切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2020, Vol. 09 ›› Issue (05) : 211 -215. doi: 10.3877/cma.j.issn.2095-3216.2020.05.004

所属专题: 文献

综述

急性肾损伤后发生急性肺损伤的机制
周盼1, 乔晞1,()   
  1. 1. 030001 太原,山西医科大学第二医院,山西省肾脏病研究所 山西医科大学肾脏病研究所
  • 收稿日期:2020-08-24 出版日期:2020-10-28
  • 通信作者: 乔晞
  • 基金资助:
    国家自然科学基金面上项目(81970643); 山西省回国留学人员科研资助项目(2020-186); 山西省留学回国人员科技活动择优资助项目(2017-29)

Mechanism of the development of acute lung injury after acute kidney injury

Pan Zhou1, Xi Qiao1,()   

  1. 1. Department of Nephrology, Second Hospital of Shanxi Medical University, Shanxi Provincial Institute for Kidney Disease, Kidney Disease Institute of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
  • Received:2020-08-24 Published:2020-10-28
  • Corresponding author: Xi Qiao
  • About author:
    Corresponding author: Qiao Xi, Email:
引用本文:

周盼, 乔晞. 急性肾损伤后发生急性肺损伤的机制[J/OL]. 中华肾病研究电子杂志, 2020, 09(05): 211-215.

Pan Zhou, Xi Qiao. Mechanism of the development of acute lung injury after acute kidney injury[J/OL]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2020, 09(05): 211-215.

急性肾损伤(acute kidney injury,AKI)是重症患者的常见并发症,发病率和死亡率逐年增加。AKI患者的预后与远隔器官损伤有关,肺、心脏、肝脏和肠道是最容易受累的器官,以急性肺损伤(acute lung injury,ALI)最为常见。并发ALI会导致AKI死亡率增高。AKI诱导ALI的机制包括炎症、细胞因子的水平增加、氧化应激、细胞凋亡等。本文将就AKI导致ALI的机制做一综述,以寻找新的治疗靶点,改善预后。

Acute kidney injury (AKI) is a common complication of critically ill patients, and the morbidity and mortality rate are increasing year by year. The prognosis of AKI patients is related to the damage of remote organs. The lung, heart, liver, and intestine are the most easily affected organs, with acute lung injury (ALI) being the most common. Concurrent ALI will lead to an increase in AKI mortality. The mechanisms of AKI-induced ALI include inflammation, increased levels of cytokines, oxidative stress, and apoptosis, etc. This article reviewed the mechanism of AKI-induced ALI for exploration of new therapeutic targets and improvement of the prognosis.

图1 AKI后发生ALI的机制
[1]
Kellum JA, Prowle JR. Paradigms of acute kidney injury in the intensive care setting [J]. Nat Rev Nephrol, 2018, 14(4): 217-230.
[2]
Negi S, Koreeda D, Kobayashi S, et al. Acute kidney injury: epidemiology, outcomes, complications, and therapeutic strategies [J]. Semin Dial, 2018, 31(5): 519-527.
[3]
Michael J, Lui GF, Sebastian JK, et al. Lung-kidney interactions in critically ill patients: consensus report of the acute disease quality initiative (adqi) 21 workgroup [J]. Intensive Care Med, 2020, 46(4): 654-672.
[4]
Husain-Syed F, Rosner MH, Ronco C. Distant organ dysfunction in acute kidney injury [J]. Acta Physiol (Oxf), 2020, 228(2): e13357.
[5]
Di Lullo L, Reeves PB, Bellasi A, et al. Cardiorenal syndrome in acute kidney injury [J]. Semin Nephrol, 2019, 39(1): 31-40.
[6]
Doi K, Rabb H. Impact of acute kidney injury on distant organ function: recent findings and potential therapeutic targets [J]. Kidney Int, 2016, 89(3): 555-564.
[7]
Teixeira JP, Ambruso S, Griffin BR, et al. Pulmonary consequences of acute kidney injury [J]. Semin Nephrol, 2019, 39(1): 3-16.
[8]
Neudecker V, Brodsky KS, Clambey ET, et al. Mir-223neutrophil transfer of to lung epithelial cells dampens acute lung injury in mice [J]. Sci Transl Med, 2017, 9(408): eaah5360.
[9]
Mishra A, Guo Y, Zhang L, et al. A critical role for p2x7 receptor-induced vcam-1 shedding and neutrophil infiltration during acute lung injury [J]. J Immunol, 2016, 197(7): 2828-2837.
[10]
Jing W, Qin F, Guo X, et al. G-csf mediates lung injury in mice with adenine-induced acute kidney injury [J]. Int Immunopharmacol, 2018, 63: 1-8.
[11]
Altmann C, Andres-Hernando A, McMahan RH, et al. Macrophages mediate lung inflammation in a mouse model of ischemic acute kidney injury [J]. Am J Physiol Renal Physiol, 2012, 302(4): F421-F432.
[12]
Gharaie Fathabad S, Kurzhagen JT, Sadasivam M, et al. T lymphocytes in acute kidney injury and repair [J]. Semin Nephrol, 2020, 40(2): 114-125.
[13]
Lie ML, White LE, Santora RJ, et al. Lung T lymphocyte trafficking and activation during ischemic acute kidney injury [J]. J Immunol, 2012, 189(6): 2843-2851.
[14]
Mehrotra P, Collett JA, Mckinney SD, et al. IL-17 mediates neutrophil infiltration and renal fibrosis following recovery from ischemia reperfusion: compensatory role of natural killer cells in athymic rats [J]. Am J Physiol Renal Physiol, 2016, 312(3): F385-F397.
[15]
Paun A, Bergeron ME, Haston CK. The Th1/Th17 balance dictates the fibrosis response in murine radiation-induced lung disease [J]. Sci Rep, 2017, 7(1): 11586.
[16]
Mehrotra P, Collett JA, Gunst SJ, et al. Th17 cells contribute to pulmonary fibrosis and inflammation during chronic kidney disease progression after acute ischemia [J]. Am J Physiol Regul Integr Comp Physiol, 2018, 314(2): R265-R273.
[17]
Ahuja N, Andres-Hernando A, Altmann C, et al. Circulating IL-6 mediates lung injury via cxcl1 production after acute kidney injury in mice [J]. Am J Physiol Renal Physiol, 2012, 303(6): F864-F872.
[18]
Klein CL, Hoke TS, Fang WF, et al. Interleukin-6 mediates lung injury following ischemic acute kidney injury or bilateral nephrectomy [J]. Kidney Int, 2008, 74(7): 901-909.
[19]
Andres-Hernando A, Okamura K, Bhargava R, et al. Circulating IL-6 upregulates IL-10 production in splenic CD4 T cells and limits acute kidney injury-induced lung inflammation [J]. Kidney Int, 2017, 91(5): 1057-1069.
[20]
Sakai K, Nozaki Y, Murao Y, et al. Protective effect and mechanism of IL-10 on renal ischemia-reperfusion injury [J]. Lab Invest, 2019, 99(5): 671-683.
[21]
Kinsey GR. The spleen as a bidirectional signal transducer in acute kidney injury [J]. Kidney Int, 2017, 91(5): 1001-1003.
[22]
Yang Y, Li Q, Tan F, et al. Mechanism of IL-8-induced acute lung injury through pulmonary surfactant proteins A and B [J]. Exp Ther Med, 2020, 19(1): 287-293.
[23]
Altmann C, Ahuja N, Kiekhaefer CM, et al. Early peritoneal dialysis reduces lung inflammation in mice with ischemic acute kidney injury [J]. Kidney Int, 2017, 92(2): 365-376.
[24]
Zarbock A, Kellum JA, Schmidt C, et al. Effect of early vs delayed initiation of renal replacement therapy on mortality in critically ill patients with acute kidney injury: the elain randomized clinical trial [J]. JAMA, 2016, 315(20): 2190-2199.
[25]
Karimi Z, Ketabchi F, Alebrahimdehkordi N, et al. Renal ischemia/reperfusion against nephrectomy for induction of acute lung injury in rats [J]. Ren Fail, 2016, 38(9): 1503-1515.
[26]
Andres-Hernando A, Altmann C, Bhargava R, et al. Prolonged acute kidney injury exacerbates lung inflammation at 7 days post-acute kidney injury [J]. Physiol Rep, 2014, 2(7): e12084.
[27]
Ostermann M, Liu K, Kashani K. Fluid management in acute kidney injury [J]. Chest, 2019, 156(3): 594-603.
[28]
Yabuuchi N, Sagata M, Saigo C, et al. Indoxyl sulfate as a mediator involved in dysregulation of pulmonary aquaporin-5 in acute lung injury caused by acute kidney injury [J]. Int J Mol Sci, 2016, 18(1): 11.
[29]
Roux J, Kawakatsu H, Gartland B, et al. Interleukin-1beta decreases expression of the epithelial sodium channel alpha-subunit in alveolar epithelial cells via a p38 mapk-dependent signaling pathway [J]. J Biol Chem, 2005, 280(19): 18579-18589.
[30]
Agarwal A, Dong Z, Harris R, et al. Cellular and molecular mechanisms of AKI [J]. J Am Soc Nephrol, 2016, 27(5): 1288-1299.
[31]
Doi K, Ishizu T, Tsukamoto-Sumida M, et al. The high-mobility group protein B1-Toll-like receptor 4 pathway contributes to the acute lung injury induced by bilateral nephrectomy [J]. Kidney Int, 2014, 86(2): 316-326.
[32]
Yumoto M, Nishida O, Moriyama K, et al. In vitro evaluation of high mobility group box 1 protein removal with various membranes for continuous hemofiltration [J]. Ther Apher Dial, 2011, 15(4): 385-393.
[33]
Michikoshi J, Matsumoto S, Miyawaki H, et al. Evaluation of proteins and cells that adsorb to dialysis membranes used in continuous hemodiafiltration: comparison of AN69ST, polymethylmethacrylate, and polysulfone membranes [J]. Blood Purif, 2019, 48(4): 358-367.
[34]
Bolisetty S, Zarjou A, Agarwal A. Heme oxygenase 1 as a therapeutic target in acute kidney injury [J]. Am J Kidney Dis, 2017, 69(4): 531-545.
[35]
Rossi M, Thierry A, Delbauve S, et al. Specific expression of heme oxygenase-1 by myeloid cells modulates renal ischemia-reperfusion injury [J]. Sci Rep, 2017, 7(1): 197.
[36]
Ryter SW, Choi AMK. Targeting heme oxygenase-1 and carbon monoxide for therapeutic modulation of inflammation [J]. Transl Res, 2016, 167(1): 7-34.
[37]
Rossi M, Delbauve S, Roumeguere T, et al. Ho-1 mitigates acute kidney injury and subsequent kidney-lung cross-talk [J]. Free Radic Res, 2019, 53(9-10): 1035-1043.
[38]
Zhang J, Cao K, Pastor JV, et al. Alpha-klotho, a critical protein for lung health, is not expressed in normal lung [J]. FASEB Bioadv, 2019, 1(11): 675-687.
[39]
Ravikumar P, Li L, Ye J, et al. Alpha-klotho deficiency in acute kidney injury contributes to lung damage [J]. J Appl Physiol (1985), 2016, 120(7): 723-732.
[40]
Oztay F, Kara-Kisla B, Orhan N, et al. The protective effects of prostaglandin e1 on lung injury following renal ischemia-reperfusion in rats [J]. Toxicol Ind Health, 2016, 32(9): 1684-1692.
[41]
Campanholle G, Landgraf RG, Goncalves GM, et al. Lung inflammation is induced by renal ischemia and reperfusion injury as part of the systemic inflammatory syndrome [J]. Inflamm Res, 2010, 59(10): 861-869.
[42]
Kinra M, Mudgal J, Arora D, et al. An insight into the role of cyclooxygenase and lipooxygenase pathway in renal ischemia [J]. Eur Rev Med Pharmacol Sci, 2017, 21(21): 5017-5020.
[43]
Feltes CM, Hassoun HT, Lie ML, et al. Pulmonary endothelial cell activation during experimental acute kidney injury [J]. Shock, 2011, 36(2): 170-176.
[44]
Hassoun HT, Lie ML, Grigoryev DN, et al. Kidney ischemia-reperfusion injury induces caspase-dependent pulmonary apoptosis [J]. Am J Physiol Renal Physiol, 2009, 297(1): F125-F137.
[45]
White LE, Santora RJ, Cui Y, et al. TNFR1-dependent pulmonary apoptosis during ischemic acute kidney injury [J]. Am J Physiol Lung Cell Mol Physiol, 2012, 303(5): L449-L459.
[46]
Nakazawa D, Kumar SV, Marschner J, et al. Histones and neutrophil extracellular traps enhance tubular necrosis and remote organ injury in ischemic AKI [J]. J Am Soc Nephrol, 2017, 28(6): 1753-1768.
[47]
Liu J, Dong Z. Neutrophil extracellular traps in ischemic AKI: new way to kill [J]. Kidney Int, 2018, 93(2): 303-305.
[48]
Salazar-Gonzalez H, Zepeda-Hernandez A, Melo Z, et al. Neutrophil extracellular traps in the establishment and progression of renal diseases [J]. Medicina (Kaunas), 2019, 55(8): 431.
[49]
Hayase N, Doi K, Hiruma T, et al. Recombinant thrombomodulin prevents acute lung injury induced by renal ischemia-reperfusion injury [J]. Sci Rep, 2020, 10(1): 289.
[50]
Lee KH, Tseng WC, Yang CY, et al. The anti-inflammatory, anti-oxidative, and anti-apoptotic benefits of stem cells in acute ischemic kidney injury [J]. Int J Mol Sci, 2019, 20(14): 3529.
[1] 王振宇, 张洪美, 荆琳, 何名江, 闫奇. 膝骨关节炎相关炎症因子与血浆代谢物间的因果关系及中介效应[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 467-473.
[2] 张洁, 罗小霞, 余鸿. 系统性免疫炎症指数对急性胰腺炎患者并发器官功能损伤的预测价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 68-71.
[3] 唐梅, 周丽, 牛岑月, 周小童, 王倩. ICG荧光导航的腹腔镜肝切除术临床意义[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 655-658.
[4] 付成旺, 杨大刚, 王榕, 李福堂. 营养与炎症指标在可切除胰腺癌中的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 704-708.
[5] 胡思平, 熊性宇, 徐航, 杨璐. 衰老相关分泌表型因子在前列腺癌发生发展中的作用机制[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 425-434.
[6] 杜贵伟, 陆勇, 成博, 贺薏, 梁爽. 钬激光碎石术术后联合坦索罗辛治疗对输尿管结石患者的影响分析[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 491-496.
[7] 郑俊, 吴杰英, 谭海波, 郑安全, 李腾成. EGFR-MEK-TZ三联合分子的构建及其对去势抵抗性前列腺癌细胞增殖与凋亡的影响[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 503-508.
[8] 高娟, 徐建庆, 闫芳, 丁盛华, 刘霞. Rutkow、TAPP、TEP 手术治疗单侧腹股沟疝患者的临床疗效及对血清炎症因子水平的影响[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 675-680.
[9] 傅红兴, 王植楷, 谢贵林, 蔡娟娟, 杨威, 严盛. 间充质干细胞促进胰岛移植效果的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 351-360.
[10] 孙璐, 蒋亚玲, 陈凌君. 布托啡诺对脑缺血再灌注损伤大鼠神经炎症和JAK2/STAT3信号通路的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 344-350.
[11] 王国强, 张纲, 唐建坡, 张玉国, 杨永江. LINC00839 调节miR-17-5p/WEE1 轴对结直肠癌细胞增殖、凋亡和迁移的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 491-499.
[12] 沈炎, 张俊峰, 唐春芳. 预后营养指数结合血清降钙素原、胱抑素C及视黄醇结合蛋白对急性胰腺炎并发急性肾损伤的预测价值[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 536-540.
[13] 陈利, 杨长青, 朱风尚. 重视炎症性肠病和代谢相关脂肪性肝病间的串话机制研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 385-389.
[14] 王湛, 李文坤, 杨奕, 徐芳, 周敏思, 苏珈仪, 王亚丹, 吴静. 炎症指标在早发性结直肠肿瘤中的应用[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 802-810.
[15] 颜世锐, 熊辉. 感染性心内膜炎合并急性肾损伤患者的危险因素探索及死亡风险预测[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 618-624.
阅读次数
全文


摘要