[1] |
Zhang L, Wang F, Wang L, et al. Prevalence of chronic kidney disease in China: a cross-sectional survey [J]. Lancet, 2012, 379 (9818): 815-822.
|
[2] |
Zheng Y, Cai GY, Chen XM, et al. Prevalence, awareness, treatment, and control of hypertension in the non-dialysis chronic kidney disease patients [J]. Chin Med J (Engl), 2013, 126(12): 2276-2280.
|
[3] |
Haddy FJ. Role of dietary salt in hypertension [J]. Life Sci, 2006, 79(17): 1585-1592.
|
[4] |
Tornel J, Madrid MI, Garcia-Salom M, et al. Role of kinins in the control of renal papillary blood flow, pressure natriuresis, and arterial pressure [J]. Circ Res, 2000, 86(5): 589-595.
|
[5] |
Majima M, Hayashi I, Fujita T, et al. Facilitation of renal kallikrein-kinin system prevents the development of hypertension by inhibition of sodium retention [J]. Immunopharmacology, 1999, 44(1-2): 145-152.
|
[6] |
Zoccali C, Mallamaci F, Tripepi G. Novel cardiovascular risk factors in end-stage renal disease [J]. J Am Soc Nephrol, 2004, 15(Suppl 1): S77-S80.
|
[7] |
Schroder M, Riedel E, Beck W, et al. Increased reduction of dimethylarginines and lowered interdialytic blood pressure by the use of biocompatible membranes [J]. Kidney Int Suppl, 2001, 78: S19-S24.
|
[8] |
Kielstein JT, Boger RH, Bode-Boger SM, et al. Asymmetric dimethylarginine plasma concentrations differ in patients with end-stage renal disease: relationship to treatment method and atherosclerotic disease [J]. J Am Soc Nephrol, 1999, 10(3): 594-600.
|
[9] |
Goldblatt H, Lynch J, Hanzal RF, et al. Studies on experimental hypertension: I. the production of persistent elevation of systolic blood pressure by means of renal ischemia [J]. J Exp Med, 1934, 59 (3): 347-379.
|
[10] |
Godlewski G, Alapafuja SO, Batkai S, et al. Inhibitor of fatty acid amide hydrolase normalizes cardiovascular function in hypertension without adverse metabolic effects [J]. Chem Biol, 2010, 17(11): 1256-1266.
|
[11] |
Guo Z, Liu YX, Yuan F, et al. Enhanced vasorelaxation effect of endogenous anandamide on thoracic aorta in renal vascular hypertension rats [J]. Clin Exp Pharmacol Physiol, 2015, 42(9): 950-955.
|
[12] |
Wang Y, Wang DH. A novel mechanism contributing to development of Dahl salt-sensitive hypertension: role of the transient receptor potential vanilloid type 1 [J]. Hypertension, 2006, 47(3): 609-614.
|
[13] |
Bai Q, Zhang J, Zhang AH, et al. Role of arachidonoylethanolamine in blood pressure regulation in volume-resistant patients on peritoneal dialysis [J]. Int Urol Nephrol, 2012, 44(6): 1855-1860.
|
[14] |
Zhu L, Sui L, Wu S, et al. Association between essential hypertension and three vasoactive peptides, urotensin Ⅱ,endothelin and adrenomedullin [J]. Clin Exp Hypertens, 2015, 37 (7): 604-608.
|
[15] |
Şatıroĝu Ö, Durakoĝlugil ME, Cetin M, et al. The role of urotensin Ⅱ and atherosclerotic risk factors in patients with slow coronary flow [J]. Interv Med Appl Sci, 2016, 8(4): 158-163.
|
[16] |
Lin Y, Tsuchihashi T, Matsumura K, et al. Central cardiovascular action of urotensin Ⅱ in spontaneously hypertensive rats [J]. Hypertens Res, 2003, 26(10): 839-845.
|
[17] |
He WY, Bai Q, A LT, et al. Irisin levels are associated with urotensin Ⅱ levels in diabetic patients [J]. J Diabetes Investig, 2015, 6(5): 571-576.
|
[18] |
McMaster WG, Kirabo A, Madhur MS, et al. Inflammation, immunity, and hypertensive end-organ damage [J]. Circ Res, 2015, 116(6): 1022-1033.
|
[19] |
Sakaguchi M, Kato H, Nishiyori A, et al. Characterization of CD4+ T helper cells in patients with Kawasaki disease (KD): preferential production of tumour necrosis factor-alpha (TNF-alpha) by V beta 2- or V beta 8- CD4+ T helper cells [J]. Clin Exp Immunol, 1995, 99(2): 276-282.
|
[20] |
Peleli M, Flacker P, Zhuge Z, et al. Renal denervation attenuates hypertension and renal dysfunction in a model of cardiovascular and renal disease, which is associated with reduced NADPH and xanthine oxidase activity [J]. Redox Biol, 2017, 13: 522-527.
|
[21] |
Fabbiano S, Menacho-Márquez M, Robles-Valero J, et al. Immunosuppression-independent role of regulatory T cells against hypertension-driven renal dysfunctions [J]. Mol Cell Biol, 2015, 35(20): 3528-3546.
|
[22] |
Davies SS, Amarnath V, Roberts LJ 2nd. Isoketals: highly reactive gamma-ketoaldehydes formed from the H2-isoprostane pathway [J]. Chem Phys Lipids, 2004, 128(1-2): 85-99.
|
[23] |
Roychowdhury S, McMullen MR, Pritchard MT, et al. Formation of gamma-ketoaldehyde-protein adducts during ethanol-induced liver injury in mice [J]. Free Radic Biol Med, 2009, 47(11): 1526-1538.
|
[24] |
Kirabo A, Fontana V, de Faria AP, et al. DC isoketal-modified proteins activate T cells and promote hypertension [J]. J Clin Invest, 2014, 124(10): 4642-4656.
|
[25] |
Peleli M, Al-Mashhadi A, Yang T, et al. Renal denervation attenuates NADPH oxidase-mediated oxidative stress and hypertension in rats with hydronephrosis [J]. Am J Physiol Renal Physiol, 2016, 310(1): F43-F56.
|
[26] |
Rafiq A, Aslam K, Malik R, et al. C242T polymorphism of the NADPH oxidase p22PHOX gene and its association with endothelial dysfunction in asymptomatic individuals with essential systemic hypertension [J]. Mol Med Rep, 2014, 9(5): 1857-1862.
|
[27] |
Gray SP, Jandeleit-Dahm KA. The role of NADPH oxidase in vascular disease--hypertension, atherosclerosis & stroke [J]. Curr Pharm Des, 2015, 21(41): 5933-5944.
|
[28] |
Qiu Y, Tao L, Lei C, et al. Downregulating p22phox ameliorates inflammatory response in Angiotensin Ⅱ-induced oxidative stress by regulating MAPK and NF-kappaB pathways in ARPE-19 cells [J]. Sci Rep, 2015, 5: 14362.
|
[29] |
Sun Y, Koo S, White N, et al. Development of a micro-array to detect human and mouse microRNAs and characterization of expression in human organs [J]. Nucleic Acids Res, 2004, 32(22): e188.
|
[30] |
Nandakumar P, Tin A, Grove ML, et al. MicroRNAs in the miR-17 and miR-15 families are downregulated in chronic kidney disease with hypertension [J]. PLoS One, 2017, 12(8): e0176734.
|
[31] |
Klimczak D, Kuch M, Pilecki T, et al. Plasma microRNA-155-5p is increased among patients with chronic kidney disease and nocturnal hypertension [J]. J Am Soc Hypertens, 2017, 11(12): 831-841.
|
[32] |
Stanković A, Kolaković A, Živković M, et al. Angiotensin receptor type 1 polymorphism A1166C is associated with altered AT1R and miR-155 expression in carotid plaque tissue and development of hypoechoic carotid plaques [J]. Atherosclerosis, 2016, 248: 132-139.
|
[33] |
Ceolotto G, Papparella I, Bortoluzzi A, et al. Interplay between miR-155, AT1R A1166C polymorphism, and AT1R expression in young untreated hypertensives [J]. Am J Hypertens, 2011, 24(2): 241-246.
|
[34] |
Diniz GP, Takano AP, Barreto-Chaves ML. MiRNA-208a and miRNA-208b are triggered in thyroid hormone-induced cardiac hypertrophy - role of type 1 angiotensin Ⅱ receptor (AT1R) on miRNA-208a/alpha-MHC modulation [J]. Mol Cell Endocrinol, 2013, 374(1-2): 117-124.
|
[35] |
Huang BS, Wang H, Leenen FH. Enhanced sympathoexcitatory and pressor responses to central Na+ in Dahl salt-sensitive vs -resistant rats [J]. Am J Physiol Heart Circ Physiol, 2001, 281(5): H1881-H1889.
|
[36] |
Nishimura M, Ohtsuka K, Nanbu A, et al. Benzamil blockade of brain Na+ channels averts Na(+)-induced hypertension in rats [J]. Am J Physiol, 1998, 274 (3 Pt 2): R635-R644.
|
[37] |
Huang BS, Leenen FH. Brain amiloride-sensitive Phe-Met-Arg-Phe-NH(2)-gated Na(+) channels and Na(+)-induced sympathoexcitation and hypertension [J]. Hypertension, 2002, 39(2 Pt 2): 557-561.
|
[38] |
Liu D, Fernandez BO, Hamilton A, et al. UVA irradiation of human skin vasodilates arterial vasculature and lowers blood pressure independently of nitric oxide synthase [J]. J Invest Dermatol, 2014, 134(7): 1839-1846.
|
[39] |
Opländer C, Volkmar CM, Paunel-Görgülü A, et al. Whole body UVA irradiation lowers systemic blood pressure by release of nitric oxide from intracutaneous photolabile nitric oxide derivates [J]. Circ Res, 2009, 105(10): 1031-1040.
|
[40] |
Johnson RS, Titze J, Weller R. Cutaneous control of blood pressure [J]. Curr Opin Nephrol Hypertens, 2016, 25(1): 11-15.
|
[41] |
Wimalawansa SJ. Vitamin D and cardiovascular diseases: causality [J]. J Steroid Biochem Mol Biol, 2018, 175: 29-43.
|
[42] |
Mithal A, Wahl DA, Bonjour JP, et al. Global vitamin D status and determinants of hypovitaminosis D [J]. Osteoporos Int, 2009, 20(11): 1807-1820.
|
[43] |
Ke L, Mason RS, Kariuki M, et al. Vitamin D status and hypertension: a review [J]. Integr Blood Press Control, 2015, 8: 13-35.
|
[44] |
Karbach S, Croxford AL, Oelze M, et al. Interleukin 17 drives vascular inflammation, endothelial dysfunction, and arterial hypertension in psoriasis-like skin disease [J]. Arterioscler Thromb Vasc Biol, 2014, 34(12): 2658-2668.
|
[45] |
Ji Y, Liu J, Wang Z, et al. PPARgamma agonist, rosiglitazone, regulates angiotensin Ⅱ-induced vascular inflammation through the TLR4-dependent signaling pathway [J]. Lab Invest, 2009, 89(8): 887-902.
|
[46] |
Sugawara A, Uruno A, Matsuda K, et al. Effects of PPARgamma agonists against vascular and renal dysfunction [J]. Curr Mol Pharmacol, 2012, 5(2): 248-254.
|