[1] |
Francisca R, Barbara B, Fenoy FJ, et al. Reactive oxygen and nitrogen species in the renal ischemia/reperfusion injury [J]. Curr Pharm Des, 2013, 19(15): 2776-2794.
|
[2] |
Zuk A, Bonventre JV. Acute kidney injury [J]. Annu Rev Med, 2016, 67(1): 293.
|
[3] |
Kwong J, Molkentin J. Physiological and pathological roles of the mitochondrial permeability transition pore in the heart [J]. Cell Metab, 2015, 21(2): 206-214.
|
[4] |
Bernardi P, Vassanelli S, Veronese P, et al. Modulation of the mitochondrial permeability transition pore. Effect of protons and divalent cations [J]. J Biol Chem, 1992, 267(5): 2934-2939.
|
[5] |
Hunter DR, Haworth RA. The Ca2+-induced membrane transition in mitochondria: I. The protective mechanisms [J]. Arch Biochem Biophys, 1979, 195(2): 468-477.
|
[6] |
Halestrap AP, Clarke SJ, Javadov SA. Mitochondrial permeability transition pore opening during myocardial reperfusion-a target for cardioprotection [J]. Cardiovasc Res, 2004, 61(3): 372-385.
|
[7] |
Connern CP, Halestrap AP. Purification and N-terminal sequencing of peptidyl-prolyl cis-trans-isomerase from rat liver mitochondrial matrix reveals the existence of a distinct mitochondrial cyclophilin [J]. Biochem J, 1992, 284 (Pt 2): 381-385.
|
[8] |
Klingenberg M. The ADP and ATP transport in mitochondria and its carrier [J]. Biochim Biophys Acta, 2008, 1778(10): 1978-2021.
|
[9] |
Gutiérrez-Aguilar M, Pérez-Martínez X, Chávez E, et al. In Saccharomyces cerevisiae, the phosphate carrier is a component of the mitochondrial unselective channel [J]. Arch Biochem Biophys, 2010, 494(2): 184-191.
|
[10] |
Al-Nasser I, Crompton M. The reversible Ca2+-induced permeabilization of rat liver mitochondria [J]. Biochem J, 1986, 239(1): 19-29.
|
[11] |
Chelli B, Falleni A, Salvetti F, et al. Peripheral-type benzodiazepine receptor ligands: mitochondrial permeability transition induction in rat cardiac tissue [J]. Biochem Pharmacol, 2001, 61(6): 695-705.
|
[12] |
Starkov AA. The molecular identity of the mitochondrial Ca2+ sequestration system [J]. FEBS J, 2010, 277(18): 3652-3663.
|
[13] |
Baines CP, Kaiser RA, Tatiana S, et al. Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death [J]. Nat Cell Biol, 2007, 9(5): 550-555.
|
[14] |
Mcgee AM, Baines CP. Complement 1q-binding protein inhibits the mitochondrial permeability transition pore and protects against oxidative stress-induced death [J]. Biochem J, 2011, 433(1): 119-125.
|
[15] |
Justina I, Elizabeth BD, Randall S, et al. Regulation of the mitochondrial permeability transition pore by the outer membrane does not involve the peripheral benzodiazepine receptor (Translocator Protein of 18 kDa (TSPO)) [J]. J Biol Chem, 2014, 289(20): 13769-13781.
|
[16] |
Alavian KN, Gisela B, Emma L, et al. An uncoupling channel within the c-subunit ring of the F1FO ATP synthase is the mitochondrial permeability transition pore [J]. Proc Natl Acad Sci USA, 2014, 111(29): 10580-10585.
|
[17] |
Tait SWG, Green DR. Mitochondria and cell death: outer membrane permeabilization and beyond [J]. Nat Rev Mol Cell Biol, 2010, 11(9): 621-632.
|
[18] |
Bernardi P, Forte M. SPG7 is an essential and conserved component of the mitochondrial permeability transition pore [J]. Front Physiol, 2015, 6(1): 47-62.
|
[19] |
Zorov DB, Filburn CR, Klotz LO, et al. Reactive oxygen species (ROS)-induced ROS release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes [J]. J Exp Med, 2000, 192(7): 1001-1014.
|
[20] |
Zhou B, Kreuzer J, Kumsta C, et al. Mitochondrial permeability uncouples elevated autophagy and lifespan extension [J]. Cell, 2019, 177(2): 299-314.
|
[21] |
Haworth RA, Hunter DR. The Ca2+-induced membrane transition in mitochondria. II. Nature of the Ca2+ trigger site [J]. Arch Biochem Biophys, 1979, 195(2): 460-467.
|
[22] |
Lu X, Kwong JQ, Molkentin JD, et al. Individual cardiac mitochondria undergo rare transient permeability transition pore openings [J]. Circ Res, 2016, 118(5): 834-841.
|
[23] |
Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilization in cell death [J]. Physiol Rev, 2007, 87(1): 99-163.
|
[24] |
Devalaraja-Narashimha K, Diener AM, Padanilam BJ. Cyclophilin D gene ablation protects mice from ischemic renal injury [J]. Am J Physiol Renal Physiol, 2009, 297(3): F749-F759.
|
[25] |
Shimizu S, Eguchi Y, Kamiike W, et al. Bcl-2 prevents apoptotic mitochondrial dysfunction by regulating proton flux [J]. Proc Natl Acad Sci USA, 1998, 95(4): 1455-1459.
|
[26] |
Tsujimoto Y, Shimizu S. Role of the mitochondrial membrane permeability transition in cell death [J]. Apoptosis, 2007, 12(5): 835-840.
|
[27] |
Ying Y, Padanilam BJ. Regulation of necrotic cell death: p53, PARP1 and cyclophilin D-overlapping pathways of regulated necrosis [J]. Cell Mol Life Sci, 2016, 73(11-12): 1-16.
|
[28] |
Mulay SR, Honarpisheh MM, Foresto-Neto O, et al. Mitochondria permeability transition versus necroptosis in oxalate-induced AKI [J]. J Am Soc Nephrol, 2019, 30(10): 1857-1869.
|
[29] |
Danial NN, Korsmeyer SJ. Cell death: critical control points [J]. Cell, 2004, 116(2): 205-219.
|
[30] |
Webster KA. Mitochondrial membrane permeabilization and cell death during myocardial infarction: roles of calcium and reactive oxygen species [J]. Future Cardiol, 2012, 8(6): 863-884.
|
[31] |
Qingqing W, Guie D, Jian-Kang C, et al. Bax and Bak have critical roles in ischemic acute kidney injury in global and proximal tubule-specific knockout mouse models [J]. Kidney Int, 2013, 84(1): 138-148.
|
[32] |
Yang H, Li R, Zhang L, et al. p53-cyclophilin D mediates renal tubular cell apoptosis in ischemia-reperfusion-induced acute kidney injury [J]. Am J Physiol Renal Physiol, 2019, 317(5): F1311-F1317.
|
[33] |
Zhang WL, Zhao YL, Liu XM, et al. Protective role of mitochondrial K-ATP channel and mitochondrial membrane transport pore in rat kidney ischemic postconditioning [J]. Chin Med J (Engl), 2011, 124(14): 2191-2195.
|
[34] |
Zhou H, Li D, Shi C, et al. Effects of Exendin-4 on bone marrow mesenchymal stem cell proliferation, migration and apoptosis in vitro [J]. Sci Rep, 2015, 5(8): 12898.
|
[35] |
Zhou H, Yang J, Xin T, et al. Exendin-4 protects adipose-derived mesenchymal stem cells from apoptosis induced by hydrogen peroxide through the PI3K/Akt-Sfrp2 pathways [J]. Free Radic Biol Med, 2014, 77: 363-375.
|
[36] |
Zhou H, Zhang Y, Hu S, et al. Melatonin protects cardiac microvasculature against ischemia/reperfusion injury via suppression of mitochondrial fission-VDAC1-HK2-mPTP-mitophagy axis [J]. J Pineal Res, 2017, 63(1): e12413.
|
[37] |
Duchen MR, Mcguinness O, Brown LA, et al. On the involvement of a cyclosporin A sensitive mitochondrial pore in myocardial reperfusion injury [J]. Cardiovasc Res, 1993, 27(10): 1790-1794.
|
[38] |
Du H, Guo L, Fang F, et al. Cyclophilin D deficiency attenuates mitochondrial and neuronal perturbation and ameliorates learning and memory in Alzheimer′s disease [J]. Nat Med, 2008, 14(10): 1097-1105.
|
[39] |
Irwin WA, Natascha B, Patrizia S, et al. Mitochondrial dysfunction and apoptosis in myopathic mice with collagen VI deficiency [J]. Nat Genet, 2003, 35(4): 367-371.
|
[40] |
Wang XR, Ding R, Tao TQ, et al. Myofibrillogenesis regulator 1 rescues renal ischemia/reperfusion injury by recruitment of PI3K-dependent p-AKT to mitochondria [J]. Shock, 2016, 46(5): 531-540.
|
[41] |
Garbaisz D, Turoczi Z, Aranyi P, et al. Attenuation of skeletal muscle and renal injury to the lower limb following ischemia-reperfusion using mPTP inhibitor NIM-811 [J]. PLoS One, 2014, 9(6): e101067.
|
[42] |
Baines CP, Kaiser RA, Purcell NH, et al. Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death [J]. Nature, 2005, 434(7033): 658-662.
|
[43] |
Taylor P, Husi H, Kontopidis G, et al. Structures of cyclophilin-ligand complexes [J]. Prog Biophys Mol Biol, 1997, 67(2-3): 155-181.
|
[44] |
Park I, Londhe AM, Lim JW, et al. Discovery of non-peptidic small molecule inhibitors of cyclophilin D as neuroprotective agents in Aβ-induced mitochondrial dysfunction [J]. J Comput-Aided Mol Des, 2017, 31(10): 929-941.
|