淑. 妊娠合并子宫肌瘤的孕期变化及其与不良妊娠结局的关系[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 611-615.
[6] 张健, 刘小龙, 查天建, 姚俊杰, 王傑. 富含血小板血浆联合异种脱细胞真皮基质修复糖尿病足缺血性创面的临床效果[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 503-506.
[7] 赵雅玫, 谢斌, 陈艳, 吴健. 抗生素骨水泥联合负压封闭引流对糖尿病足溃疡临床疗效的荟萃分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 427-433.
[8] 李琛, 张惟佳, 潘亚萍. 牙周炎与系统性疾病之间关系的应用思考:2022年EFP和WONCA欧洲分部联合研讨会共识报告的解读及启示[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 322-327.
[9] 叶弘, 吕婧喆, 钟良军. 白藜芦醇治疗牙周炎和糖尿病的新进展[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 376-380.
[10] 李建美, 邓静娟, 杨倩. 两种术式联合治疗肝癌合并肝硬化门静脉高压的安全性及随访评价[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 41-44.
[11] 张其坤, 商福超, 李琪, 栗光明, 王孟龙. 联合脾切除对肝癌合并门静脉高压症患者根治性切除术后的生存获益分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 613-618.
[12] 黄岩, 刘晓巍, 杨春玲, 兰烨. 急性胰腺炎合并糖尿病患者的临床特征及血糖代谢与病情严重度的相关性[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 439-442.
[13] 张政赢, 鞠阳, 刘晓宁. 二甲双胍对2型糖尿病患者大肠腺瘤术后复发的影响[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 485-488.
[14] 薛念余, 张盛敏, 吴凌恒, 沙蕾, 童揽月, 沈崔琴, 李朝军, 杜联芳. 研究血清胆红素对2型糖尿病患者心脏结构发生改变前心肌功能的影响[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1004-1009.
[15] 谢国晓, 赵凌霞, 薛雪花. 慢性病管理模式在糖尿病社区管理中的应用[J]. 中华临床医师杂志(电子版), 2023, 17(05): 587-590.
阅读次数
全文


摘要