[1] |
Zhang L, Long J, Jiang W, et al. Trends in chronic kidney disease in China [J]. N Engl J Med, 2016, 375(9):905-906.
|
[2] |
Cho NH, Shaw JE, Karuranga S, et al. IDF diabetes atlas: global estimates of diabetes prevalence for 2017 and projections for 2045 [J]. Diabetes Res Clin Pract, 2018, 138:271-281.
|
[3] |
Wang L, Gao P, Zhang M, et al. Prevalence and ethnic pattern of diabetes and prediabetes in China in 2013 [J]. JAMA, 2017, 317(24):2515-2523.
|
[4] |
Gregg EW, Li Y, Wang J, et al. Changes in diabetes-related complications in the United States, 1990-2010 [J]. N Engl J Med, 2014, 370(16):1514-1523.
|
[5] |
Andrassy KM. Comments on 'KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease’[J]. Kidney Int, 2013, 84(3):622-623.
|
[6] |
Chen C, Wang C, Hu C, et al. Normoalbuminuric diabetic kidney disease [J]. Front Med, 2017, 11(3):310-318.
|
[7] |
Hou JH, Zhu HX, Zhou ML, et al. Changes in the spectrum of kidney diseases: an analysis of 40,759 biopsy-proven cases from 2003 to 2014 in China [J]. Kidney Dis (Basel), 2018, 4(1):10-19.
|
[8] |
Kanwar YS, Sun L, Xie P, et al. A glimpse of various pathogenetic mechanisms of diabetic nephropathy [J]. Annu Rev Pathol, 2011, 6:395-423.
|
[9] |
Tervaert TW, Mooyaart AL, Amann K, et al. Pathologic classification of diabetic nephropathy [J]. J Am Soc Nephrol, 2010, 21(4):556-563.
|
[10] |
Yasuda F, Mii A, Morita M, et al. Importance of frequency and morphological characteristics of nodular diabetic glomerulosclerosis in diabetic nephropathy [J]. Hum Pathol, 2018, 75:95-103.
|
[11] |
Hoshino J, Furuichi K, Yamanouchi M, et al. A new pathological scoring system by the Japanese classification to predict renal outcome in diabetic nephropathy [J]. PLoS One, 2018, 13(2):e190923.
|
[12] |
Furuichi K, Yuzawa Y, Shimizu M, et al. Nationwide multicentre kidney biopsy study of Japanese patients with type 2 diabetes [J]. Nephrol Dial Transplant, 2018, 33(1):138-148.
|
[13] |
Zhu X, Xiong X, Yuan S, et al. Validation of the interstitial fibrosis and tubular atrophy on the new pathological classification in patients with diabetic nephropathy: a single-center study in China [J]. J Diabetes Complications, 2016, 30(3):537-541.
|
[14] |
Molitch ME, Defronzo RA, Franz MJ, et al. Diabetic nephropathy [J]. Diabetes Care, 2003, 26(Suppl 1):S94-S98.
|
[15] |
Mcknight AJ, Duffy S, Maxwell AP. Genetics of diabetic nephropathy: a long road of discovery [J]. Curr Diab Rep, 2015, 15(7):41.
|
[16] |
Ma RC, Cooper ME. Genetics of diabetic kidney disease-from the worst of nightmares to the light of dawn? [J]. J Am Soc Nephrol, 2017, 28(2):389-393.
|
[17] |
Ma RC. Genetics of cardiovascular and renal complications in diabetes [J]. J Diabetes Investig, 2016, 7(2):139-154.
|
[18] |
Sandholm N, Van Zuydam N, Ahlqvist E, et al. The genetic landscape of renal complications in type 1 diabetes [J]. J Am Soc Nephrol, 2017, 28(2):557-574.
|
[19] |
Colhoun HM, Marcovecchio ML. Biomarkers of diabetic kidney disease [J]. Diabetologia, 2018, 61(5):996-1011.
|
[20] |
Narita T, Hosoba M, Kakei M, et al. Increased urinary excretions of immunoglobulin g, ceruloplasmin, and transferrin predict development of microalbuminuria in patients with type 2 diabetes [J]. Diabetes Care, 2006, 29(1):142-144.
|
[21] |
Narita T, Sasaki H, Hosoba M, et al. Parallel increase in urinary excretion rates of immunoglobulin G, ceruloplasmin, transferrin, and orosomucoid in normoalbuminuric type 2 diabetic patients [J]. Diabetes Care, 2004, 27(5):1176-1181.
|
[22] |
Hara M, Yamagata K, Tomino Y, et al. Urinary podocalyxin is an early marker for podocyte injury in patients with diabetes: establishment of a highly sensitive ELISA to detect urinary podocalyxin [J]. Diabetologia, 2012, 55(11):2913-2919.
|
[23] |
Jim B, Ghanta M, Qipo A, et al. Dysregulated nephrin in diabetic nephropathy of type 2 diabetes: a cross sectional study [J]. PLoS One, 2012, 7(5):e36041.
|
[24] |
Wickman L, Afshinnia F, Wang SQ, et al. Urine podocyte mRNAs, proteinuria, and progression in human glomerular diseases [J]. J Am Soc Nephrol, 2013, 24(12):2081-2095.
|
[25] |
Nielsen SE, Reinhard H, Zdunek D, et al. Tubular markers are associated with decline in kidney function in proteinuric type 2 diabetic patients [J]. Diabetes Res Clin Pract, 2012, 97(1):71-76.
|
[26] |
Araki S, Haneda M, Koya D, et al. Predictive effects of urinary liver-type fatty acid-binding protein for deteriorating renal function and incidence of cardiovascular disease in type 2 diabetic patients without advanced nephropathy [J]. Diabetes Care, 2013, 36(5):1248-1253.
|
[27] |
Hong CY, Hughes K, Chia KS, et al. Urinary alpha1-microglobulin as a marker of nephropathy in type 2 diabetic Asian subjects in Singapore [J]. Diabetes Care, 2003, 26(2):338-342.
|
[28] |
Garg V, Kumar M, Mahapatra HS, et al. Novel urinary biomarkers in pre-diabetic nephropathy [J]. Clin Exp Nephrol, 2015, 19(5):895-900.
|
[29] |
Fu WJ, Li BL, Wang SB, et al. Changes of the tubular markers in type 2 diabetes mellitus with glomerular hyperfiltration [J]. Diabetes Res Clin Pract, 2012, 95(1):105-109.
|
[30] |
Kim SS, Song SH, Kim IJ, et al. Urinary cystatin C and tubular proteinuria predict progression of diabetic nephropathy [J]. Diabetes Care, 2013, 36(3):656-661.
|
[31] |
Barlovic DP, Zaletel J, Prezelj J. Adipocytokines are associated with renal function in patients with normal range glomerular filtration rate and type 2 diabetes [J]. Cytokine, 2009, 46(1):142-145.
|
[32] |
Cawood TJ, Bashir M, Brady J, et al. Urinary collagen IV and piGST: potential biomarkers for detecting localized kidney injury in diabetes-a pilot study [J]. Am J Nephrol, 2010, 32(3):219-225.
|
[33] |
Takahashi M. Increased urinary fibronectin excretion in type II diabetic patients with microalbuminuria [J]. Nihon Jinzo Gakkai Shi, 1995, 37(6):336-342.
|
[34] |
Zheng M, Lv LL, Cao YH, et al. Urinary mRNA markers of epithelial-mesenchymal transition correlate with progression of diabetic nephropathy [J]. Clin Endocrinol (Oxf), 2012, 76(5):657-664.
|
[35] |
Navarro JF, Mora C, Gomez M, et al. Influence of renal involvement on peripheral blood mononuclear cell expression behaviour of tumour necrosis factor-alpha and interleukin-6 in type 2 diabetic patients [J]. Nephrol Dial Transplant, 2008, 23(3):919-926.
|
[36] |
Pavkov ME, Weil EJ, Fufaa GD, et al. Tumor necrosis factor receptors 1 and 2 are associated with early glomerular lesions in type 2 diabetes [J]. Kidney Int, 2016, 89(1):226-234.
|
[37] |
Niewczas MA, Gohda T, Skupien J, et al. Circulating TNF receptors 1 and 2 predict ESRD in type 2 diabetes [J]. J Am Soc Nephrol, 2012, 23(3):507-515.
|
[38] |
Gohda T, Niewczas MA, Ficociello LH, et al. Circulating TNF receptors 1 and 2 predict stage 3 CKD in type 1 diabetes [J]. J Am Soc Nephrol, 2012, 23(3):516-524.
|
[39] |
Pavkov ME, Nelson RG, Knowler WC, et al. Elevation of circulating TNF receptors 1 and 2 increases the risk of end-stage renal disease in American Indians with type 2 diabetes [J]. Kidney Int, 2015, 87(4):812-819.
|
[40] |
Yamanouchi M, Skupien J, Niewczas MA, et al. Improved clinical trial enrollment criterion to identify patients with diabetes at risk of end-stage renal disease [J]. Kidney Int, 2017, 92(1):258-266.
|
[41] |
Lopes-Virella MF, Baker NL, Hunt KJ, et al. Baseline markers of inflammation are associated with progression to macroalbuminuria in type 1 diabetic subjects [J]. Diabetes Care, 2013, 36(8):2317-2323.
|
[42] |
Navarro-Gonzalez JF, Mora-Fernandez C. The role of inflammatory cytokines in diabetic nephropathy [J]. J Am Soc Nephrol, 2008, 19(3):433-442.
|
[43] |
Antonellis PJ, Kharitonenkov A, Adams AC. Physiology and endocrinology symposium: FGF21: insights into mechanism of action from preclinical studies [J]. J Anim Sci, 2014, 92(2):407-413.
|
[44] |
Jian WX, Peng WH, Jin J, et al. Association between serum fibroblast growth factor 21 and diabetic nephropathy [J]. Metabolism, 2012, 61(6):853-859.
|
[45] |
Kim HW, Lee JE, Cha JJ, et al. Fibroblast growth factor 21 improves insulin resistance and ameliorates renal injury in db/db mice [J]. Endocrinology, 2013, 154(9):3366-3376.
|
[46] |
Bidadkosh A, Lambooy S, Heerspink HJ, et al. Predictive properties of biomarkers GDF-15, NTproBNP, and hs-TnT for morbidity and mortality in patients with type 2 diabetes with nephropathy [J]. Diabetes Care, 2017, 40(6):784-792.
|
[47] |
Verhave JC, Bouchard J, Goupil R, et al. Clinical value of inflammatory urinary biomarkers in overt diabetic nephropathy: a prospective study [J]. Diabetes Res Clin Pract, 2013, 101(3):333-340.
|
[48] |
Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes [J]. N Engl J Med, 2017, 377(7):644-657.
|
[49] |
Madaan T, Akhtar M, Najmi AK. Sodium glucose cotransporter 2 (SGLT2) inhibitors: current status and future perspective [J]. Eur J Pharm Sci, 2016, 93:244-252.
|
[50] |
Tanaka T, Higashijima Y, Wada T, et al. The potential for renoprotection with incretin-based drugs [J]. Kidney Int, 2014, 86(4):701-711.
|
[51] |
Yoon KH, Nishimura R, Lee J, et al. Efficacy and safety of empagliflozin in patients with type 2 diabetes from Asian countries: pooled data from four phase Ⅲ trials [J]. Diabetes Obes Metab, 2016, 18(10):1045-1049.
|
[52] |
Mann J, Orsted DD, Brown-Frandsen K, et al. Liraglutide and renal outcomes in type 2 diabetes [J]. N Engl J Med, 2017, 377(9):839-848.
|
[53] |
Giugliano D, Maiorino MI, Bellastella G, et al. Type 2 diabetes and cardiovascular prevention: the dogmas disputed [J]. Endocrine, 2018, 60(2):224-228.
|
[54] |
Practice ERB. Clinical practice guideline on management of patients with diabetes and chronic kidney disease stage 3b or higher (eGFR <45 mL/min) [J]. Nephrol Dial Transplant, 2015, 30(Suppl 2):i1-i142.
|
[55] |
Giugliano D, Maiorino MI, Bellastella G, et al. Type 2 diabetes and cardiovascular prevention: the dogmas disputed [J]. Endocrine, 2018, 60(2):224-228.
|
[56] |
American Diabetes Association. Glycemic targets: standards of medical care in diabetes-2018 [J]. Diabetes Care, 2018, 41(Suppl 1):S55-S64.
|
[57] |
Tong L, Adler SG. Diabetic kidney disease [J]. Clin J Am Soc Nephrol, 2018, 13(2):335-338.
|
[58] |
Parvanova A, Trillini M, Podesta MA, et al. Moderate salt restriction with or without paricalcitol in type 2 diabetes and losartan-resistant macroalbuminuria (PROCEED): a randomised, double-blind, placebo-controlled, crossover trial [J]. Lancet Diabetes Endocrinol, 2018, 6(1):27-40.
|
[59] |
American Diabetes Association. Cardiovascular disease and risk management: standards of medical care in Diabetes-2018 [J]. Diabetes Care, 2018, 41(Suppl 1):S86-S104.
|
[60] |
Umanath K, Lewis JB. Update on diabetic nephropathy: core curriculum 2018 [J]. Am J Kidney Dis, 2018, 71(6):884-895.
|
[61] |
中国医师协会肾脏内科医师分会,中国中西医结合学会肾脏疾病专业委员会. 中国肾性高血压管理指南2016(简版)[J]. 中华医学杂志,2017,97(20):1547-1555.
|
[62] |
Valensi P, Picard S. Lipids, lipid-lowering therapy and diabetes complications [J]. Diabetes Metab, 2011, 37(1):15-24.
|
[63] |
Almquist T, Jacobson SH, Mobarrez F, et al. Lipid-lowering treatment and inflammatory mediators in diabetes and chronic kidney disease [J]. Eur J Clin Invest, 2014, 44(3):276-284.
|
[64] |
American Diabetes Association. Obesity management for the treatment of type 2 diabetes: standards of medical care in diabetes-2018 [J]. Diabetes Care, 2018, 41(Suppl 1):S65-S72.
|
[65] |
Oellgaard J, Gaede P, Rossing P, et al. Intensified multifactorial intervention in type 2 diabetics with microalbuminuria leads to long-term renal benefits [J]. Kidney Int, 2017, 91(4):982-988.
|