切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2020, Vol. 09 ›› Issue (01) : 38 -42. doi: 10.3877/cma.j.issn.2095-3216.2020.01.008

所属专题: 文献

综述

CKD-MBD对心血管疾病的影响
陈伟生1, 王梦婧1,(), 张敏敏1   
  1. 1. 200050 上海,复旦大学附属华山医院肾病科
  • 收稿日期:2019-09-23 出版日期:2020-02-28
  • 通信作者: 王梦婧
  • 基金资助:
    国家自然科学基金青年基金(81600577); 上海市自然科学基金科研计划项目(16ZR1449400)

The impact of CKD-MBD on cardiovascular disease

Weisheng Chen1, Mengjing Wang1,(), Minmin Zhang1   

  1. 1. Department of Nephrology, Huashan Hospital Affiliated to Fudan University, Shanghai 200050, China
  • Received:2019-09-23 Published:2020-02-28
  • Corresponding author: Mengjing Wang
  • About author:
    Corresponding author: Wang Mengjing, Email:
引用本文:

陈伟生, 王梦婧, 张敏敏. CKD-MBD对心血管疾病的影响[J/OL]. 中华肾病研究电子杂志, 2020, 09(01): 38-42.

Weisheng Chen, Mengjing Wang, Minmin Zhang. The impact of CKD-MBD on cardiovascular disease[J/OL]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2020, 09(01): 38-42.

心血管疾病为慢性肾脏病患者死亡的主要原因。传统心血管疾病危险因素仅能部分解释慢性肾脏病患者心血管并发症的发生,而非传统因素如慢性肾脏病-矿物质和骨异常(CKD-MBD)在这一病理生理过程中可能起到重要的作用。CKD-MBD主要特征为血钙、血磷、甲状旁腺素(PTH)、活性维生素D及成纤维细胞生长因子23(FGF23)水平紊乱伴骨代谢异常。针对CKD-MBD进行干预,可能具有减轻心血管病变、降低病死率等作用。本文就CKD-MBD对心血管疾病的影响作一综述。

Cardiovascular disease is the leading cause of death in patients with chronic kidney disease (CKD). Traditional risk factors of cardiovascular disease can only partly account for the high frequency of cardiovascular disease in patients with CKD, while CKD-mineral and bone disorder (CKD-MBD) as a non-traditional risk factor may play a more essential role in this pathophysiological process. CKD-MBD is mainly characterized by disturbances of serum levels of calcium, phosphate, parathyroid hormone (PTH), active form of vitamin D, and fibroblast growth factor 23 (FGF23). Interventions for CKD-MBD may attenuate cardiovascular burdens and ameliorate mortality in CKD patients. This review summerized the latest researches in the impact of CKD-MBD on cardiovascular disease of CKD patients.

[1]
Zhang L, Wang F, Wang L, et al. Prevalence of chronic kidney disease in China: a cross-sectional survey [J]. The Lancet, 2012, 379 (9818): 815-822.
[2]
Saran R, Robinson B, Abbott KC, et al. US Renal Data System 2017 annual data report: epidemiology of kidney disease in the United States [J]. Am J Kidney Dis, 2018, 71 (3 Suppl 1): A7.
[3]
van der Velde M, Matsushita K, Coresh J, et al. Lower estimated glomerular filtration rate and higher albuminuria are associated with all-cause and cardiovascular mortality. A collaborative meta-analysis of high-risk population cohorts [J]. Kidney Int, 2011, 79 (12): 1341-1352.
[4]
Gaita D, Mihaescu A, Schiller A. Of heart and kidney: a complicated love story [J]. Eur J Prev Cardiol, 2014, 21 (7): 840-846.
[5]
Weiner DE, Tighiouart H, Elsayed EF, et al. The Framingham predictive instrument in chronic kidney disease [J]. J Am Coll Cardiol, 2007, 50 (3): 217-224.
[6]
Palmer SC, Hayen A, Macaskill P, et al. Serum levels of phosphorus, parathyroid hormone, and calcium and risks of death and cardiovascular disease in individuals with chronic kidney disease: a systematic review and meta-analysis [J]. JAMA, 2011, 305 (11): 1119-1127.
[7]
Seya K, Furukawa K, Chiyoya M, et al. 1-methyl-2-undecyl-4(1H)-quinolone, a derivative of quinolone alkaloid evocarpine, attenuates high phosphate-induced calcification of human aortic valve interstitial cells by inhibiting phosphate cotransporter PiT-1 [J]. J Pharmacol Sci, 2016, 131 (1): 51-57.
[8]
Wang M, Li H, You L, et al. Association of serum phosphorus variability with coronary artery calcification among hemodialysis patients [J]. PLoS One, 2014, 9 (4): e93360.
[9]
Hill KM, Martin BR, Wastney ME, et al. Oral calcium carbonate affects calcium but not phosphorus balance in stage 3-4 chronic kidney disease [J]. Kidney Int, 2013, 83 (5): 959-966.
[10]
Desjardins L, Liabeuf S, Renard C, et al. FGF23 is independently associated with vascular calcification but not bone mineral density in patients at various CKD stages [J]. Osteoporos Int, 2012, 23 (7): 2017-2025.
[11]
Xu H, Evans M, Gasparini A, et al. Outcomes associated to serum phosphate levels in patients with suspected acute coronary syndrome [J]. Int J Cardiol, 2017, 245: 20-26.
[12]
Gutierrez OM, Januzzi JL, Isakova T, et al. Fibroblast growth factor 23 and left ventricular hypertrophy in chronic kidney disease [J]. Circulation, 2009, 119 (19): 2545-2552.
[13]
Kendrick J, Cheung AK, Kaufman JS, et al. FGF-23 associates with death, cardiovascular events, and initiation of chronic dialysis [J]. J Am Soc Nephrol, 2011, 22 (10): 1913-1922.
[14]
Grabner A, Amaral AP, Schramm K, et al. Activation of cardiac fibroblast growth factor receptor 4 causes left ventricular hypertrophy [J]. Cell Metab, 2015, 22 (6): 1020-1032.
[15]
Pastor-Arroyo EM, Gehring N, Krudewig C, et al. The elevation of circulating fibroblast growth factor 23 without kidney disease does not increase cardiovascular disease risk [J]. Kidney Int, 2018, 94 (1): 49-59.
[16]
Robinson-Cohen C, Shlipak M, Sarnak M, et al. Impact of race on the association of mineral metabolism with heart failure: the Multi-Ethnic Study of Atherosclerosis [J]. J Clin Endocrinol Metab, 2020, 105(4): dgz218.
[17]
Marthi A, Donovan K, Haynes R, et al. Fibroblast growth factor-23 and risks of cardiovascular and noncardiovascular diseases: a meta-analysis [J]. J Am Soc Nephrol, 2018, 29 (7): 2015-2027.
[18]
Navarro-Garcia JA, Fernandez-Velasco M, Delgado C, et al. PTH, vitamin D, and the FGF-23-klotho axis and heart: going beyond the confines of nephrology [J]. Eur J Clin Invest, 2018, 48 (4): 10.1111/eci.12902.
[19]
Chitalia N, Ismail T, Tooth L, et al. Impact of vitamin D supplementation on arterial vasomotion, stiffness and endothelial biomarkers in chronic kidney disease patients [J]. PLoS One, 2014, 9 (3): e91363.
[20]
Maiya S, Sullivan I, Allgrove J, et al. Hypocalcaemia and vitamin D deficiency: an important, but preventable, cause of life-threatening infant heart failure [J]. Heart, 2008, 94 (5): 581-584.
[21]
Li YC, Kong J, Wei M, et al. 1,25-Dihydroxyvitamin D(3) is a negative endocrine regulator of the renin-angiotensin system [J]. J Clin Invest, 2002, 110 (2): 229-238.
[22]
Timms PM, Mannan N, Hitman GA, et al. Circulating MMP9, vitamin D and variation in the TIMP-1 response with VDR genotype: mechanisms for inflammatory damage in chronic disorders? [J]. QJM, 2002, 95 (12): 787-796.
[23]
Demer LL, Tintut Y. Interactive and multifactorial mechanisms of calcific vascular and valvular disease [J]. Trends Endocrinol Metab, 2019, 30 (9): 646-657.
[24]
Tentori F, Wang M, Bieber BA, et al. Recent changes in therapeutic approaches and association with outcomes among patients with secondary hyperparathyroidism on chronic hemodialysis: the DOPPS study [J]. Clin J Am Soc Nephrol, 2015, 10 (1): 98-109.
[25]
Lee SA, Lee MJ, Ryu GW, et al. Low serum intact parathyroid hormone level is an independent risk factor for overall mortality and major adverse cardiac and cerebrovascular events in incident dialysis patients [J]. Osteoporos Int, 2016, 27 (9): 2717-2726.
[26]
Chen T, Mao H, Chen C, et al. The role and mechanism of alpha-Klotho in the calcification of rat aortic vascular smooth muscle cells [J]. Biomed Res Int, 2015, 2015: 194362.
[27]
Xie J, Yoon J, An SW, et al. Soluble Klotho protects against uremic cardiomyopathy independently of fibroblast growth factor 23 and phosphate [J]. J Am Soc Nephrol, 2015, 26 (5): 1150-1160.
[28]
Seiler S, Rogacev KS, Roth HJ, et al. Associations of FGF-23 and sKlotho with cardiovascular outcomes among patients with CKD stages 2-4 [J]. Clin J Am Soc Nephrol, 2014, 9 (6): 1049-1058.
[29]
Lello S, Capozzi A, Scambia G. Osteoporosis and cardiovascular disease: an update [J]. Gynecol Endocrinol, 2015, 31 (8): 590-594.
[30]
Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Update Work Group. KDIGO 2017 clinical practice guideline update for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease-mineral and bone disorder (CKD-MBD) [J]. Kidney Int Suppl (2011), 2017, 7 (1): 1-59.
[31]
Ruospo M, Palmer SC, Natale P, et al. Phosphate binders for preventing and treating chronic kidney disease-mineral and bone disorder (CKD-MBD) [J]. Cochrane Database Syst Rev, 2018, 8(8): CD006023.
[32]
Sprague SM, Coyne D. Control of secondary hyperparathyroidism by vitamin D receptor agonists in chronic kidney disease [J]. Clin J Am Soc Nephrol, 2010, 5 (3): 512-518.
[33]
Cunningham J, Danese M, Olson K, et al. Effects of the calcimimetic cinacalcet HCl on cardiovascular disease, fracture, and health-related quality of life in secondary hyperparathyroidism [J]. Kidney Int, 2005, 68 (4): 1793-1800.
[34]
EVOLVE Trial Investigators, Chertow GM, Block GA, et al. Effect of cinacalcet on cardiovascular disease in patients undergoing dialysis [J]. N Engl J Med, 2012, 367 (26): 2482-2494.
[35]
Komaba H, Taniguchi M, Wada A, et al. Parathyroidectomy and survival among Japanese hemodialysis patients with secondary hyperparathyroidism [J]. Kidney Int, 2015, 88 (2): 350-359.
[36]
Naves-Diaz M, Alvarez-Hernandez D, Passlick-Deetjen J, et al. Oral active vitamin D is associated with improved survival in hemodialysis patients [J]. Kidney Int, 2008, 74 (8): 1070-1078.
[37]
Kumar V, Yadav AK, Lal A, et al. A randomized trial of vitamin D supplementation on vascular function in CKD [J]. J Am Soc Nephrol, 2017, 28 (10): 3100-3108.
[38]
Scragg R, Stewart AW, Waayer D, et al. Effect of monthly high-dose vitamin D supplementation on cardiovascular disease in the vitamin D assessment study : a randomized clinical trial [J]. JAMA Cardiol, 2017, 2 (6): 608-616.
[39]
Kaur G, Singh J, Kumar J. Vitamin D and cardiovascular disease in chronic kidney disease [J]. Pediatr Nephrol, 2019, 34 (12): 2509-2522.
[40]
Shalhoub V, Shatzen EM, Ward SC, et al. FGF23 neutralization improves chronic kidney disease-associated hyperparathyroidism yet increases mortality [J]. J Clin Invest, 2012, 122 (7): 2543-2553.
[41]
Neyra JA, Hu MC. αKlotho and chronic kidney disease [J]. Vitam Horm, 2016, 101: 257-310.
[1] 郝玥萦, 毛盈譞, 张羽, 汪佳旭, 韩林霖, 匡雯雯, 孟瑶, 杨秀华. 超声引导衰减参数成像评估肝脂肪变性及其对心血管疾病风险的预测价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(08): 770-777.
[2] 曹雯佳, 刘学兵, 罗安果, 钟释敏, 邓岚, 王玉琳, 李赵欢. 超声矢量血流成像对2型糖尿病患者颈动脉壁剪切应力的研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(07): 709-717.
[3] 庄燕, 戴林峰, 张海东, 陈秋华, 聂清芳. 脓毒症患者早期生存影响因素及Cox 风险预测模型构建[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 372-378.
[4] 黄鸿初, 黄美容, 温丽红. 血液系统恶性肿瘤患者化疗后粒细胞缺乏感染的危险因素和风险预测模型[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(05): 285-292.
[5] 罗文斌, 韩玮. 胰腺癌患者首次化疗后中重度骨髓抑制的相关危险因素分析及预测模型构建[J/OL]. 中华普通外科学文献(电子版), 2024, 18(05): 357-362.
[6] 贺斌, 马晋峰. 胃癌脾门淋巴结转移危险因素[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 694-699.
[7] 高金红, 陈玉梅, 郭韵. 基于King互动达标理论的心理疏导在腹腔镜肝癌切除术患者的应用效果分析[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(05): 517-520.
[8] 林凯, 潘勇, 赵高平, 杨春. 造口还纳术后切口疝的危险因素分析与预防策略[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 634-638.
[9] 杨闯, 马雪. 腹壁疝术后感染的危险因素分析[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 693-696.
[10] 周艳, 李盈, 周小兵, 程发辉, 何恒正. 不同类型补片联合Nissen 胃底折叠术修补食管裂孔疝的疗效及复发潜在危险因素[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(05): 528-533.
[11] 宋新雅, 苏小慧, 卞士柱, 丁小涵. 吸入性药物治疗肺动脉高压的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 831-835.
[12] 颜世锐, 熊辉. 感染性心内膜炎合并急性肾损伤患者的危险因素探索及死亡风险预测[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 618-624.
[13] 李文哲, 王毅, 崔建, 郑启航, 王靖彦, 于湘友. 新疆维吾尔自治区重症患者急性肾功能异常的危险因素分析[J/OL]. 中华卫生应急电子杂志, 2024, 10(05): 269-276.
[14] 刘志超, 胡风云, 温春丽. 山西省脑卒中危险因素与地域的相关性分析[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 424-433.
[15] 曹亚丽, 高雨萌, 张英谦, 李博, 杜军保, 金红芳. 儿童坐位不耐受的临床进展[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 510-515.
阅读次数
全文


摘要