[1] |
中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2017年版)[J]. 中华糖尿病杂志, 2018, 10(1): 4-67.
|
[2] |
American Diabetes Association. Improving care and promoting health in populations: standards of medical care in diabetes-2019 [J]. Diabetes Care, 2019, 42(Suppl 1): S7-S12.
|
[3] |
American Diabetes Association. Cardiovascular disease and risk management: standards of medical care in diabetes-2019 [J]. Diabetes Care, 2019, 42(Suppl 1): S103-S123.
|
[4] |
Cavender MA, Steg PG, Smith SC Jr, et al. Impact of diabetes mellitus on hospitalization for heart failure, cardiovascular events, and death: outcomes at 4 years from the reduction of atherothrombosis for continued health (REACH) registry [J]. Circulation, 2015, 132(10): 923-931.
|
[5] |
McAllister DA RS, Kerssens J, Livingstone S, et al. Incidence of hospitalisation for heart failure and case-fatality among 3.25 million people with and without diabetes [J]. Circulation, 2018, 138(24): 2774-2786.
|
[6] |
Afkarian M, Zelnick LR, Hall YN, et al. Clinical manifestations of kidney disease among US adults with diabetes, 1988-2014 [J]. JAMA, 2016, 316(6): 602-610.
|
[7] |
American Diabetes Association. Microvascular complications and foot care: standards of medical care in diabetes-2019 [J]. Diabetes Care, 2019, 42(Suppl 1): S124-S138.
|
[8] |
Fox CS, Matsushita K, Woodward M, et al. Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without diabetes: a meta-analysis [J]. Lancet, 2012, 380(9854): 1662-1673.
|
[9] |
Vallon V. The mechanisms and therapeutic potential of SGLT2 inhibitors in diabetes mellitus [J]. Annu Rev Med, 2015, 66: 255-270.
|
[10] |
Roder PV, Geillinger KE, Zietek TS, et al. The role of SGLT1 and GLUT2 in intestinal glucose transport and sensing[J]. PLoS One, 2014, 9(2): e89977.
|
[11] |
Norton L, Shannon CE, Fourcaudot M, et al. Sodium-glucose co-transporter (SGLT) and glucose transporter (GLUT) expression in the kidney of type 2 diabetic subjects [J]. Diabetes Obes Metab, 2017, 19(9): 1322-1326.
|
[12] |
Rabizadeh S, Nakhjavani M, Esteghamati A. Cardiovascular and renal benefits of SGLT2 inhibitors: a narrative review [J]. Int J Endocrinol Metab, 2019, 17(2): e84353.
|
[13] |
Verma S, McMurray JJV. SGLT2 inhibitors and mechanisms of cardiovascular benefit: a state-of-the-art review [J]. Diabetologia, 2018, 61(10): 2108-2117.
|
[14] |
Verma S, McMurray JJV, Cherney DZI. The metabolodiuretic promise of sodium-dependent glucose cotransporter 2 inhibition: the search for the sweet spot in heart failure [J]. JAMA Cardiol, 2017, 2(9): 939-940.
|
[15] |
Lytvyn Y, Bjornstad P, Udell JA, et al. Sodium glucose cotransporter-2 inhibition in heart failure: potential mechanisms, clinical applications, and summary of clinical trials [J]. Circulation, 2017, 136(17): 1643-1658.
|
[16] |
Inzucchi SE, Zinman B, Fitchett D, et al. How does empagliflozin reduce cardiovascular mortality? Insights from a mediation analysis of the EMPA-REG OUTCOME trial [J]. Diabetes Care, 2018, 41(2): 356-363.
|
[17] |
Hallow KM, Helmlinger G, Greasley PJ, et al. Why do SGLT2 inhibitors reduce heart failure hospitalization? A differential volume regulation hypothesis [J]. Diabetes Obes Metab, 2018, 20(3): 479-487.
|
[18] |
Striepe K, Jumar A, Ott C, et al. Effects of the selective sodium-glucose cotransporter 2 inhibitor empagliflozin on vascular function and central hemodynamics in patients with type 2 diabetes mellitus [J]. Circulation, 2017, 136(12): 1167-1169.
|
[19] |
Chilton R, Tikkanen I, Cannon CP, et al. Effects of empagliflozin on blood pressure and markers of arterial stiffness and vascular resistance in patients with type 2 diabetes [J]. Diabetes Obes Metab, 2015, 17(12): 1180-1193.
|
[20] |
Li H, Shin SE, Seo MS, et al. The anti-diabetic drug dapagliflozin induces vasodilation via activation of PKG and Kv channels [J]. Life Sci, 2018, 197: 46-55.
|
[21] |
Solini A, Giannini L, Seghieri M, et al. Dapagliflozin acutely improves endothelial dysfunction, reduces aortic stiffness and renal resistive index in type 2 diabetic patients: a pilot study [J]. Cardiovasc Diabetol, 2017, 16(1): 138.
|
[22] |
Ferrannini E, Mark M, Mayoux E. CV protection in the EMPA-REG OUTCOME trial: a "thrifty substrate" hypothesis [J]. Diabetes Care, 2016, 39(7): 1108-1114.
|
[23] |
Lopaschuk GD, Verma S. Empagliflozin's fuel hypothesis: not so soon [J]. Cell Metab, 2016, 24(2): 200-202.
|
[24] |
Packer M, Anker SD, Butler J, et al. Effects of sodium-glucose cotransporter 2 inhibitors for the treatment of patients with heart failure: proposal of a novel mechanism of action [J]. JAMA Cardiol, 2017, 2(9): 1025-1029.
|
[25] |
Uthman L, Baartscheer A, Bleijlevens B, et al. Class effects of SGLT2 inhibitors in mouse cardiomyocytes and hearts: inhibition of Na+/H+ exchanger, lowering of cytosolic Na+ and vasodilation [J]. Diabetologia, 2018, 61(3): 722-726.
|
[26] |
Baartscheer A, Schumacher CA, Wüst RC, et al. Empagliflozin decreases myocardial cytoplasmic Na+ through inhibition of the cardiac Na+/H+ exchanger in rats and rabbits [J]. Diabetologia, 2017, 60(3): 568-573.
|
[27] |
Lee TM, Chang NC, Lin SZ. Dapagliflozin, a selective SGLT2 Inhibitor, attenuated cardiac fibrosis by regulating the macrophage polarization via STAT3 signaling in infarcted rat hearts [J]. Free Radic Biol Med, 2017, 104: 298-310.
|
[28] |
Packer M. Do sodium-glucose cotransporter-2 inhibitors prevent heart failure with a preserved ejection fraction by counterbalancing the effects of leptin? A novel hypothesis [J]. Diabetes Obes Metab, 2018, 20(6): 1361-1366.
|
[29] |
Garvey WT, Van Gaal L, Leiter LA, et al. Effects of canagliflozin versus glimepiride on adipokines and inflammatory biomarkers in type 2 diabetes [J]. Metabolism, 2018, 85: 32-37.
|
[30] |
Sato T, Aizawa Y, Yuasa S, et al. The effect of dapagliflozin treatment on epicardial adipose tissue volume [J]. Cardiovasc Diabetol, 2018, 17(1): 6.
|
[31] |
Zatz R DB, Meyer TW, Anderson S, et al. Prevention of diabetic glomerulopathy by pharmacological amelioration of glomerular capillary hypertension [J]. J Clin Invest, 1986, 77(6): 1925-1930.
|
[32] |
Heerspink HJ, Kropelin TF, Hoekman J, et al. Drug-induced reduction in albuminuria is associated with subsequent renoprotection: a meta-analysis [J]. J Am Soc Nephrol, 2015, 26(8): 2055-2064.
|
[33] |
Heerspink HJ, Perkins BA, Fitchett DH, et al. Sodium glucose cotransporter 2 inhibitors in the treatment of diabetes mellitus: cardiovascular and kidney effects, potential mechanisms, and clinical applications [J]. Circulation, 2016, 134(10): 752-772.
|
[34] |
Heerspink HJ, Desai M, Jardine M, et al. Canagliflozin slows progression of renal function decline independently of glycemic effects [J]. J Am Soc Nephrol, 2017, 28(1): 368-375.
|
[35] |
Brown E, Rajeev SP, Cuthbertson DJ, et al. A review of the mechanism of action, metabolic profile and haemodynamic effects of sodium-glucose co-transporter-2 inhibitors [J]. Diabetes Obes Metab, 2019, 21(Suppl 2): 9-18.
|
[36] |
Cherney DZI, Zinman B, Inzucchi SE, et al. Effects of empagliflozin on the urinary albumin-to-creatinine ratio in patients with type 2 diabetes and established cardiovascular disease: an exploratory analysis from the EMPA-REG OUTCOME randomised, placebo-controlled trial [J]. Lancet Diabetes Endocrinol, 2017, 5(8): 610-621.
|
[37] |
Dekkers CCJ, Petrykiv S, Laverman GD, et al. Effects of the SGLT-2 inhibitor dapagliflozin on glomerular and tubular injury markers [J]. Diabetes Obes Metab, 2018, 20(8): 1988-1993.
|
[38] |
Sun YN, Zhou Y, Chen X, et al. The efficacy of dapagliflozin combined with hypoglycaemic drugs in treating type 2 diabetes mellitus: meta-analysis of randomised controlled trials [J]. BMJ Open, 2014, 4(4): e004619.
|
[39] |
Yang T, Lu M, Ma L, et al. Efficacy and tolerability of canagliflozin as add-on to metformin in the treatment of type 2 diabetes mellitus: a meta-analysis [J]. Eur J Clin Pharmacol, 2015, 71(11): 1325-1332.
|
[40] |
Häring HU ML, Seewaldt-Becker E, Weimer M, et al. Empagliflozin as add-on to metformin in patients with type 2 diabetes: a 24-week, randomized, double-blind, placebo-controlled trial [J]. Diabetes Care, 2014, 37(6): 1650-1659.
|
[41] |
Aronson R, Frias J, Goldman A, et al. Long-term efficacy and safety of ertugliflozin monotherapy in patients with inadequately controlled T2DM despite diet and exercise: VERTIS MONO extension study [J]. Diabetes Obes Metab, 2018, 20(6): 1453-1460.
|
[42] |
Perkovic V, Jardine MJ, Neal B, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy [J]. N Engl J Med, 2019, 380(24): 2295-2306.
|
[43] |
Wanner C, Inzucchi SE, Lachin JM, et al. Empagliflozin and progression of kidney disease in type 2 diabetes [J]. N Engl J Med, 2016, 375(4): 323-334.
|
[44] |
Perkovic V, de Zeeuw D, Mahaffey KW, et al. Canagliflozin and renal outcomes in type 2 diabetes: results from the CANVAS Program randomised clinical trials [J]. Lancet Diabetes Endocrinol, 2018, 6(9): 691-704.
|
[45] |
Wiviott SD, Raz I, Bonaca MP, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes [J]. N Engl J Med, 2019, 380(4): 347-357.
|
[46] |
Neuen BL, Young T, Heerspink HJL, et al. SGLT2 inhibitors for the prevention of kidney failure in patients with type 2 diabetes: a systematic review and meta-analysis [J]. Lancet Diabetes Endocrinol, 2019, 7(11): 845-854.
|
[47] |
Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes [J]. N Engl J Med, 2015, 373(22): 2117-2128.
|
[48] |
Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes [J]. N Engl J Med, 2017, 377(7): 644-657.
|
[49] |
McMurray JJV, Solomon SD, Inzucchi SE, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction [J]. N Engl J Med, 2019, 381(21): 1995-2008.
|