切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2020, Vol. 09 ›› Issue (01) : 33 -37. doi: 10.3877/cma.j.issn.2095-3216.2020.01.007

所属专题: 文献

综述

慢性肾脏病合并高血压的新机制
冯晋1, 张爱华2,()   
  1. 1. 100191 北京大学第三医院肾内科
    2. 100053 首都医科大学宣武医院
  • 收稿日期:2019-04-28 出版日期:2020-02-28
  • 通信作者: 张爱华
  • 基金资助:
    国家自然科学基金项目(81170706)

New mechanisms of hypertension in chronic kidney disease

Jin Feng1, Aihua Zhang2,()   

  1. 1. Department of Nephrology, The Third Hospital of Peking University, Beijing 100191, China
    2. Department of Nephrology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
  • Received:2019-04-28 Published:2020-02-28
  • Corresponding author: Aihua Zhang
  • About author:
    Corresponding author: Zhang Aihua, Email:
引用本文:

冯晋, 张爱华. 慢性肾脏病合并高血压的新机制[J]. 中华肾病研究电子杂志, 2020, 09(01): 33-37.

Jin Feng, Aihua Zhang. New mechanisms of hypertension in chronic kidney disease[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2020, 09(01): 33-37.

高血压既是CKD的病因,又是CKD进展的重要危险因素,也是发生心脑血管事件的重要危险因素。除了经典发病机制,近年来发现,免疫因素、微小RNA、脑脊液的交感神经系统活性增加、皮肤淋巴回流障碍、血管平滑肌细胞PPAR-γ信号被干预,导致自主神经功能不全等新机制,也参与了肾脏病合并高血压的发病,本文对这些新机制进行了综述。

Hypertension is not only involved in the etiology of CKD, but also an important risk factor for both the progression of CKD and the cardiovascular and cerebrovascular events. In addition to the classic pathogenesis of hypertension in CKD, new mechanisms have also been found in recent years, including immune factors, microRNAs, increase of the sympathetic nervous system activity in cerebrospinal fluid, disorder of cutaneous lymphatic reflux, and intervention of PPAR-γ signals in vascular smooth muscle cells leading to autonomic dysfunction. These new mechanisms were reviewed in this article.

[1]
Zhang L, Wang F, Wang L, et al. Prevalence of chronic kidney disease in China: a cross-sectional survey [J]. Lancet, 2012, 379 (9818): 815-822.
[2]
Zheng Y, Cai GY, Chen XM, et al. Prevalence, awareness, treatment, and control of hypertension in the non-dialysis chronic kidney disease patients [J]. Chin Med J (Engl), 2013, 126(12): 2276-2280.
[3]
Haddy FJ. Role of dietary salt in hypertension [J]. Life Sci, 2006, 79(17): 1585-1592.
[4]
Tornel J, Madrid MI, Garcia-Salom M, et al. Role of kinins in the control of renal papillary blood flow, pressure natriuresis, and arterial pressure [J]. Circ Res, 2000, 86(5): 589-595.
[5]
Majima M, Hayashi I, Fujita T, et al. Facilitation of renal kallikrein-kinin system prevents the development of hypertension by inhibition of sodium retention [J]. Immunopharmacology, 1999, 44(1-2): 145-152.
[6]
Zoccali C, Mallamaci F, Tripepi G. Novel cardiovascular risk factors in end-stage renal disease [J]. J Am Soc Nephrol, 2004, 15(Suppl 1): S77-S80.
[7]
Schroder M, Riedel E, Beck W, et al. Increased reduction of dimethylarginines and lowered interdialytic blood pressure by the use of biocompatible membranes [J]. Kidney Int Suppl, 2001, 78: S19-S24.
[8]
Kielstein JT, Boger RH, Bode-Boger SM, et al. Asymmetric dimethylarginine plasma concentrations differ in patients with end-stage renal disease: relationship to treatment method and atherosclerotic disease [J]. J Am Soc Nephrol, 1999, 10(3): 594-600.
[9]
Goldblatt H, Lynch J, Hanzal RF, et al. Studies on experimental hypertension: I. the production of persistent elevation of systolic blood pressure by means of renal ischemia [J]. J Exp Med, 1934, 59 (3): 347-379.
[10]
Godlewski G, Alapafuja SO, Batkai S, et al. Inhibitor of fatty acid amide hydrolase normalizes cardiovascular function in hypertension without adverse metabolic effects [J]. Chem Biol, 2010, 17(11): 1256-1266.
[11]
Guo Z, Liu YX, Yuan F, et al. Enhanced vasorelaxation effect of endogenous anandamide on thoracic aorta in renal vascular hypertension rats [J]. Clin Exp Pharmacol Physiol, 2015, 42(9): 950-955.
[12]
Wang Y, Wang DH. A novel mechanism contributing to development of Dahl salt-sensitive hypertension: role of the transient receptor potential vanilloid type 1 [J]. Hypertension, 2006, 47(3): 609-614.
[13]
Bai Q, Zhang J, Zhang AH, et al. Role of arachidonoylethanolamine in blood pressure regulation in volume-resistant patients on peritoneal dialysis [J]. Int Urol Nephrol, 2012, 44(6): 1855-1860.
[14]
Zhu L, Sui L, Wu S, et al. Association between essential hypertension and three vasoactive peptides, urotensin Ⅱ,endothelin and adrenomedullin [J]. Clin Exp Hypertens, 2015, 37 (7): 604-608.
[15]
Şatıroĝu Ö, Durakoĝlugil ME, Cetin M, et al. The role of urotensin Ⅱ and atherosclerotic risk factors in patients with slow coronary flow [J]. Interv Med Appl Sci, 2016, 8(4): 158-163.
[16]
Lin Y, Tsuchihashi T, Matsumura K, et al. Central cardiovascular action of urotensin Ⅱ in spontaneously hypertensive rats [J]. Hypertens Res, 2003, 26(10): 839-845.
[17]
He WY, Bai Q, A LT, et al. Irisin levels are associated with urotensin Ⅱ levels in diabetic patients [J]. J Diabetes Investig, 2015, 6(5): 571-576.
[18]
McMaster WG, Kirabo A, Madhur MS, et al. Inflammation, immunity, and hypertensive end-organ damage [J]. Circ Res, 2015, 116(6): 1022-1033.
[19]
Sakaguchi M, Kato H, Nishiyori A, et al. Characterization of CD4 T helper cells in patients with Kawasaki disease (KD): preferential production of tumour necrosis factor-alpha (TNF-alpha) by V beta 2- or V beta 8- CD4 T helper cells [J]. Clin Exp Immunol, 1995, 99(2): 276-282.
[20]
Peleli M, Flacker P, Zhuge Z, et al. Renal denervation attenuates hypertension and renal dysfunction in a model of cardiovascular and renal disease, which is associated with reduced NADPH and xanthine oxidase activity [J]. Redox Biol, 2017, 13: 522-527.
[21]
Fabbiano S, Menacho-Márquez M, Robles-Valero J, et al. Immunosuppression-independent role of regulatory T cells against hypertension-driven renal dysfunctions [J]. Mol Cell Biol, 2015, 35(20): 3528-3546.
[22]
Davies SS, Amarnath V, Roberts LJ 2nd. Isoketals: highly reactive gamma-ketoaldehydes formed from the H2-isoprostane pathway [J]. Chem Phys Lipids, 2004, 128(1-2): 85-99.
[23]
Roychowdhury S, McMullen MR, Pritchard MT, et al. Formation of gamma-ketoaldehyde-protein adducts during ethanol-induced liver injury in mice [J]. Free Radic Biol Med, 2009, 47(11): 1526-1538.
[24]
Kirabo A, Fontana V, de Faria AP, et al. DC isoketal-modified proteins activate T cells and promote hypertension [J]. J Clin Invest, 2014, 124(10): 4642-4656.
[25]
Peleli M, Al-Mashhadi A, Yang T, et al. Renal denervation attenuates NADPH oxidase-mediated oxidative stress and hypertension in rats with hydronephrosis [J]. Am J Physiol Renal Physiol, 2016, 310(1): F43-F56.
[26]
Rafiq A, Aslam K, Malik R, et al. C242T polymorphism of the NADPH oxidase p22PHOX gene and its association with endothelial dysfunction in asymptomatic individuals with essential systemic hypertension [J]. Mol Med Rep, 2014, 9(5): 1857-1862.
[27]
Gray SP, Jandeleit-Dahm KA. The role of NADPH oxidase in vascular disease--hypertension, atherosclerosis & stroke [J]. Curr Pharm Des, 2015, 21(41): 5933-5944.
[28]
Qiu Y, Tao L, Lei C, et al. Downregulating p22phox ameliorates inflammatory response in Angiotensin Ⅱ-induced oxidative stress by regulating MAPK and NF-kappaB pathways in ARPE-19 cells [J]. Sci Rep, 2015, 5: 14362.
[29]
Sun Y, Koo S, White N, et al. Development of a micro-array to detect human and mouse microRNAs and characterization of expression in human organs [J]. Nucleic Acids Res, 2004, 32(22): e188.
[30]
Nandakumar P, Tin A, Grove ML, et al. MicroRNAs in the miR-17 and miR-15 families are downregulated in chronic kidney disease with hypertension [J]. PLoS One, 2017, 12(8): e0176734.
[31]
Klimczak D, Kuch M, Pilecki T, et al. Plasma microRNA-155-5p is increased among patients with chronic kidney disease and nocturnal hypertension [J]. J Am Soc Hypertens, 2017, 11(12): 831-841.
[32]
Stanković A, Kolaković A, Živković M, et al. Angiotensin receptor type 1 polymorphism A1166C is associated with altered AT1R and miR-155 expression in carotid plaque tissue and development of hypoechoic carotid plaques [J]. Atherosclerosis, 2016, 248: 132-139.
[33]
Ceolotto G, Papparella I, Bortoluzzi A, et al. Interplay between miR-155, AT1R A1166C polymorphism, and AT1R expression in young untreated hypertensives [J]. Am J Hypertens, 2011, 24(2): 241-246.
[34]
Diniz GP, Takano AP, Barreto-Chaves ML. MiRNA-208a and miRNA-208b are triggered in thyroid hormone-induced cardiac hypertrophy - role of type 1 angiotensin Ⅱ receptor (AT1R) on miRNA-208a/alpha-MHC modulation [J]. Mol Cell Endocrinol, 2013, 374(1-2): 117-124.
[35]
Huang BS, Wang H, Leenen FH. Enhanced sympathoexcitatory and pressor responses to central Na in Dahl salt-sensitive vs -resistant rats [J]. Am J Physiol Heart Circ Physiol, 2001, 281(5): H1881-H1889.
[36]
Nishimura M, Ohtsuka K, Nanbu A, et al. Benzamil blockade of brain Na channels averts Na(+)-induced hypertension in rats [J]. Am J Physiol, 1998, 274 (3 Pt 2): R635-R644.
[37]
Huang BS, Leenen FH. Brain amiloride-sensitive Phe-Met-Arg-Phe-NH(2)-gated Na(+) channels and Na(+)-induced sympathoexcitation and hypertension [J]. Hypertension, 2002, 39(2 Pt 2): 557-561.
[38]
Liu D, Fernandez BO, Hamilton A, et al. UVA irradiation of human skin vasodilates arterial vasculature and lowers blood pressure independently of nitric oxide synthase [J]. J Invest Dermatol, 2014, 134(7): 1839-1846.
[39]
Opländer C, Volkmar CM, Paunel-Görgülü A, et al. Whole body UVA irradiation lowers systemic blood pressure by release of nitric oxide from intracutaneous photolabile nitric oxide derivates [J]. Circ Res, 2009, 105(10): 1031-1040.
[40]
Johnson RS, Titze J, Weller R. Cutaneous control of blood pressure [J]. Curr Opin Nephrol Hypertens, 2016, 25(1): 11-15.
[41]
Wimalawansa SJ. Vitamin D and cardiovascular diseases: causality [J]. J Steroid Biochem Mol Biol, 2018, 175: 29-43.
[42]
Mithal A, Wahl DA, Bonjour JP, et al. Global vitamin D status and determinants of hypovitaminosis D [J]. Osteoporos Int, 2009, 20(11): 1807-1820.
[43]
Ke L, Mason RS, Kariuki M, et al. Vitamin D status and hypertension: a review [J]. Integr Blood Press Control, 2015, 8: 13-35.
[44]
Karbach S, Croxford AL, Oelze M, et al. Interleukin 17 drives vascular inflammation, endothelial dysfunction, and arterial hypertension in psoriasis-like skin disease [J]. Arterioscler Thromb Vasc Biol, 2014, 34(12): 2658-2668.
[45]
Ji Y, Liu J, Wang Z, et al. PPARgamma agonist, rosiglitazone, regulates angiotensin Ⅱ-induced vascular inflammation through the TLR4-dependent signaling pathway [J]. Lab Invest, 2009, 89(8): 887-902.
[46]
Sugawara A, Uruno A, Matsuda K, et al. Effects of PPARgamma agonists against vascular and renal dysfunction [J]. Curr Mol Pharmacol, 2012, 5(2): 248-254.
[1] 靳茜雅, 黄晓松, 谭诚, 蒋琴, 侯昉, 李瑶悦, 徐冰, 贾红慧, 刘文英. 产前他克莫司治疗对先天性膈疝大鼠病理模型肺血管重构的影响[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 428-436.
[2] 李建美, 邓静娟, 杨倩. 两种术式联合治疗肝癌合并肝硬化门静脉高压的安全性及随访评价[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 41-44.
[3] 周川鹏, 杨浩, 魏微阳, 王奇, 黄亚强. 微创与标准通道经皮肾镜治疗肾结石合并肾功能不全的对比研究[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 470-475.
[4] 张其坤, 商福超, 李琪, 栗光明, 王孟龙. 联合脾切除对肝癌合并门静脉高压症患者根治性切除术后的生存获益分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 613-618.
[5] 许语阳, 吕云福, 王葆春. 乙肝后肝硬化门静脉高压症脾肿大外科治疗进展[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 469-473.
[6] 赫嵘, 贾哲, 张珂, 李代京, 张萌, 蒋力. 基于PSM分析腹腔镜肝切除联合Hassab术治疗合并门静脉高压症肝癌疗效[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 376-383.
[7] 杨林青, 任松, 纪泛扑, 张健, 蒋安, 张丽, 安鹏, 王林, 李宗芳. 揿针疗法对门静脉高压症脾切除断流术后胃肠功能的调节作用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(03): 322-326.
[8] 程庆砾. 新冠病毒感染与肾脏[J]. 中华肾病研究电子杂志, 2023, 12(04): 240-240.
[9] 李思佳, 苏晓乐, 王利华. 通过抑制Wnt/β-catenin信号通路延缓肾间质纤维化研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 224-228.
[10] 杨长沅, 凌曦淘, 丘伽美, 段若兰, 李琴, 林玉婕, 秦新东, 侯海晶, 卢富华, 苏国彬. 慢性肾脏病患者衰弱的筛查/评估工具研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 229-233.
[11] 金艳盛, 董改琴, 李晓忠. 巨噬细胞在慢性肾脏病患者血管钙化中的作用与机制研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 234-237.
[12] 运陌, 李茂芳, 王浩, 刘东远. 微创穿刺引流联合吡拉西坦、乌拉地尔治疗基底节区高血压性脑出血的临床研究[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 278-285.
[13] 刘政委, 仪立志, 尹夕龙, 孔文龙, 纠智松, 张文源. 锥颅血肿外引流与神经内镜手术治疗老年基底节区高血压性脑出血的疗效分析[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 299-303.
[14] 许秀兰, 朱建建. 血压变异性与伴H型高血压的急性脑梗死患者预后不良的临床关系分析[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(04): 199-204.
[15] 易成, 韦伟, 赵宇亮. 急性肾脏病的概念沿革[J]. 中华临床医师杂志(电子版), 2023, 17(08): 906-910.
阅读次数
全文


摘要