切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2020, Vol. 09 ›› Issue (01) : 12 -16. doi: 10.3877/cma.j.issn.2095-3216.2020.01.003

所属专题: 文献

专家论坛

钠-葡萄糖共转运体2抑制剂对血糖的控制及心肾保护作用
叶楠1, 程虹1,()   
  1. 1. 100029 北京,首都医科大学附属北京安贞医院
  • 收稿日期:2020-01-19 出版日期:2020-02-28
  • 通信作者: 程虹

SGLT2 inhibitors: a review of their antidiabetic, renoprotective, and cardioprotective effects

Nan Ye1, Hong Cheng1,()   

  1. 1. Renal Division, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing 100029, China
  • Received:2020-01-19 Published:2020-02-28
  • Corresponding author: Hong Cheng
  • About author:
    Corresponding author: Cheng Hong, Email:
引用本文:

叶楠, 程虹. 钠-葡萄糖共转运体2抑制剂对血糖的控制及心肾保护作用[J]. 中华肾病研究电子杂志, 2020, 09(01): 12-16.

Nan Ye, Hong Cheng. SGLT2 inhibitors: a review of their antidiabetic, renoprotective, and cardioprotective effects[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2020, 09(01): 12-16.

钠-葡萄糖共转运体2(SGLT2)抑制剂是一类近些年新出现的降糖药,其独特的作用机制、良好的降糖效果、突出的心肾保护作用及较小的副作用,使其得到了越来越多的关注。SGLT2抑制剂作用于分布在肾脏近曲小管的SGLT2,抑制其对葡萄糖的重吸收,从而发挥降血糖作用。此外,SGLT2抑制剂还通过一系列不依赖于降血糖作用的机制起到心脏和肾脏保护作用。目前,已有多项已经发布结果或正在进行的随机对照试验,证明了SGLT2抑制剂具有明显的心脏保护及肾脏保护作用。本文对SGLT2抑制剂的作用机制、控制血糖作用、心脏保护作用、肾脏保护作用及不良反应做一概述。

Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a new class of hypoglycemic agents that have emerged in recent years. Their unique mechanism of action, good hypoglycemic effect, prominent cardial-renal protection and minor side effects are getting more and more attention. SGLT2 inhibitors act on SGLT2 that are distributed in the proximal tubules of the kidney, inhibiting the reabsorption of glucose, thereby exerting a hypoglycemic effect. In addition, SGLT2 inhibitors also protect the heart and kidneys through a series of mechanisms that are not dependent on hypoglycemic effects. At present, many results published or of ongoing randomized controlled trials have demonstrated that SGLT2 inhibitors had significant cardioprotective and renoprotective effect. This article reviewed the mechanism of SGLT2 inhibitors in blood glucose control, cardioprotective effect, renoprotective effect, and adverse reactions.

[1]
中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2017年版)[J]. 中华糖尿病杂志, 2018, 10(1): 4-67.
[2]
American Diabetes Association. Improving care and promoting health in populations: standards of medical care in diabetes-2019 [J]. Diabetes Care, 2019, 42(Suppl 1): S7-S12.
[3]
American Diabetes Association. Cardiovascular disease and risk management: standards of medical care in diabetes-2019 [J]. Diabetes Care, 2019, 42(Suppl 1): S103-S123.
[4]
Cavender MA, Steg PG, Smith SC Jr, et al. Impact of diabetes mellitus on hospitalization for heart failure, cardiovascular events, and death: outcomes at 4 years from the reduction of atherothrombosis for continued health (REACH) registry [J]. Circulation, 2015, 132(10): 923-931.
[5]
McAllister DA RS, Kerssens J, Livingstone S, et al. Incidence of hospitalisation for heart failure and case-fatality among 3.25 million people with and without diabetes [J]. Circulation, 2018, 138(24): 2774-2786.
[6]
Afkarian M, Zelnick LR, Hall YN, et al. Clinical manifestations of kidney disease among US adults with diabetes, 1988-2014 [J]. JAMA, 2016, 316(6): 602-610.
[7]
American Diabetes Association. Microvascular complications and foot care: standards of medical care in diabetes-2019 [J]. Diabetes Care, 2019, 42(Suppl 1): S124-S138.
[8]
Fox CS, Matsushita K, Woodward M, et al. Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without diabetes: a meta-analysis [J]. Lancet, 2012, 380(9854): 1662-1673.
[9]
Vallon V. The mechanisms and therapeutic potential of SGLT2 inhibitors in diabetes mellitus [J]. Annu Rev Med, 2015, 66: 255-270.
[10]
Roder PV, Geillinger KE, Zietek TS, et al. The role of SGLT1 and GLUT2 in intestinal glucose transport and sensing[J]. PLoS One, 2014, 9(2): e89977.
[11]
Norton L, Shannon CE, Fourcaudot M, et al. Sodium-glucose co-transporter (SGLT) and glucose transporter (GLUT) expression in the kidney of type 2 diabetic subjects [J]. Diabetes Obes Metab, 2017, 19(9): 1322-1326.
[12]
Rabizadeh S, Nakhjavani M, Esteghamati A. Cardiovascular and renal benefits of SGLT2 inhibitors: a narrative review [J]. Int J Endocrinol Metab, 2019, 17(2): e84353.
[13]
Verma S, McMurray JJV. SGLT2 inhibitors and mechanisms of cardiovascular benefit: a state-of-the-art review [J]. Diabetologia, 2018, 61(10): 2108-2117.
[14]
Verma S, McMurray JJV, Cherney DZI. The metabolodiuretic promise of sodium-dependent glucose cotransporter 2 inhibition: the search for the sweet spot in heart failure [J]. JAMA Cardiol, 2017, 2(9): 939-940.
[15]
Lytvyn Y, Bjornstad P, Udell JA, et al. Sodium glucose cotransporter-2 inhibition in heart failure: potential mechanisms, clinical applications, and summary of clinical trials [J]. Circulation, 2017, 136(17): 1643-1658.
[16]
Inzucchi SE, Zinman B, Fitchett D, et al. How does empagliflozin reduce cardiovascular mortality? Insights from a mediation analysis of the EMPA-REG OUTCOME trial [J]. Diabetes Care, 2018, 41(2): 356-363.
[17]
Hallow KM, Helmlinger G, Greasley PJ, et al. Why do SGLT2 inhibitors reduce heart failure hospitalization? A differential volume regulation hypothesis [J]. Diabetes Obes Metab, 2018, 20(3): 479-487.
[18]
Striepe K, Jumar A, Ott C, et al. Effects of the selective sodium-glucose cotransporter 2 inhibitor empagliflozin on vascular function and central hemodynamics in patients with type 2 diabetes mellitus [J]. Circulation, 2017, 136(12): 1167-1169.
[19]
Chilton R, Tikkanen I, Cannon CP, et al. Effects of empagliflozin on blood pressure and markers of arterial stiffness and vascular resistance in patients with type 2 diabetes [J]. Diabetes Obes Metab, 2015, 17(12): 1180-1193.
[20]
Li H, Shin SE, Seo MS, et al. The anti-diabetic drug dapagliflozin induces vasodilation via activation of PKG and Kv channels [J]. Life Sci, 2018, 197: 46-55.
[21]
Solini A, Giannini L, Seghieri M, et al. Dapagliflozin acutely improves endothelial dysfunction, reduces aortic stiffness and renal resistive index in type 2 diabetic patients: a pilot study [J]. Cardiovasc Diabetol, 2017, 16(1): 138.
[22]
Ferrannini E, Mark M, Mayoux E. CV protection in the EMPA-REG OUTCOME trial: a "thrifty substrate" hypothesis [J]. Diabetes Care, 2016, 39(7): 1108-1114.
[23]
Lopaschuk GD, Verma S. Empagliflozin's fuel hypothesis: not so soon [J]. Cell Metab, 2016, 24(2): 200-202.
[24]
Packer M, Anker SD, Butler J, et al. Effects of sodium-glucose cotransporter 2 inhibitors for the treatment of patients with heart failure: proposal of a novel mechanism of action [J]. JAMA Cardiol, 2017, 2(9): 1025-1029.
[25]
Uthman L, Baartscheer A, Bleijlevens B, et al. Class effects of SGLT2 inhibitors in mouse cardiomyocytes and hearts: inhibition of Na/H exchanger, lowering of cytosolic Na and vasodilation [J]. Diabetologia, 2018, 61(3): 722-726.
[26]
Baartscheer A, Schumacher CA, Wüst RC, et al. Empagliflozin decreases myocardial cytoplasmic Na through inhibition of the cardiac Na/H exchanger in rats and rabbits [J]. Diabetologia, 2017, 60(3): 568-573.
[27]
Lee TM, Chang NC, Lin SZ. Dapagliflozin, a selective SGLT2 Inhibitor, attenuated cardiac fibrosis by regulating the macrophage polarization via STAT3 signaling in infarcted rat hearts [J]. Free Radic Biol Med, 2017, 104: 298-310.
[28]
Packer M. Do sodium-glucose cotransporter-2 inhibitors prevent heart failure with a preserved ejection fraction by counterbalancing the effects of leptin? A novel hypothesis [J]. Diabetes Obes Metab, 2018, 20(6): 1361-1366.
[29]
Garvey WT, Van Gaal L, Leiter LA, et al. Effects of canagliflozin versus glimepiride on adipokines and inflammatory biomarkers in type 2 diabetes [J]. Metabolism, 2018, 85: 32-37.
[30]
Sato T, Aizawa Y, Yuasa S, et al. The effect of dapagliflozin treatment on epicardial adipose tissue volume [J]. Cardiovasc Diabetol, 2018, 17(1): 6.
[31]
Zatz R DB, Meyer TW, Anderson S, et al. Prevention of diabetic glomerulopathy by pharmacological amelioration of glomerular capillary hypertension [J]. J Clin Invest, 1986, 77(6): 1925-1930.
[32]
Heerspink HJ, Kropelin TF, Hoekman J, et al. Drug-induced reduction in albuminuria is associated with subsequent renoprotection: a meta-analysis [J]. J Am Soc Nephrol, 2015, 26(8): 2055-2064.
[33]
Heerspink HJ, Perkins BA, Fitchett DH, et al. Sodium glucose cotransporter 2 inhibitors in the treatment of diabetes mellitus: cardiovascular and kidney effects, potential mechanisms, and clinical applications [J]. Circulation, 2016, 134(10): 752-772.
[34]
Heerspink HJ, Desai M, Jardine M, et al. Canagliflozin slows progression of renal function decline independently of glycemic effects [J]. J Am Soc Nephrol, 2017, 28(1): 368-375.
[35]
Brown E, Rajeev SP, Cuthbertson DJ, et al. A review of the mechanism of action, metabolic profile and haemodynamic effects of sodium-glucose co-transporter-2 inhibitors [J]. Diabetes Obes Metab, 2019, 21(Suppl 2): 9-18.
[36]
Cherney DZI, Zinman B, Inzucchi SE, et al. Effects of empagliflozin on the urinary albumin-to-creatinine ratio in patients with type 2 diabetes and established cardiovascular disease: an exploratory analysis from the EMPA-REG OUTCOME randomised, placebo-controlled trial [J]. Lancet Diabetes Endocrinol, 2017, 5(8): 610-621.
[37]
Dekkers CCJ, Petrykiv S, Laverman GD, et al. Effects of the SGLT-2 inhibitor dapagliflozin on glomerular and tubular injury markers [J]. Diabetes Obes Metab, 2018, 20(8): 1988-1993.
[38]
Sun YN, Zhou Y, Chen X, et al. The efficacy of dapagliflozin combined with hypoglycaemic drugs in treating type 2 diabetes mellitus: meta-analysis of randomised controlled trials [J]. BMJ Open, 2014, 4(4): e004619.
[39]
Yang T, Lu M, Ma L, et al. Efficacy and tolerability of canagliflozin as add-on to metformin in the treatment of type 2 diabetes mellitus: a meta-analysis [J]. Eur J Clin Pharmacol, 2015, 71(11): 1325-1332.
[40]
Häring HU ML, Seewaldt-Becker E, Weimer M, et al. Empagliflozin as add-on to metformin in patients with type 2 diabetes: a 24-week, randomized, double-blind, placebo-controlled trial [J]. Diabetes Care, 2014, 37(6): 1650-1659.
[41]
Aronson R, Frias J, Goldman A, et al. Long-term efficacy and safety of ertugliflozin monotherapy in patients with inadequately controlled T2DM despite diet and exercise: VERTIS MONO extension study [J]. Diabetes Obes Metab, 2018, 20(6): 1453-1460.
[42]
Perkovic V, Jardine MJ, Neal B, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy [J]. N Engl J Med, 2019, 380(24): 2295-2306.
[43]
Wanner C, Inzucchi SE, Lachin JM, et al. Empagliflozin and progression of kidney disease in type 2 diabetes [J]. N Engl J Med, 2016, 375(4): 323-334.
[44]
Perkovic V, de Zeeuw D, Mahaffey KW, et al. Canagliflozin and renal outcomes in type 2 diabetes: results from the CANVAS Program randomised clinical trials [J]. Lancet Diabetes Endocrinol, 2018, 6(9): 691-704.
[45]
Wiviott SD, Raz I, Bonaca MP, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes [J]. N Engl J Med, 2019, 380(4): 347-357.
[46]
Neuen BL, Young T, Heerspink HJL, et al. SGLT2 inhibitors for the prevention of kidney failure in patients with type 2 diabetes: a systematic review and meta-analysis [J]. Lancet Diabetes Endocrinol, 2019, 7(11): 845-854.
[47]
Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes [J]. N Engl J Med, 2015, 373(22): 2117-2128.
[48]
Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes [J]. N Engl J Med, 2017, 377(7): 644-657.
[49]
McMurray JJV, Solomon SD, Inzucchi SE, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction [J]. N Engl J Med, 2019, 381(21): 1995-2008.
[1] 何金梅, 尹立雪, 谭静, 张文军, 王锐, 任梅, 廖明娇. 超声心肌做功技术对2型糖尿病患者潜在左心室心肌收缩功能损伤的评价[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1029-1035.
[2] 王珏, 陈赛君, 贲志飞, 詹锦勇, 徐开颖. 剪切波弹性成像联合极速脉搏波技术评估颈动脉弹性对糖尿病性视网膜病变的预测价值[J]. 中华医学超声杂志(电子版), 2023, 20(06): 636-641.
[3] 王洁, 丁泊文, 尹健. 糖尿病性乳腺病52例临床分析[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 285-289.
[4] 陈絮, 詹玉茹, 王纯华. 孕妇ABO血型联合甲状腺功能检测对预测妊娠期糖尿病的临床价值[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 604-610.
[5] 张健, 刘小龙, 查天建, 姚俊杰, 王傑. 富含血小板血浆联合异种脱细胞真皮基质修复糖尿病足缺血性创面的临床效果[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 503-506.
[6] 赵雅玫, 谢斌, 陈艳, 吴健. 抗生素骨水泥联合负压封闭引流对糖尿病足溃疡临床疗效的荟萃分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 427-433.
[7] 贾蔓箐, 卞婧, 周业平. 对小剂量胰岛素局部注射促进脂肪干细胞移植成活及改善糖尿病创面愈合临床观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 312-316.
[8] 李琛, 张惟佳, 潘亚萍. 牙周炎与系统性疾病之间关系的应用思考:2022年EFP和WONCA欧洲分部联合研讨会共识报告的解读及启示[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 322-327.
[9] 叶弘, 吕婧喆, 钟良军. 白藜芦醇治疗牙周炎和糖尿病的新进展[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 376-380.
[10] 中国康复医学会器官移植康复专业委员会. 成人实体器官移植后糖尿病管理专家共识[J]. 中华移植杂志(电子版), 2023, 17(04): 205-220.
[11] 程莉, 章晓良. 血尿酸和胱抑素C与糖尿病视网膜病变患者合并糖尿病肾病的关系及影响因素[J]. 中华肾病研究电子杂志, 2023, 12(04): 194-199.
[12] 黄岩, 刘晓巍, 杨春玲, 兰烨. 急性胰腺炎合并糖尿病患者的临床特征及血糖代谢与病情严重度的相关性[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 439-442.
[13] 张政赢, 鞠阳, 刘晓宁. 二甲双胍对2型糖尿病患者大肠腺瘤术后复发的影响[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 485-488.
[14] 薛念余, 张盛敏, 吴凌恒, 沙蕾, 童揽月, 沈崔琴, 李朝军, 杜联芳. 研究血清胆红素对2型糖尿病患者心脏结构发生改变前心肌功能的影响[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1004-1009.
[15] 谢国晓, 赵凌霞, 薛雪花. 慢性病管理模式在糖尿病社区管理中的应用[J]. 中华临床医师杂志(电子版), 2023, 17(05): 587-590.
阅读次数
全文


摘要