[1] |
Ganz T. Hepcidin, a key regulator of iron metabolism and mediator of anemia of inflammation[J]. Blood, 2003,102(3): 783-788.
|
[2] |
Nemeth E, Tuttle MS, Powelson J, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization[J]. Science, 2004,306(5704): 2090-2093.
|
[3] |
Vaziri ND, Kalantar-Zadeh K, Wish JB. New Options for Iron Supplementation in Maintenance Hemodialysis Patients[J]. Am J Kidney Dis, 2016,67(3): 367-375.
|
[4] |
Chung J, Wessling-Resnick M. Molecular mechanisms and regulation of iron transport[J]. Crit Rev Clin Lab Sci, 2003,40(2): 151-182.
|
[5] |
Latunde-Dada GO, Van der Westhuizen J, Vulpe CD, et al. Molecular and functional roles of duodenal cytochrome B (Dcytb) in iron metabolism[J]. Blood Cells Mol Dis, 2002,29(3): 356-360.
|
[6] |
Andrews NC. The iron transporter DMT1[J]. Int J Biochem Cell Biol, 1999,31(10): 991-994.
|
[7] |
Gunshin H, Starr CN, Direnzo C, et al. Cybrd1 (duodenal cytochrome b) is not necessary for dietary iron absorption in mice[J]. Blood, 2005,106(8): 2879-2883.
|
[8] |
Crichton RR. Proteins of iron storage and transport[J]. Adv Protein Chem, 1990,40: 281-363.
|
[9] |
Chung B, Chaston T, Marks J, et al. Hepcidin decreases iron transporter expression in vivo in mouse duodenum and spleen and in vitro in THP-1 macrophages and intestinal Caco-2 cells[J]. J Nutr, 2009,139(8): 1457-1462.
|
[10] |
Hentze MW, Muckenthaler MU, Andrews NC. Balancing acts: molecular control of mammalian iron metabolism[J]. Cell, 2004,117(3): 285-297.
|
[11] |
Park CH, Valore EV, Waring AJ, et al. Hepcidin, a urinary antimicrobial peptide synthesized in the liver[J]. J Biol Chem, 2001,276(11): 7806-7810.
|
[12] |
Donovan A, Lima CA, Pinkus JL, et al. The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis[J]. Cell Metab, 2005,1(3): 191-200.
|
[13] |
Rivera S, Nemeth E, Gabayan V, et al. Synthetic hepcidin causes rapid dose-dependent hypoferremia and is concentrated in ferroportin-containing organs[J]. Blood, 2005,106(6): 2196-2199.
|
[14] |
Roetto A, Papanikolaou G, Politou M, et al. Mutant antimicrobial peptide hepcidin is associated with severe juvenile hemochromatosis[J]. Nat Genet, 2003,33(1): 21-22.
|
[15] |
Meynard D, Kautz L, Darnaud V, et al. Lack of the bone morphogenetic protein BMP6 induces massive iron overload[J]. Nat Genet, 2009,41(4): 478-481.
|
[16] |
Steinbicker AU, Bartnikas TB, Lohmeyer LK, et al. Perturbation of hepcidin expression by BMP type I receptor deletion induces iron overload in mice[J]. Blood, 2011,118(15): 4224-4230.
|
[17] |
Wang RH, Li C, Xu X, et al. A role of SMAD4 in iron metabolism through the positive regulation of hepcidin expression[J]. Cell Metab, 2005,2(6): 399-409.
|
[18] |
Zhang AS, Gao J, Koeberl DD, et al. The role of hepatocyte hemojuvelin in the regulation of bone morphogenic protein-6 and hepcidin expression in vivo[J]. J Biol Chem, 2010,285(22): 16416-16423.
|
[19] |
Ramos E, Kautz L, Rodriguez R, et al. Evidence for distinct pathways of hepcidin regulation by acute and chronic iron loading in mice[J]. Hepatology, 2011,53(4): 1333-1341.
|
[20] |
Johnson MB, Chen J, Murchison N, et al. Transferrin receptor 2: evidence for ligand-induced stabilization and redirection to a recycling pathway[J]. Mol Biol Cell, 2007,18(3): 743-754.
|
[21] |
Feng Q, Migas MC, Waheed A, et al. Ferritin upregulates hepatic expression of bone morphogenetic protein 6 and hepcidin in mice[J]. Am J Physiol Gastrointest Liver Physiol, 2012,302(12): G1397-G1404.
|
[22] |
Nemeth E, Rivera S, Gabayan V, et al. IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin[J]. J Clin Invest, 2004,113(9): 1271-1276.
|
[23] |
Besson-Fournier C, Latour C, Kautz L, et al. Induction of activin B by inflammatory stimuli up-regulates expression of the iron-regulatory peptide hepcidin through Smad1/5/8 signaling[J]. Blood, 2012,120(2): 431-439.
|
[24] |
Pfeffer MA, Burdmann EA, Chen CY, et al. A trial of darbepoetin alfa in type 2 diabetes and chronic kidney disease[J]. N Engl J Med, 2009,361(21): 2019-2032.
|
[25] |
Cooke KS, Hinkle B, Salimi-Moosavi H, et al. A fully human anti-hepcidin antibody modulates iron metabolism in both mice and nonhuman primates[J]. Blood, 2013,122(17): 3054-3061.
|
[26] |
Sun CC, Vaja V, Babitt JL, et al. Targeting the hepcidin-ferroportin axis to develop new treatment strategies for anemia of chronic disease and anemia of inflammation[J]. Am J Hematol, 2012,87(4): 392-400.
|
[27] |
Panwar B, Gutierrez OM. Disorders of Iron Metabolism and Anemia in Chronic Kidney Disease[J]. Semin Nephrol, 2016,36(4): 252-261.
|
[28] |
Babitt JL, Lin HY. Mechanisms of anemia in CKD[J]. J Am Soc Nephrol, 2012,23(10): 1631-1634.
|
[29] |
Levin A, Bakris GL, Molitch M, et al. Prevalence of abnormal serum vitamin D, PTH, calcium, and phosphorus in patients with chronic kidney disease: results of the study to evaluate early kidney disease[J]. Kidney Int, 2007,71(1): 31-38.
|
[30] |
Perlstein TS, Pande R, Berliner N, et al. Prevalence of 25-hydroxyvitamin D deficiency in subgroups of elderly persons with anemia: association with anemia of inflammation[J]. Blood, 2011,117(10): 2800-2806.
|
[31] |
Bacchetta J, Zaritsky JJ, Sea JL, et al. Suppression of iron-regulatory hepcidin by vitamin D[J]. J Am Soc Nephrol, 2014,25(3): 564-572.
|
[32] |
Liu S, Quarles LD. How fibroblast growth factor 23 works[J]. J Am Soc Nephrol, 2007,18(6): 1637-1647.
|
[33] |
Wolf M, White KE. Coupling fibroblast growth factor 23 production and cleavage: iron deficiency, rickets, and kidney disease[J]. Curr Opin Nephrol Hypertens, 2014,23(4): 411-419.
|
[34] |
Bacchetta J, Zaritsky JJ, Sea JL, et al. Suppression of iron-regulatory hepcidin by vitamin D[J]. J Am Soc Nephrol, 2014,25(3): 564-572.
|
[35] |
Zughaier SM, Alvarez JA, Sloan JH, et al. The role of vitamin D in regulating the iron-hepcidin-ferroportin axis in monocytes[J]. J Clin Transl Endocrinol, 2014,1(1): 19-25.
|
[36] |
Clinkenbeard EL, Farrow EG, Summers LJ, et al. Neonatal iron deficiency causes abnormal phosphate metabolism by elevating FGF23 in normal and ADHR mice[J]. J Bone Miner Res, 2014,29(2): 361-369.
|
[37] |
Smith ER, Cai MM, McMahon LP, et al. Biological variability of plasma intact and C-terminal FGF23 measurements[J]. J Clin Endocrinol Metab, 2012,97(9): 3357-3365.
|
[38] |
Torti FM, Torti SV. Regulation of ferritin genes and protein[J]. Blood, 2002,99(10): 3505-3516.
|
[39] |
Ford BA, Coyne DW, Eby CS, et al. Variability of ferritin measurements in chronic kidney disease; implications for iron management[J]. Kidney Int, 2009,75(1): 104-110.
|
[40] |
Spada PL, Rossi C, Alimonti A, et al. Ferritin iron content in haemodialysis patients: comparison with septic and hemochromatosis patients[J]. Clin Biochem, 2008,41(12): 997-1001.
|
[41] |
R′Zik S, Beguin Y. Serum soluble transferrin receptor concentration is an accurate estimate of the mass of tissue receptors[J]. Exp Hematol, 2001,29(6): 677-685.
|
[42] |
Singh AK, Coyne DW, Shapiro W, et al. Predictors of the response to treatment in anemic hemodialysis patients with high serum ferritin and low transferrin saturation[J]. Kidney Int, 2007,71(11): 1163-1171.
|
[43] |
Piga A, Longo F, Duca L, et al. High nontransferrin bound iron levels and heart disease in thalassemia major[J]. Am J Hematol, 2009,84(1): 29-33.
|
[44] |
Prus E, Fibach E. The labile iron pool in human erythroid cells[J]. Br J Haematol, 2008,142(2): 301-307.
|
[45] |
Pootrakul P, Breuer W, Sametband M, et al. Labile plasma iron (LPI) as an indicator of chelatable plasma redox activity in iron-overloaded beta-thalassemia/HbE patients treated with an oral chelator[J]. Blood, 2004,104(5): 1504-1510.
|
[46] |
Scheiber-Mojdehkar B, Lutzky B, Schaufler R, et al. Non-transferrin-bound iron in the serum of hemodialysis patients who receive ferric saccharate: no correlation to peroxide generation[J]. J Am Soc Nephrol, 2004,15(6): 1648-1655.
|
[47] |
Prus E, Fibach E. Flow cytometry measurement of the labile iron pool in human hematopoietic cells[J]. Cytometry A, 2008,73(1): 22-27.
|
[48] |
Wu Q, Lai X, Zhao H, et al. A metabolomics approach for predicting the response to intravenous iron therapy in peritoneal dialysis patients with anemia[J]. RSC Adv, 2017,7: 1915-1922.
|
[49] |
Umanath K, Jalal DI, Greco BA, et al. Ferric Citrate Reduces Intravenous Iron and Erythropoiesis-Stimulating Agent Use in ESRD[J]. J Am Soc Nephrol, 2015,26(10): 2578-2587.
|
[50] |
Gupta A, Amin NB, Besarab A, et al. Dialysate iron therapy: infusion of soluble ferric pyrophosphate via the dialysate during hemodialysis[J]. Kidney Int, 1999,55(5): 1891-1898.
|
[51] |
Fishbane SN, Singh AK, Cournoyer SH, et al. Ferric pyrophosphate citrate (Triferic) administration via the dialysate maintains hemoglobin and iron balance in chronic hemodialysis patients[J]. Nephrol Dial Transplant, 2015,30(12): 2019-2026.
|