切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2020, Vol. 09 ›› Issue (01) : 12 -16. doi: 10.3877/cma.j.issn.2095-3216.2020.01.003

所属专题: 文献

专家论坛

钠-葡萄糖共转运体2抑制剂对血糖的控制及心肾保护作用
叶楠1, 程虹1,()   
  1. 1. 100029 北京,首都医科大学附属北京安贞医院
  • 收稿日期:2020-01-19 出版日期:2020-02-28
  • 通信作者: 程虹

SGLT2 inhibitors: a review of their antidiabetic, renoprotective, and cardioprotective effects

Nan Ye1, Hong Cheng1,()   

  1. 1. Renal Division, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing 100029, China
  • Received:2020-01-19 Published:2020-02-28
  • Corresponding author: Hong Cheng
  • About author:
    Corresponding author: Cheng Hong, Email:
引用本文:

叶楠, 程虹. 钠-葡萄糖共转运体2抑制剂对血糖的控制及心肾保护作用[J/OL]. 中华肾病研究电子杂志, 2020, 09(01): 12-16.

Nan Ye, Hong Cheng. SGLT2 inhibitors: a review of their antidiabetic, renoprotective, and cardioprotective effects[J/OL]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2020, 09(01): 12-16.

钠-葡萄糖共转运体2(SGLT2)抑制剂是一类近些年新出现的降糖药,其独特的作用机制、良好的降糖效果、突出的心肾保护作用及较小的副作用,使其得到了越来越多的关注。SGLT2抑制剂作用于分布在肾脏近曲小管的SGLT2,抑制其对葡萄糖的重吸收,从而发挥降血糖作用。此外,SGLT2抑制剂还通过一系列不依赖于降血糖作用的机制起到心脏和肾脏保护作用。目前,已有多项已经发布结果或正在进行的随机对照试验,证明了SGLT2抑制剂具有明显的心脏保护及肾脏保护作用。本文对SGLT2抑制剂的作用机制、控制血糖作用、心脏保护作用、肾脏保护作用及不良反应做一概述。

Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a new class of hypoglycemic agents that have emerged in recent years. Their unique mechanism of action, good hypoglycemic effect, prominent cardial-renal protection and minor side effects are getting more and more attention. SGLT2 inhibitors act on SGLT2 that are distributed in the proximal tubules of the kidney, inhibiting the reabsorption of glucose, thereby exerting a hypoglycemic effect. In addition, SGLT2 inhibitors also protect the heart and kidneys through a series of mechanisms that are not dependent on hypoglycemic effects. At present, many results published or of ongoing randomized controlled trials have demonstrated that SGLT2 inhibitors had significant cardioprotective and renoprotective effect. This article reviewed the mechanism of SGLT2 inhibitors in blood glucose control, cardioprotective effect, renoprotective effect, and adverse reactions.

[1]
中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2017年版)[J]. 中华糖尿病杂志, 2018, 10(1): 4-67.
[2]
American Diabetes Association. Improving care and promoting health in populations: standards of medical care in diabetes-2019 [J]. Diabetes Care, 2019, 42(Suppl 1): S7-S12.
[3]
American Diabetes Association. Cardiovascular disease and risk management: standards of medical care in diabetes-2019 [J]. Diabetes Care, 2019, 42(Suppl 1): S103-S123.
[4]
Cavender MA, Steg PG, Smith SC Jr, et al. Impact of diabetes mellitus on hospitalization for heart failure, cardiovascular events, and death: outcomes at 4 years from the reduction of atherothrombosis for continued health (REACH) registry [J]. Circulation, 2015, 132(10): 923-931.
[5]
McAllister DA RS, Kerssens J, Livingstone S, et al. Incidence of hospitalisation for heart failure and case-fatality among 3.25 million people with and without diabetes [J]. Circulation, 2018, 138(24): 2774-2786.
[6]
Afkarian M, Zelnick LR, Hall YN, et al. Clinical manifestations of kidney disease among US adults with diabetes, 1988-2014 [J]. JAMA, 2016, 316(6): 602-610.
[7]
American Diabetes Association. Microvascular complications and foot care: standards of medical care in diabetes-2019 [J]. Diabetes Care, 2019, 42(Suppl 1): S124-S138.
[8]
Fox CS, Matsushita K, Woodward M, et al. Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without diabetes: a meta-analysis [J]. Lancet, 2012, 380(9854): 1662-1673.
[9]
Vallon V. The mechanisms and therapeutic potential of SGLT2 inhibitors in diabetes mellitus [J]. Annu Rev Med, 2015, 66: 255-270.
[10]
Roder PV, Geillinger KE, Zietek TS, et al. The role of SGLT1 and GLUT2 in intestinal glucose transport and sensing[J]. PLoS One, 2014, 9(2): e89977.
[11]
Norton L, Shannon CE, Fourcaudot M, et al. Sodium-glucose co-transporter (SGLT) and glucose transporter (GLUT) expression in the kidney of type 2 diabetic subjects [J]. Diabetes Obes Metab, 2017, 19(9): 1322-1326.
[12]
Rabizadeh S, Nakhjavani M, Esteghamati A. Cardiovascular and renal benefits of SGLT2 inhibitors: a narrative review [J]. Int J Endocrinol Metab, 2019, 17(2): e84353.
[13]
Verma S, McMurray JJV. SGLT2 inhibitors and mechanisms of cardiovascular benefit: a state-of-the-art review [J]. Diabetologia, 2018, 61(10): 2108-2117.
[14]
Verma S, McMurray JJV, Cherney DZI. The metabolodiuretic promise of sodium-dependent glucose cotransporter 2 inhibition: the search for the sweet spot in heart failure [J]. JAMA Cardiol, 2017, 2(9): 939-940.
[15]
Lytvyn Y, Bjornstad P, Udell JA, et al. Sodium glucose cotransporter-2 inhibition in heart failure: potential mechanisms, clinical applications, and summary of clinical trials [J]. Circulation, 2017, 136(17): 1643-1658.
[16]
Inzucchi SE, Zinman B, Fitchett D, et al. How does empagliflozin reduce cardiovascular mortality? Insights from a mediation analysis of the EMPA-REG OUTCOME trial [J]. Diabetes Care, 2018, 41(2): 356-363.
[17]
Hallow KM, Helmlinger G, Greasley PJ, et al. Why do SGLT2 inhibitors reduce heart failure hospitalization? A differential volume regulation hypothesis [J]. Diabetes Obes Metab, 2018, 20(3): 479-487.
[18]
Striepe K, Jumar A, Ott C, et al. Effects of the selective sodium-glucose cotransporter 2 inhibitor empagliflozin on vascular function and central hemodynamics in patients with type 2 diabetes mellitus [J]. Circulation, 2017, 136(12): 1167-1169.
[19]
Chilton R, Tikkanen I, Cannon CP, et al. Effects of empagliflozin on blood pressure and markers of arterial stiffness and vascular resistance in patients with type 2 diabetes [J]. Diabetes Obes Metab, 2015, 17(12): 1180-1193.
[20]
Li H, Shin SE, Seo MS, et al. The anti-diabetic drug dapagliflozin induces vasodilation via activation of PKG and Kv channels [J]. Life Sci, 2018, 197: 46-55.
[21]
Solini A, Giannini L, Seghieri M, et al. Dapagliflozin acutely improves endothelial dysfunction, reduces aortic stiffness and renal resistive index in type 2 diabetic patients: a pilot study [J]. Cardiovasc Diabetol, 2017, 16(1): 138.
[22]
Ferrannini E, Mark M, Mayoux E. CV protection in the EMPA-REG OUTCOME trial: a "thrifty substrate" hypothesis [J]. Diabetes Care, 2016, 39(7): 1108-1114.
[23]
Lopaschuk GD, Verma S. Empagliflozin's fuel hypothesis: not so soon [J]. Cell Metab, 2016, 24(2): 200-202.
[24]
Packer M, Anker SD, Butler J, et al. Effects of sodium-glucose cotransporter 2 inhibitors for the treatment of patients with heart failure: proposal of a novel mechanism of action [J]. JAMA Cardiol, 2017, 2(9): 1025-1029.
[25]
Uthman L, Baartscheer A, Bleijlevens B, et al. Class effects of SGLT2 inhibitors in mouse cardiomyocytes and hearts: inhibition of Na/H exchanger, lowering of cytosolic Na and vasodilation [J]. Diabetologia, 2018, 61(3): 722-726.
[26]
Baartscheer A, Schumacher CA, Wüst RC, et al. Empagliflozin decreases myocardial cytoplasmic Na through inhibition of the cardiac Na/H exchanger in rats and rabbits [J]. Diabetologia, 2017, 60(3): 568-573.
[27]
Lee TM, Chang NC, Lin SZ. Dapagliflozin, a selective SGLT2 Inhibitor, attenuated cardiac fibrosis by regulating the macrophage polarization via STAT3 signaling in infarcted rat hearts [J]. Free Radic Biol Med, 2017, 104: 298-310.
[28]
Packer M. Do sodium-glucose cotransporter-2 inhibitors prevent heart failure with a preserved ejection fraction by counterbalancing the effects of leptin? A novel hypothesis [J]. Diabetes Obes Metab, 2018, 20(6): 1361-1366.
[29]
Garvey WT, Van Gaal L, Leiter LA, et al. Effects of canagliflozin versus glimepiride on adipokines and inflammatory biomarkers in type 2 diabetes [J]. Metabolism, 2018, 85: 32-37.
[30]
Sato T, Aizawa Y, Yuasa S, et al. The effect of dapagliflozin treatment on epicardial adipose tissue volume [J]. Cardiovasc Diabetol, 2018, 17(1): 6.
[31]
Zatz R DB, Meyer TW, Anderson S, et al. Prevention of diabetic glomerulopathy by pharmacological amelioration of glomerular capillary hypertension [J]. J Clin Invest, 1986, 77(6): 1925-1930.
[32]
Heerspink HJ, Kropelin TF, Hoekman J, et al. Drug-induced reduction in albuminuria is associated with subsequent renoprotection: a meta-analysis [J]. J Am Soc Nephrol, 2015, 26(8): 2055-2064.
[33]
Heerspink HJ, Perkins BA, Fitchett DH, et al. Sodium glucose cotransporter 2 inhibitors in the treatment of diabetes mellitus: cardiovascular and kidney effects, potential mechanisms, and clinical applications [J]. Circulation, 2016, 134(10): 752-772.
[34]
Heerspink HJ, Desai M, Jardine M, et al. Canagliflozin slows progression of renal function decline independently of glycemic effects [J]. J Am Soc Nephrol, 2017, 28(1): 368-375.
[35]
Brown E, Rajeev SP, Cuthbertson DJ, et al. A review of the mechanism of action, metabolic profile and haemodynamic effects of sodium-glucose co-transporter-2 inhibitors [J]. Diabetes Obes Metab, 2019, 21(Suppl 2): 9-18.
[36]
Cherney DZI, Zinman B, Inzucchi SE, et al. Effects of empagliflozin on the urinary albumin-to-creatinine ratio in patients with type 2 diabetes and established cardiovascular disease: an exploratory analysis from the EMPA-REG OUTCOME randomised, placebo-controlled trial [J]. Lancet Diabetes Endocrinol, 2017, 5(8): 610-621.
[37]
Dekkers CCJ, Petrykiv S, Laverman GD, et al. Effects of the SGLT-2 inhibitor dapagliflozin on glomerular and tubular injury markers [J]. Diabetes Obes Metab, 2018, 20(8): 1988-1993.
[38]
Sun YN, Zhou Y, Chen X, et al. The efficacy of dapagliflozin combined with hypoglycaemic drugs in treating type 2 diabetes mellitus: meta-analysis of randomised controlled trials [J]. BMJ Open, 2014, 4(4): e004619.
[39]
Yang T, Lu M, Ma L, et al. Efficacy and tolerability of canagliflozin as add-on to metformin in the treatment of type 2 diabetes mellitus: a meta-analysis [J]. Eur J Clin Pharmacol, 2015, 71(11): 1325-1332.
[40]
Häring HU ML, Seewaldt-Becker E, Weimer M, et al. Empagliflozin as add-on to metformin in patients with type 2 diabetes: a 24-week, randomized, double-blind, placebo-controlled trial [J]. Diabetes Care, 2014, 37(6): 1650-1659.
[41]
Aronson R, Frias J, Goldman A, et al. Long-term efficacy and safety of ertugliflozin monotherapy in patients with inadequately controlled T2DM despite diet and exercise: VERTIS MONO extension study [J]. Diabetes Obes Metab, 2018, 20(6): 1453-1460.
[42]
Perkovic V, Jardine MJ, Neal B, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy [J]. N Engl J Med, 2019, 380(24): 2295-2306.
[43]
Wanner C, Inzucchi SE, Lachin JM, et al. Empagliflozin and progression of kidney disease in type 2 diabetes [J]. N Engl J Med, 2016, 375(4): 323-334.
[44]
Perkovic V, de Zeeuw D, Mahaffey KW, et al. Canagliflozin and renal outcomes in type 2 diabetes: results from the CANVAS Program randomised clinical trials [J]. Lancet Diabetes Endocrinol, 2018, 6(9): 691-704.
[45]
Wiviott SD, Raz I, Bonaca MP, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes [J]. N Engl J Med, 2019, 380(4): 347-357.
[46]
Neuen BL, Young T, Heerspink HJL, et al. SGLT2 inhibitors for the prevention of kidney failure in patients with type 2 diabetes: a systematic review and meta-analysis [J]. Lancet Diabetes Endocrinol, 2019, 7(11): 845-854.
[47]
Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes [J]. N Engl J Med, 2015, 373(22): 2117-2128.
[48]
Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes [J]. N Engl J Med, 2017, 377(7): 644-657.
[49]
McMurray JJV, Solomon SD, Inzucchi SE, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction [J]. N Engl J Med, 2019, 381(21): 1995-2008.
[1] 曹雯佳, 刘学兵, 罗安果, 钟释敏, 邓岚, 王玉琳, 李赵欢. 超声矢量血流成像对2型糖尿病患者颈动脉壁剪切应力的研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(07): 709-717.
[2] 王杰, 袁泉, 王玥琦, 乔佳君, 谭春丽, 夏仲元, 刘守尧. 溃疡油在糖尿病足溃疡治疗中的应用效果及安全性观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 480-484.
[3] 徐志刚, 曹涛, 何亭, 李博奥, 魏婧韬, 张栋梁, 官浩, 杨薛康. 采用抗生素骨水泥治疗糖尿病患者心脏术后胸骨骨髓炎的临床效果观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 498-502.
[4] 姜珊, 李湘燕, 田硕涵, 温冰, 何睿, 齐心. 采用优化抗感染治疗模式改善糖尿病足感染预后的临床观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 398-403.
[5] 别瑶, 曹志斌, 辛静, 王健楠, 惠宗光. 应用基质血管成分细胞治疗糖尿病足溃疡的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 453-456.
[6] 徐保平, 彭怀文, 喻怀斌, 王晓涛. 新型冠状病毒肺炎继发糖尿病酮症酸中毒合并肝门静脉积气一例[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(04): 250-255.
[7] 孟令凯, 李大勇, 王宁, 王桂明, 张炳南, 李若彤, 潘立峰. 袖状胃切除术对肥胖伴2型糖尿病大鼠的作用及机制研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 638-642.
[8] 李猛, 姜腊, 董磊, 吴情, 贾犇黎. 腹腔镜胃袖状切除术治疗肥胖合并2型糖尿病及脂肪胰的临床研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(05): 554-557.
[9] 严虹霞, 王晓娟, 张毅勋. 2 型糖尿病对结直肠癌患者肿瘤标记物、临床病理及预后的影响[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 483-487.
[10] 周学锋, 董哲毅, 冯哲, 蔡广研, 陈香美. 糖尿病肾脏疾病中西医结合诊疗指南计划书[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 301-305.
[11] 杜军霞, 赵小淋, 王浩然, 高志远, 王曼茜, 万楠熙, 张冬, 丁潇楠, 任琴琴, 段颖洁, 汤力, 朱晗玉. 2 型糖尿病的血液透析患者肠道微生物组学高通量测序分析[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 313-320.
[12] 邱岭, 朱旭丽, 浦坚, 邢苗苗, 吴佳玲. 糖尿病肾病患者肠道菌群生态特点与胃肠道功能障碍的关联性研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 453-458.
[13] 王璇, 娜扎开提·尼加提, 雒洋洋, 蒋升. 皮肤晚期糖基化终末产物浓度与2型糖尿病微血管并发症的相关性[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 447-454.
[14] 王星, 陈园, 热孜万古丽·乌斯曼, 郭艳英. T2DM、Obesity、NASH、PCOS共同致病因素相关的分子机制[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 481-490.
[15] 李玺, 蔡芸莹, 张永红, 苏恒. 假性软骨发育不全合并1型糖尿病一例[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 518-520.
阅读次数
全文


摘要