切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2020, Vol. 09 ›› Issue (05) : 216 -219. doi: 10.3877/cma.j.issn.2095-3216.2020.05.005

所属专题: 文献

综述

脓毒症的血液净化治疗新进展
吴晶魁1, 倪兆慧1,()   
  1. 1. 200127 上海,上海交通大学医学院附属仁济医院
  • 收稿日期:2020-06-12 出版日期:2020-10-28
  • 通信作者: 倪兆慧
  • 基金资助:
    国家自然科学基金面上项目(81770666); 上海市中西医临床协作试点建设项目(ZY(2018-2020)-FWTX-1001); 上海交通大学医学院多中心临床研究项目(DLY201805); 上海市卫生健康委员会卫生行业临床研究专项面上项目(201740037)

New progress of blood purification therapy for sepsis

Jingkui Wu1, Zhaohui Ni1,()   

  1. 1. Department of Nephrology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
  • Received:2020-06-12 Published:2020-10-28
  • Corresponding author: Zhaohui Ni
  • About author:
    Corresponding author: Ni Zhaohui, Email:
引用本文:

吴晶魁, 倪兆慧. 脓毒症的血液净化治疗新进展[J]. 中华肾病研究电子杂志, 2020, 09(05): 216-219.

Jingkui Wu, Zhaohui Ni. New progress of blood purification therapy for sepsis[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2020, 09(05): 216-219.

脓毒症是由宿主对感染反应失调引起的危及生命的器官功能障碍,是重症患者死亡的重要原因。当前脓毒症的治疗除了使用抗生素、改善器官功能障碍和必要时的手术治疗外,各种体外血液净化疗法也可作为调节炎症反应的辅助治疗手段。脓毒症会诱发免疫系统的调节失衡,进而导致器官功能障碍;血液净化作为脓毒症的辅助治疗方法,目的是通过清除细胞因子和内毒素,控制免疫系统相关的调节失衡。本文对脓毒症的血液净化治疗新进展作了综述。

Sepsis is a life-threatening organ dysfunction caused by the dysregulation of the host′s response to infection, and is an important cause of death in critically ill patients. In addition to the use of antibiotics, improvement of organ dysfunction, and necessary surgical treatment, various treatments of extracorporeal blood purification can also be used as an auxiliary treatment method for regulating inflammation in the current treatment of sepsis. Sepsis can induce an imbalance in the regulation of the immune system, which in turn leads to organ dysfunction. Blood purification, as an adjunct treatment of sepsis, aims to control the immune system-related imbalance of regulation via removing cytokines and endotoxins. This article reviewed the new progress of blood purification treatment for sepsis.

[9]
Ronco C. Endotoxin removal: history of a mission [J]. Blood Purif, 2014, 37(Suppl 1): 5-8.
[10]
Rimmele T, Kaynar AM, McLaughlin JN, et al. Leukocyte capture and modulation of cell-mediated immunity during human sepsis: an ex vivo study [J]. Crit Care, 2013, 17(2): R59.
[11]
Kellum JA, Johnson JP, Kramer D, et al. Diffusive vs convective therapy: effects on mediators of inflammation in patient with severe systemic inflammatory response syndrome [J]. Crit Care Med, 1998, 26(12): 1995-2000.
[12]
Rimmele T, Wey PF, Bernard N, et al. Hemofiltration with the Cascade system in an experimental porcine model of septic shock [J]. Ther Apher Dial, 2009, 13(1): 63-70.
[13]
Morgera S, Haase M, Kuss T, et al. Pilot study on the effects of high cutoff hemofiltration on the need for norepinephrine in septic patients with acute renal failure [J]. Crit Care Med, 2006, 34(8): 2099-2104.
[14]
Gruda MC, Ruggeberg KG, O′Sullivan P, et al. Broad adsorption of sepsis-related PAMP and DAMP molecules, mycotoxins, and cytokines from whole blood using CytoSorb(R) sorbent porous polymer beads [J]. PLoS One, 2018, 13(1): e0191676.
[15]
Sakai Y. Polymethylmethacrylate membrane with a series of serendipity [J]. Contrib Nephrol, 2011, 173: 137-147.
[16]
Payen D. Haemoperfusion with polymyxin B membrane: recent results for an old debate! [J]. Anaesth Crit Care Pain Med, 2019, 38(1): 3-4.
[17]
Adamik B, Zielinski S, Smiechowicz J, et al. Endotoxin elimination in patients with septic shock: an observation study [J]. Arch Immunol Ther Exp (Warsz), 2015, 63(6): 475-483.
[18]
Rogiers P, Zhang H, Pauwels D, et al. Comparison of polyacrylonitrile (AN69) and polysulphone membrane during hemofiltration in canine endotoxic shock [J]. Crit Care Med, 2003, 31(4): 1219-1225.
[19]
Renaux JL, Thomas M, Crost T, et al. Activation of the kallikrein-kinin system in hemodialysis: role of membrane electronegativity, blood dilution, and pH [J]. Kidney Int, 1999, 55(3): 1097-1103.
[20]
Chanard J, Lavaud S, Maheut H, et al. The clinical evaluation of low-dose heparin in haemodialysis: a prospective study using the heparin-coated AN69 ST membrane [J]. Nephrol Dial Transplant, 2008, 23(6): 2003-2009.
[21]
Yumoto M, Nishida O, Moriyama K, et al. In vitro evaluation of high mobility group box 1 protein removal with various membranes for continuous hemofiltration [J]. Ther Apher Dial, 2011, 15(4): 385-393.
[22]
Kobashi S, Maruhashi T, Nakamura T, et al. The 28-day survival rates of two cytokine-adsorbing hemofilters for continuous renal replacement therapy: a single-center retrospective comparative study [J]. Acute Med Surg, 2019, 6(1): 60-67.
[23]
Malard B, Lambert C, Kellum JA. In vitro comparison of the adsorption of inflammatory mediators by blood purification devices [J]. Intensive Care Med Exp, 2018, 6(1): 12.
[24]
Laville M, Dorval M, Fort Ros J, et al. Results of the HepZero study comparing heparin-grafted membrane and standard care show that heparin-grafted dialyzer is safe and easy to use for heparin-free dialysis [J]. Kidney Int, 2014, 86(6): 1260-1267.
[25]
Kessler M, Gangemi C, Gutierrez Martones A, et al. Heparin-grafted dialysis membrane allows minimal systemic anticoagulation in regular hemodialysis patients: a prospective proof-of-concept study [J]. Hemodial Int, 2013, 17(2): 282-293.
[26]
Shum HP, Chan KC, Kwan MC, et al. Application of endotoxin and cytokine adsorption haemofilter in septic acute kidney injury due to Gram-negative bacterial infection [J]. Hong Kong Med J, 2013, 19(6): 491-497.
[27]
Tian Q, Gomersall CD, Ip M, et al. Adsorption of amikacin, a significant mechanism of elimination by hemofiltration [J]. Antimicrob Agents Chemother, 2008, 52(3): 1009-1013.
[28]
De Vriese AS, Colardyn FA, Philippe JJ, et al. Cytokine removal during continuous hemofiltration in septic patients [J]. J Am Soc Nephrol, 1999, 10(4): 846-853.
[29]
McCrea K, Ward R, LaRosa SP. Removal of carbapenem-resistant Enterobacteriaceae (CRE) from blood by heparin-functional hemoperfusion media [J]. PLoS One, 2014, 9(12): e114242.
[30]
Kang JH, Super M, Yung CW, et al. An extracorporeal blood-cleansing device for sepsis therapy [J]. Nat Med, 2014, 20(10): 1211-1216.
[31]
Buttner S, Koch B, Dolnik O, et al. Extracorporeal virus elimination for the treatment of severe Ebola virus disease--first experience with lectin affinity plasmapheresis [J]. Blood Purif, 2014, 38(3-4): 286-291.
[32]
Pino CJ, Yevzlin AS, Tumlin J, et al. Cell-based strategies for the treatment of kidney dysfunction: a review [J]. Blood Purif, 2012, 34(2): 117-123.
[33]
Pino CJ, Yevzlin AS, Lee K, et al. Cell-based approaches for the treatment of systemic inflammation [J]. Nephrol Dial Transplant, 2013, 28(2): 296-302.
[34]
Ding F, Song JH, Jung JY, et al. A biomimetic membrane device that modulates the excessive inflammatory response to sepsis [J]. PLoS One, 2011, 6(4): e18584.
[35]
Srisawat N, Tungsanga S, Lumlertgul N, et al. The effect of polymyxin B hemoperfusion on modulation of human leukocyte antigen DR in severe sepsis patients [J]. Crit Care, 2018, 22(1): 279.
[36]
Gossez M, Rimmele T, Andrieu T, et al. Proof of concept study of mass cytometry in septic shock patients reveals novel immune alterations [J]. Sci Rep, 2018, 8(1): 17296.
[1]
Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3) [J]. JAMA, 2016, 315(8): 801-810.
[2]
Shankar-Hari M, Deutschman CS, Singer M. Do we need a new definition of sepsis? [J]. Intensive Care Med, 2015, 41(5): 909-911.
[3]
Ankawi G, Neri M, Zhang J, et al. Extracorporeal techniques for the treatment of critically ill patients with sepsis beyond conventional blood purification therapy: the promises and the pitfalls [J]. Crit Care, 2018, 22(1): 262.
[4]
Zarbock A, Gomez H, Kellum JA. Sepsis-induced acute kidney injury revisited: pathophysiology, prevention and future therapies [J]. Curr Opin Crit Care, 2014, 20(6): 588-595.
[5]
Ronco C, Tetta C, Mariano F, et al. Interpreting the mechanisms of continuous renal replacement therapy in sepsis: the peak concentration hypothesis [J]. Artif Organs, 2003, 27(9): 792-801.
[6]
Bhatia M, Moochhala S. Role of inflammatory mediators in the pathophysiology of acute respiratory distress syndrome [J]. J Pathol, 2004, 202(2): 145-156.
[7]
Marshall JC, Foster D, Vincent JL, et al. Diagnostic and prognostic implications of endotoxemia in critical illness: results of the MEDIC study [J]. J Infect Dis, 2004, 190(3): 527-534.
[8]
Peng ZY, Wang HZ, Carter MJ, et al. Acute removal of common sepsis mediators does not explain the effects of extracorporeal blood purification in experimental sepsis [J]. Kidney Int, 2012, 81(4): 363-369.
[1] 韩媛媛, 热孜亚·萨贝提, 冒智捷, 穆福娜依·艾尔肯, 陆晨, 桑晓红, 阿尔曼·木拉提, 张丽. 组合式血液净化治疗对脓毒症患者血清炎症因子水平和临床预后的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 272-278.
[2] 孟建标, 张庚, 焦燕娜. 脓毒症合并心功能障碍患者早期肠道微生态改变的探讨[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 279-285.
[3] 陈宇, 冯芳, 张露, 刘健. 基于生物信息学分析筛选脓毒症心肌病关键致病基因[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 286-291.
[4] 作者. 脓毒症与脓毒性休克[J]. 中华危重症医学杂志(电子版), 2023, 16(03): 0-.
[5] 莫小乔, 胡喆莹, 廖冬花, 谢天. 脓毒症继发急性肾损伤患者死亡风险预测模型构建及评估[J]. 中华危重症医学杂志(电子版), 2023, 16(03): 198-206.
[6] 张晓燕, 肖东琼, 高沪, 陈琳, 唐发娟, 李熙鸿. 转录因子12过表达对脓毒症相关性脑病大鼠大脑皮质的保护作用及其机制[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 540-549.
[7] 魏徐, 张鸽, 伍金林. 新生儿脓毒症相关性凝血病的监测和治疗[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 379-386.
[8] 姚咏明. 如何精准评估烧伤脓毒症患者免疫状态[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 552-552.
[9] 窦上文, 邓欢, 刘邦锋, 岳高远志, 朱华财, 刘永达. 术前复查尿培养在预测微通道经皮肾镜取石术相关感染并发症中的作用[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 361-366.
[10] 李伟, 卓剑, 黄川, 黄有攀. Lac、HO-1、sRAGE、CRP/ALB表达及脓毒症并发ARDS危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 514-516.
[11] 苗软昕, 乔晞. Toll样受体在脓毒症性急性肾损伤中的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 210-214.
[12] 李世明, 黄蔚, 刘玲. HMGB1介导脓毒症相关凝血功能障碍的作用机制及其治疗进展[J]. 中华重症医学电子杂志, 2023, 09(03): 269-273.
[13] 高超, 巢杰, 邱海波. T-bet:脓毒症免疫失衡中Th17细胞的新型调节分子[J]. 中华重症医学电子杂志, 2023, 09(03): 280-285.
[14] 谭睿, 王晶, 於江泉, 郑瑞强. 脓毒症中高密度脂蛋白、载脂蛋白A-I和血清淀粉样蛋白A的作用研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(06): 749-753.
[15] 蔡荇, 郑瑞强. 肝素结合蛋白在脓毒症中的应用及研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(04): 487-490.
阅读次数
全文


摘要