切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2020, Vol. 09 ›› Issue (05) : 211 -215. doi: 10.3877/cma.j.issn.2095-3216.2020.05.004

所属专题: 文献

综述

急性肾损伤后发生急性肺损伤的机制
周盼1, 乔晞1,()   
  1. 1. 030001 太原,山西医科大学第二医院,山西省肾脏病研究所 山西医科大学肾脏病研究所
  • 收稿日期:2020-08-24 出版日期:2020-10-28
  • 通信作者: 乔晞
  • 基金资助:
    国家自然科学基金面上项目(81970643); 山西省回国留学人员科研资助项目(2020-186); 山西省留学回国人员科技活动择优资助项目(2017-29)

Mechanism of the development of acute lung injury after acute kidney injury

Pan Zhou1, Xi Qiao1,()   

  1. 1. Department of Nephrology, Second Hospital of Shanxi Medical University, Shanxi Provincial Institute for Kidney Disease, Kidney Disease Institute of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
  • Received:2020-08-24 Published:2020-10-28
  • Corresponding author: Xi Qiao
  • About author:
    Corresponding author: Qiao Xi, Email:
引用本文:

周盼, 乔晞. 急性肾损伤后发生急性肺损伤的机制[J]. 中华肾病研究电子杂志, 2020, 09(05): 211-215.

Pan Zhou, Xi Qiao. Mechanism of the development of acute lung injury after acute kidney injury[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2020, 09(05): 211-215.

急性肾损伤(acute kidney injury,AKI)是重症患者的常见并发症,发病率和死亡率逐年增加。AKI患者的预后与远隔器官损伤有关,肺、心脏、肝脏和肠道是最容易受累的器官,以急性肺损伤(acute lung injury,ALI)最为常见。并发ALI会导致AKI死亡率增高。AKI诱导ALI的机制包括炎症、细胞因子的水平增加、氧化应激、细胞凋亡等。本文将就AKI导致ALI的机制做一综述,以寻找新的治疗靶点,改善预后。

Acute kidney injury (AKI) is a common complication of critically ill patients, and the morbidity and mortality rate are increasing year by year. The prognosis of AKI patients is related to the damage of remote organs. The lung, heart, liver, and intestine are the most easily affected organs, with acute lung injury (ALI) being the most common. Concurrent ALI will lead to an increase in AKI mortality. The mechanisms of AKI-induced ALI include inflammation, increased levels of cytokines, oxidative stress, and apoptosis, etc. This article reviewed the mechanism of AKI-induced ALI for exploration of new therapeutic targets and improvement of the prognosis.

图1 AKI后发生ALI的机制
[1]
Kellum JA, Prowle JR. Paradigms of acute kidney injury in the intensive care setting [J]. Nat Rev Nephrol, 2018, 14(4): 217-230.
[2]
Negi S, Koreeda D, Kobayashi S, et al. Acute kidney injury: epidemiology, outcomes, complications, and therapeutic strategies [J]. Semin Dial, 2018, 31(5): 519-527.
[3]
Michael J, Lui GF, Sebastian JK, et al. Lung-kidney interactions in critically ill patients: consensus report of the acute disease quality initiative (adqi) 21 workgroup [J]. Intensive Care Med, 2020, 46(4): 654-672.
[4]
Husain-Syed F, Rosner MH, Ronco C. Distant organ dysfunction in acute kidney injury [J]. Acta Physiol (Oxf), 2020, 228(2): e13357.
[5]
Di Lullo L, Reeves PB, Bellasi A, et al. Cardiorenal syndrome in acute kidney injury [J]. Semin Nephrol, 2019, 39(1): 31-40.
[6]
Doi K, Rabb H. Impact of acute kidney injury on distant organ function: recent findings and potential therapeutic targets [J]. Kidney Int, 2016, 89(3): 555-564.
[7]
Teixeira JP, Ambruso S, Griffin BR, et al. Pulmonary consequences of acute kidney injury [J]. Semin Nephrol, 2019, 39(1): 3-16.
[8]
Neudecker V, Brodsky KS, Clambey ET, et al. Mir-223neutrophil transfer of to lung epithelial cells dampens acute lung injury in mice [J]. Sci Transl Med, 2017, 9(408): eaah5360.
[9]
Mishra A, Guo Y, Zhang L, et al. A critical role for p2x7 receptor-induced vcam-1 shedding and neutrophil infiltration during acute lung injury [J]. J Immunol, 2016, 197(7): 2828-2837.
[10]
Jing W, Qin F, Guo X, et al. G-csf mediates lung injury in mice with adenine-induced acute kidney injury [J]. Int Immunopharmacol, 2018, 63: 1-8.
[11]
Altmann C, Andres-Hernando A, McMahan RH, et al. Macrophages mediate lung inflammation in a mouse model of ischemic acute kidney injury [J]. Am J Physiol Renal Physiol, 2012, 302(4): F421-F432.
[12]
Gharaie Fathabad S, Kurzhagen JT, Sadasivam M, et al. T lymphocytes in acute kidney injury and repair [J]. Semin Nephrol, 2020, 40(2): 114-125.
[13]
Lie ML, White LE, Santora RJ, et al. Lung T lymphocyte trafficking and activation during ischemic acute kidney injury [J]. J Immunol, 2012, 189(6): 2843-2851.
[14]
Mehrotra P, Collett JA, Mckinney SD, et al. IL-17 mediates neutrophil infiltration and renal fibrosis following recovery from ischemia reperfusion: compensatory role of natural killer cells in athymic rats [J]. Am J Physiol Renal Physiol, 2016, 312(3): F385-F397.
[15]
Paun A, Bergeron ME, Haston CK. The Th1/Th17 balance dictates the fibrosis response in murine radiation-induced lung disease [J]. Sci Rep, 2017, 7(1): 11586.
[16]
Mehrotra P, Collett JA, Gunst SJ, et al. Th17 cells contribute to pulmonary fibrosis and inflammation during chronic kidney disease progression after acute ischemia [J]. Am J Physiol Regul Integr Comp Physiol, 2018, 314(2): R265-R273.
[17]
Ahuja N, Andres-Hernando A, Altmann C, et al. Circulating IL-6 mediates lung injury via cxcl1 production after acute kidney injury in mice [J]. Am J Physiol Renal Physiol, 2012, 303(6): F864-F872.
[18]
Klein CL, Hoke TS, Fang WF, et al. Interleukin-6 mediates lung injury following ischemic acute kidney injury or bilateral nephrectomy [J]. Kidney Int, 2008, 74(7): 901-909.
[19]
Andres-Hernando A, Okamura K, Bhargava R, et al. Circulating IL-6 upregulates IL-10 production in splenic CD4 T cells and limits acute kidney injury-induced lung inflammation [J]. Kidney Int, 2017, 91(5): 1057-1069.
[20]
Sakai K, Nozaki Y, Murao Y, et al. Protective effect and mechanism of IL-10 on renal ischemia-reperfusion injury [J]. Lab Invest, 2019, 99(5): 671-683.
[21]
Kinsey GR. The spleen as a bidirectional signal transducer in acute kidney injury [J]. Kidney Int, 2017, 91(5): 1001-1003.
[22]
Yang Y, Li Q, Tan F, et al. Mechanism of IL-8-induced acute lung injury through pulmonary surfactant proteins A and B [J]. Exp Ther Med, 2020, 19(1): 287-293.
[23]
Altmann C, Ahuja N, Kiekhaefer CM, et al. Early peritoneal dialysis reduces lung inflammation in mice with ischemic acute kidney injury [J]. Kidney Int, 2017, 92(2): 365-376.
[24]
Zarbock A, Kellum JA, Schmidt C, et al. Effect of early vs delayed initiation of renal replacement therapy on mortality in critically ill patients with acute kidney injury: the elain randomized clinical trial [J]. JAMA, 2016, 315(20): 2190-2199.
[25]
Karimi Z, Ketabchi F, Alebrahimdehkordi N, et al. Renal ischemia/reperfusion against nephrectomy for induction of acute lung injury in rats [J]. Ren Fail, 2016, 38(9): 1503-1515.
[26]
Andres-Hernando A, Altmann C, Bhargava R, et al. Prolonged acute kidney injury exacerbates lung inflammation at 7 days post-acute kidney injury [J]. Physiol Rep, 2014, 2(7): e12084.
[27]
Ostermann M, Liu K, Kashani K. Fluid management in acute kidney injury [J]. Chest, 2019, 156(3): 594-603.
[28]
Yabuuchi N, Sagata M, Saigo C, et al. Indoxyl sulfate as a mediator involved in dysregulation of pulmonary aquaporin-5 in acute lung injury caused by acute kidney injury [J]. Int J Mol Sci, 2016, 18(1): 11.
[29]
Roux J, Kawakatsu H, Gartland B, et al. Interleukin-1beta decreases expression of the epithelial sodium channel alpha-subunit in alveolar epithelial cells via a p38 mapk-dependent signaling pathway [J]. J Biol Chem, 2005, 280(19): 18579-18589.
[30]
Agarwal A, Dong Z, Harris R, et al. Cellular and molecular mechanisms of AKI [J]. J Am Soc Nephrol, 2016, 27(5): 1288-1299.
[31]
Doi K, Ishizu T, Tsukamoto-Sumida M, et al. The high-mobility group protein B1-Toll-like receptor 4 pathway contributes to the acute lung injury induced by bilateral nephrectomy [J]. Kidney Int, 2014, 86(2): 316-326.
[32]
Yumoto M, Nishida O, Moriyama K, et al. In vitro evaluation of high mobility group box 1 protein removal with various membranes for continuous hemofiltration [J]. Ther Apher Dial, 2011, 15(4): 385-393.
[33]
Michikoshi J, Matsumoto S, Miyawaki H, et al. Evaluation of proteins and cells that adsorb to dialysis membranes used in continuous hemodiafiltration: comparison of AN69ST, polymethylmethacrylate, and polysulfone membranes [J]. Blood Purif, 2019, 48(4): 358-367.
[34]
Bolisetty S, Zarjou A, Agarwal A. Heme oxygenase 1 as a therapeutic target in acute kidney injury [J]. Am J Kidney Dis, 2017, 69(4): 531-545.
[35]
Rossi M, Thierry A, Delbauve S, et al. Specific expression of heme oxygenase-1 by myeloid cells modulates renal ischemia-reperfusion injury [J]. Sci Rep, 2017, 7(1): 197.
[36]
Ryter SW, Choi AMK. Targeting heme oxygenase-1 and carbon monoxide for therapeutic modulation of inflammation [J]. Transl Res, 2016, 167(1): 7-34.
[37]
Rossi M, Delbauve S, Roumeguere T, et al. Ho-1 mitigates acute kidney injury and subsequent kidney-lung cross-talk [J]. Free Radic Res, 2019, 53(9-10): 1035-1043.
[38]
Zhang J, Cao K, Pastor JV, et al. Alpha-klotho, a critical protein for lung health, is not expressed in normal lung [J]. FASEB Bioadv, 2019, 1(11): 675-687.
[39]
Ravikumar P, Li L, Ye J, et al. Alpha-klotho deficiency in acute kidney injury contributes to lung damage [J]. J Appl Physiol (1985), 2016, 120(7): 723-732.
[40]
Oztay F, Kara-Kisla B, Orhan N, et al. The protective effects of prostaglandin e1 on lung injury following renal ischemia-reperfusion in rats [J]. Toxicol Ind Health, 2016, 32(9): 1684-1692.
[41]
Campanholle G, Landgraf RG, Goncalves GM, et al. Lung inflammation is induced by renal ischemia and reperfusion injury as part of the systemic inflammatory syndrome [J]. Inflamm Res, 2010, 59(10): 861-869.
[42]
Kinra M, Mudgal J, Arora D, et al. An insight into the role of cyclooxygenase and lipooxygenase pathway in renal ischemia [J]. Eur Rev Med Pharmacol Sci, 2017, 21(21): 5017-5020.
[43]
Feltes CM, Hassoun HT, Lie ML, et al. Pulmonary endothelial cell activation during experimental acute kidney injury [J]. Shock, 2011, 36(2): 170-176.
[44]
Hassoun HT, Lie ML, Grigoryev DN, et al. Kidney ischemia-reperfusion injury induces caspase-dependent pulmonary apoptosis [J]. Am J Physiol Renal Physiol, 2009, 297(1): F125-F137.
[45]
White LE, Santora RJ, Cui Y, et al. TNFR1-dependent pulmonary apoptosis during ischemic acute kidney injury [J]. Am J Physiol Lung Cell Mol Physiol, 2012, 303(5): L449-L459.
[46]
Nakazawa D, Kumar SV, Marschner J, et al. Histones and neutrophil extracellular traps enhance tubular necrosis and remote organ injury in ischemic AKI [J]. J Am Soc Nephrol, 2017, 28(6): 1753-1768.
[47]
Liu J, Dong Z. Neutrophil extracellular traps in ischemic AKI: new way to kill [J]. Kidney Int, 2018, 93(2): 303-305.
[48]
Salazar-Gonzalez H, Zepeda-Hernandez A, Melo Z, et al. Neutrophil extracellular traps in the establishment and progression of renal diseases [J]. Medicina (Kaunas), 2019, 55(8): 431.
[49]
Hayase N, Doi K, Hiruma T, et al. Recombinant thrombomodulin prevents acute lung injury induced by renal ischemia-reperfusion injury [J]. Sci Rep, 2020, 10(1): 289.
[50]
Lee KH, Tseng WC, Yang CY, et al. The anti-inflammatory, anti-oxidative, and anti-apoptotic benefits of stem cells in acute ischemic kidney injury [J]. Int J Mol Sci, 2019, 20(14): 3529.
[1] 孔莹莹, 谢璐涛, 卢晓驰, 徐杰丰, 周光居, 张茂. 丁酸钠对猪心脏骤停复苏后心脑损伤的保护作用及机制研究[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 355-362.
[2] 韩圣瑾, 周正武, 翁云龙, 黄鑫. 碳酸氢钠林格液联合连续性肾脏替代疗法对创伤合并急性肾损伤患者炎症水平及肾功能的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 376-381.
[3] 张秋彬, 张楠, 林清婷, 徐军, 朱华栋, 姜辉. 急性胰腺炎合并急性肾损伤患者的预后评估[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 382-389.
[4] 陈大敏, 曹晓刚, 曹能琦. 肥胖对胃癌患者手术治疗效果的影响研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 651-653.
[5] 贾成朋, 王代宏, 陈华, 孙备. 可切除性胰腺癌预后术前预测模型的建立及应用[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 566-570.
[6] 伍学成, 李远伟, 袁武雄, 王建松, 石泳中, 卢强, 李卓, 陈佳, 刘哲, 滕伊漓, 高智勇. 炎症介质谱联合降钙素原在尿源性脓毒血症中的诊断价值[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 476-480.
[7] 王可, 范彬, 李多富, 刘奎. 两种疝囊残端处理方法在经腹腹膜前腹股沟疝修补术中的疗效比较[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 692-696.
[8] 刘骏, 朱霁, 殷骏. 右美托咪定对腹股沟疝手术麻醉效果及安全性的影响[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(05): 570-573.
[9] 尚慧娟, 袁晓冬. 机械取栓术后应用依达拉奉右崁醇对急性缺血性脑卒中预后的改善[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 295-301.
[10] 屈霄, 王靓, 陆萍, 何斌, 孙敏. 外周血炎症因子及肠道菌群特征与活动性溃疡性结肠炎患者病情的相关性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 466-470.
[11] 易成, 韦伟, 赵宇亮. 急性肾脏病的概念沿革[J]. 中华临床医师杂志(电子版), 2023, 17(08): 906-910.
[12] 邓世栋, 刘凌志, 郭大勇, 王超, 黄忠欣, 张晖辉. 沉默SNHG1基因对膀胱癌细胞增殖、凋亡、迁移和铁死亡的影响[J]. 中华临床医师杂志(电子版), 2023, 17(07): 804-811.
[13] 张敏洁, 张小杉, 段莎莎, 施依璐, 赵捷, 白天昊, 王雅晳. 氢气治疗心肌缺血再灌注损伤的作用机制及展望[J]. 中华临床医师杂志(电子版), 2023, 17(06): 744-748.
[14] 刘感哲, 艾芬. MiRNA-210通过抑制HIF-1α的表达改善大鼠血管性认知功能障碍[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 489-494.
[15] 邱甜, 杨苗娟, 胡波, 郭毅, 何奕涛. 亚低温治疗脑梗死机制的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 518-521.
阅读次数
全文


摘要