切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2019, Vol. 08 ›› Issue (06) : 277 -280. doi: 10.3877/cma.j.issn.2095-3216.2019.06.010

所属专题: 文献

综述

线粒体通透性转换孔在肾脏缺血再灌注损伤中的作用
赵焕焕1, 闫景瑶2, 韩秋霞3, 李琦3, 丁潇楠3, 朱晗玉3,()   
  1. 1. 100853 北京,解放军总医院第一医学中心肾脏病科、解放军肾脏病研究所、肾脏疾病国家重点实验室(2011DAV00088)、国家慢性肾病临床医学研究中心、肾脏疾病研究北京市重点实验室;450052 郑州大学第一附属医院肾脏病科、郑州大学肾脏病研究所、肾脏病重点实验室、河南省慢性肾脏病诊断与治疗重点实验室
    2. 450052 河南省人民医院肾脏病科
    3. 100853 北京,解放军总医院第一医学中心肾脏病科、解放军肾脏病研究所、肾脏疾病国家重点实验室(2011DAV00088)、国家慢性肾病临床医学研究中心、肾脏疾病研究北京市重点实验室
  • 收稿日期:2019-06-12 出版日期:2019-12-28
  • 通信作者: 朱晗玉
  • 基金资助:
    国家自然科学基金(61971441、61671479); 国家重点研发项目(2016YFC1305500)

The role of mitochondrial permeability transition pore in renal ischemia-reperfusion injury

Huanhuan Zhao1, Jingyao Yan2, Qiuxia Han3, Qi Li3, Xiaonan Ding3, Hanyu Zhu3,()   

  1. 1. Department of Nephrology, The First Medical Center of Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing 100853; Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Institute of Nephrology of Zhengzhou University, Henan Province Key Laboratory of Diagnosis and Treatment for Chronic Kidney Disease of, Zhengzhou 450052, Henan Province
    2. Department of Nephrology, Henan Provincial People′s Hospital, Zhengzhou 450052, Henan Province; China
    3. Department of Nephrology, The First Medical Center of Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing 100853
  • Received:2019-06-12 Published:2019-12-28
  • Corresponding author: Hanyu Zhu
  • About author:
    Corresponding author: Zhu Hanyu, Email:
引用本文:

赵焕焕, 闫景瑶, 韩秋霞, 李琦, 丁潇楠, 朱晗玉. 线粒体通透性转换孔在肾脏缺血再灌注损伤中的作用[J]. 中华肾病研究电子杂志, 2019, 08(06): 277-280.

Huanhuan Zhao, Jingyao Yan, Qiuxia Han, Qi Li, Xiaonan Ding, Hanyu Zhu. The role of mitochondrial permeability transition pore in renal ischemia-reperfusion injury[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2019, 08(06): 277-280.

肾脏缺血再灌注损伤是在肾移植等术后发生的损伤,发生率高,发生机制复杂且尚不清楚,并缺乏有效的防治措施。在肾脏缺血再灌注损伤过程中,线粒体发挥重要作用,其中线粒体通透性转换孔( mPTP)这一大分子复合物在应激状态下持续开放将导致一系列功能紊乱进而介导组织损伤。理解mPTP的结构和功能会让我们更加了解肾脏缺血再灌注损伤的发生机制,有助于我们寻找新的治疗靶点,提出新的肾脏保护治疗方法。

Renal ischemia-reperfusion injury is a postoperative injury such as kidney transplantation, which has high incidence, complicated and unclear mechanism, and there are no effective prevention and treatment measures. During renal ischemia-reperfusion injury, mitochondria play an important role in which the mitochondrial permeability transition pore (mPTP), a macromolecular complex that continues to open under stress will cause a series of functional disorders to mediate tissue damage. Understanding the structure and function of mPTP will allow us to better understand the mechanism of renal ischemia-reperfusion injury, help us to find new therapeutic targets, and propose new methods for renal protection treatment.

[1]
Francisca R, Barbara B, Fenoy FJ, et al. Reactive oxygen and nitrogen species in the renal ischemia/reperfusion injury [J]. Curr Pharm Des, 2013, 19(15): 2776-2794.
[2]
Zuk A, Bonventre JV. Acute kidney injury [J]. Annu Rev Med, 2016, 67(1): 293.
[3]
Kwong J, Molkentin J. Physiological and pathological roles of the mitochondrial permeability transition pore in the heart [J]. Cell Metab, 2015, 21(2): 206-214.
[4]
Bernardi P, Vassanelli S, Veronese P, et al. Modulation of the mitochondrial permeability transition pore. Effect of protons and divalent cations [J]. J Biol Chem, 1992, 267(5): 2934-2939.
[5]
Hunter DR, Haworth RA. The Ca2+-induced membrane transition in mitochondria: I. The protective mechanisms [J]. Arch Biochem Biophys, 1979, 195(2): 468-477.
[6]
Halestrap AP, Clarke SJ, Javadov SA. Mitochondrial permeability transition pore opening during myocardial reperfusion-a target for cardioprotection [J]. Cardiovasc Res, 2004, 61(3): 372-385.
[7]
Connern CP, Halestrap AP. Purification and N-terminal sequencing of peptidyl-prolyl cis-trans-isomerase from rat liver mitochondrial matrix reveals the existence of a distinct mitochondrial cyclophilin [J]. Biochem J, 1992, 284 (Pt 2): 381-385.
[8]
Klingenberg M. The ADP and ATP transport in mitochondria and its carrier [J]. Biochim Biophys Acta, 2008, 1778(10): 1978-2021.
[9]
Gutiérrez-Aguilar M, Pérez-Martínez X, Chávez E, et al. In Saccharomyces cerevisiae, the phosphate carrier is a component of the mitochondrial unselective channel [J]. Arch Biochem Biophys, 2010, 494(2): 184-191.
[10]
Al-Nasser I, Crompton M. The reversible Ca2+-induced permeabilization of rat liver mitochondria [J]. Biochem J, 1986, 239(1): 19-29.
[11]
Chelli B, Falleni A, Salvetti F, et al. Peripheral-type benzodiazepine receptor ligands: mitochondrial permeability transition induction in rat cardiac tissue [J]. Biochem Pharmacol, 2001, 61(6): 695-705.
[12]
Starkov AA. The molecular identity of the mitochondrial Ca2+ sequestration system [J]. FEBS J, 2010, 277(18): 3652-3663.
[13]
Baines CP, Kaiser RA, Tatiana S, et al. Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death [J]. Nat Cell Biol, 2007, 9(5): 550-555.
[14]
Mcgee AM, Baines CP. Complement 1q-binding protein inhibits the mitochondrial permeability transition pore and protects against oxidative stress-induced death [J]. Biochem J, 2011, 433(1): 119-125.
[15]
Justina I, Elizabeth BD, Randall S, et al. Regulation of the mitochondrial permeability transition pore by the outer membrane does not involve the peripheral benzodiazepine receptor (Translocator Protein of 18 kDa (TSPO)) [J]. J Biol Chem, 2014, 289(20): 13769-13781.
[16]
Alavian KN, Gisela B, Emma L, et al. An uncoupling channel within the c-subunit ring of the F1FO ATP synthase is the mitochondrial permeability transition pore [J]. Proc Natl Acad Sci USA, 2014, 111(29): 10580-10585.
[17]
Tait SWG, Green DR. Mitochondria and cell death: outer membrane permeabilization and beyond [J]. Nat Rev Mol Cell Biol, 2010, 11(9): 621-632.
[18]
Bernardi P, Forte M. SPG7 is an essential and conserved component of the mitochondrial permeability transition pore [J]. Front Physiol, 2015, 6(1): 47-62.
[19]
Zorov DB, Filburn CR, Klotz LO, et al. Reactive oxygen species (ROS)-induced ROS release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes [J]. J Exp Med, 2000, 192(7): 1001-1014.
[20]
Zhou B, Kreuzer J, Kumsta C, et al. Mitochondrial permeability uncouples elevated autophagy and lifespan extension [J]. Cell, 2019, 177(2): 299-314.
[21]
Haworth RA, Hunter DR. The Ca2+-induced membrane transition in mitochondria. II. Nature of the Ca2+ trigger site [J]. Arch Biochem Biophys, 1979, 195(2): 460-467.
[22]
Lu X, Kwong JQ, Molkentin JD, et al. Individual cardiac mitochondria undergo rare transient permeability transition pore openings [J]. Circ Res, 2016, 118(5): 834-841.
[23]
Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilization in cell death [J]. Physiol Rev, 2007, 87(1): 99-163.
[24]
Devalaraja-Narashimha K, Diener AM, Padanilam BJ. Cyclophilin D gene ablation protects mice from ischemic renal injury [J]. Am J Physiol Renal Physiol, 2009, 297(3): F749-F759.
[25]
Shimizu S, Eguchi Y, Kamiike W, et al. Bcl-2 prevents apoptotic mitochondrial dysfunction by regulating proton flux [J]. Proc Natl Acad Sci USA, 1998, 95(4): 1455-1459.
[26]
Tsujimoto Y, Shimizu S. Role of the mitochondrial membrane permeability transition in cell death [J]. Apoptosis, 2007, 12(5): 835-840.
[27]
Ying Y, Padanilam BJ. Regulation of necrotic cell death: p53, PARP1 and cyclophilin D-overlapping pathways of regulated necrosis [J]. Cell Mol Life Sci, 2016, 73(11-12): 1-16.
[28]
Mulay SR, Honarpisheh MM, Foresto-Neto O, et al. Mitochondria permeability transition versus necroptosis in oxalate-induced AKI [J]. J Am Soc Nephrol, 2019, 30(10): 1857-1869.
[29]
Danial NN, Korsmeyer SJ. Cell death: critical control points [J]. Cell, 2004, 116(2): 205-219.
[30]
Webster KA. Mitochondrial membrane permeabilization and cell death during myocardial infarction: roles of calcium and reactive oxygen species [J]. Future Cardiol, 2012, 8(6): 863-884.
[31]
Qingqing W, Guie D, Jian-Kang C, et al. Bax and Bak have critical roles in ischemic acute kidney injury in global and proximal tubule-specific knockout mouse models [J]. Kidney Int, 2013, 84(1): 138-148.
[32]
Yang H, Li R, Zhang L, et al. p53-cyclophilin D mediates renal tubular cell apoptosis in ischemia-reperfusion-induced acute kidney injury [J]. Am J Physiol Renal Physiol, 2019, 317(5): F1311-F1317.
[33]
Zhang WL, Zhao YL, Liu XM, et al. Protective role of mitochondrial K-ATP channel and mitochondrial membrane transport pore in rat kidney ischemic postconditioning [J]. Chin Med J (Engl), 2011, 124(14): 2191-2195.
[34]
Zhou H, Li D, Shi C, et al. Effects of Exendin-4 on bone marrow mesenchymal stem cell proliferation, migration and apoptosis in vitro [J]. Sci Rep, 2015, 5(8): 12898.
[35]
Zhou H, Yang J, Xin T, et al. Exendin-4 protects adipose-derived mesenchymal stem cells from apoptosis induced by hydrogen peroxide through the PI3K/Akt-Sfrp2 pathways [J]. Free Radic Biol Med, 2014, 77: 363-375.
[36]
Zhou H, Zhang Y, Hu S, et al. Melatonin protects cardiac microvasculature against ischemia/reperfusion injury via suppression of mitochondrial fission-VDAC1-HK2-mPTP-mitophagy axis [J]. J Pineal Res, 2017, 63(1): e12413.
[37]
Duchen MR, Mcguinness O, Brown LA, et al. On the involvement of a cyclosporin A sensitive mitochondrial pore in myocardial reperfusion injury [J]. Cardiovasc Res, 1993, 27(10): 1790-1794.
[38]
Du H, Guo L, Fang F, et al. Cyclophilin D deficiency attenuates mitochondrial and neuronal perturbation and ameliorates learning and memory in Alzheimer′s disease [J]. Nat Med, 2008, 14(10): 1097-1105.
[39]
Irwin WA, Natascha B, Patrizia S, et al. Mitochondrial dysfunction and apoptosis in myopathic mice with collagen VI deficiency [J]. Nat Genet, 2003, 35(4): 367-371.
[40]
Wang XR, Ding R, Tao TQ, et al. Myofibrillogenesis regulator 1 rescues renal ischemia/reperfusion injury by recruitment of PI3K-dependent p-AKT to mitochondria [J]. Shock, 2016, 46(5): 531-540.
[41]
Garbaisz D, Turoczi Z, Aranyi P, et al. Attenuation of skeletal muscle and renal injury to the lower limb following ischemia-reperfusion using mPTP inhibitor NIM-811 [J]. PLoS One, 2014, 9(6): e101067.
[42]
Baines CP, Kaiser RA, Purcell NH, et al. Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death [J]. Nature, 2005, 434(7033): 658-662.
[43]
Taylor P, Husi H, Kontopidis G, et al. Structures of cyclophilin-ligand complexes [J]. Prog Biophys Mol Biol, 1997, 67(2-3): 155-181.
[44]
Park I, Londhe AM, Lim JW, et al. Discovery of non-peptidic small molecule inhibitors of cyclophilin D as neuroprotective agents in Aβ-induced mitochondrial dysfunction [J]. J Comput-Aided Mol Des, 2017, 31(10): 929-941.
No related articles found!
阅读次数
全文


摘要