切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2020, Vol. 09 ›› Issue (05) : 216 -219. doi: 10.3877/cma.j.issn.2095-3216.2020.05.005

所属专题: 文献

综述

脓毒症的血液净化治疗新进展
吴晶魁1, 倪兆慧1,()   
  1. 1. 200127 上海,上海交通大学医学院附属仁济医院
  • 收稿日期:2020-06-12 出版日期:2020-10-28
  • 通信作者: 倪兆慧
  • 基金资助:
    国家自然科学基金面上项目(81770666); 上海市中西医临床协作试点建设项目(ZY(2018-2020)-FWTX-1001); 上海交通大学医学院多中心临床研究项目(DLY201805); 上海市卫生健康委员会卫生行业临床研究专项面上项目(201740037)

New progress of blood purification therapy for sepsis

Jingkui Wu1, Zhaohui Ni1,()   

  1. 1. Department of Nephrology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
  • Received:2020-06-12 Published:2020-10-28
  • Corresponding author: Zhaohui Ni
  • About author:
    Corresponding author: Ni Zhaohui, Email:
引用本文:

吴晶魁, 倪兆慧. 脓毒症的血液净化治疗新进展[J/OL]. 中华肾病研究电子杂志, 2020, 09(05): 216-219.

Jingkui Wu, Zhaohui Ni. New progress of blood purification therapy for sepsis[J/OL]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2020, 09(05): 216-219.

脓毒症是由宿主对感染反应失调引起的危及生命的器官功能障碍,是重症患者死亡的重要原因。当前脓毒症的治疗除了使用抗生素、改善器官功能障碍和必要时的手术治疗外,各种体外血液净化疗法也可作为调节炎症反应的辅助治疗手段。脓毒症会诱发免疫系统的调节失衡,进而导致器官功能障碍;血液净化作为脓毒症的辅助治疗方法,目的是通过清除细胞因子和内毒素,控制免疫系统相关的调节失衡。本文对脓毒症的血液净化治疗新进展作了综述。

Sepsis is a life-threatening organ dysfunction caused by the dysregulation of the host′s response to infection, and is an important cause of death in critically ill patients. In addition to the use of antibiotics, improvement of organ dysfunction, and necessary surgical treatment, various treatments of extracorporeal blood purification can also be used as an auxiliary treatment method for regulating inflammation in the current treatment of sepsis. Sepsis can induce an imbalance in the regulation of the immune system, which in turn leads to organ dysfunction. Blood purification, as an adjunct treatment of sepsis, aims to control the immune system-related imbalance of regulation via removing cytokines and endotoxins. This article reviewed the new progress of blood purification treatment for sepsis.

[9]
Ronco C. Endotoxin removal: history of a mission [J]. Blood Purif, 2014, 37(Suppl 1): 5-8.
[10]
Rimmele T, Kaynar AM, McLaughlin JN, et al. Leukocyte capture and modulation of cell-mediated immunity during human sepsis: an ex vivo study [J]. Crit Care, 2013, 17(2): R59.
[11]
Kellum JA, Johnson JP, Kramer D, et al. Diffusive vs convective therapy: effects on mediators of inflammation in patient with severe systemic inflammatory response syndrome [J]. Crit Care Med, 1998, 26(12): 1995-2000.
[12]
Rimmele T, Wey PF, Bernard N, et al. Hemofiltration with the Cascade system in an experimental porcine model of septic shock [J]. Ther Apher Dial, 2009, 13(1): 63-70.
[13]
Morgera S, Haase M, Kuss T, et al. Pilot study on the effects of high cutoff hemofiltration on the need for norepinephrine in septic patients with acute renal failure [J]. Crit Care Med, 2006, 34(8): 2099-2104.
[14]
Gruda MC, Ruggeberg KG, O′Sullivan P, et al. Broad adsorption of sepsis-related PAMP and DAMP molecules, mycotoxins, and cytokines from whole blood using CytoSorb(R) sorbent porous polymer beads [J]. PLoS One, 2018, 13(1): e0191676.
[15]
Sakai Y. Polymethylmethacrylate membrane with a series of serendipity [J]. Contrib Nephrol, 2011, 173: 137-147.
[16]
Payen D. Haemoperfusion with polymyxin B membrane: recent results for an old debate! [J]. Anaesth Crit Care Pain Med, 2019, 38(1): 3-4.
[17]
Adamik B, Zielinski S, Smiechowicz J, et al. Endotoxin elimination in patients with septic shock: an observation study [J]. Arch Immunol Ther Exp (Warsz), 2015, 63(6): 475-483.
[18]
Rogiers P, Zhang H, Pauwels D, et al. Comparison of polyacrylonitrile (AN69) and polysulphone membrane during hemofiltration in canine endotoxic shock [J]. Crit Care Med, 2003, 31(4): 1219-1225.
[19]
Renaux JL, Thomas M, Crost T, et al. Activation of the kallikrein-kinin system in hemodialysis: role of membrane electronegativity, blood dilution, and pH [J]. Kidney Int, 1999, 55(3): 1097-1103.
[20]
Chanard J, Lavaud S, Maheut H, et al. The clinical evaluation of low-dose heparin in haemodialysis: a prospective study using the heparin-coated AN69 ST membrane [J]. Nephrol Dial Transplant, 2008, 23(6): 2003-2009.
[21]
Yumoto M, Nishida O, Moriyama K, et al. In vitro evaluation of high mobility group box 1 protein removal with various membranes for continuous hemofiltration [J]. Ther Apher Dial, 2011, 15(4): 385-393.
[22]
Kobashi S, Maruhashi T, Nakamura T, et al. The 28-day survival rates of two cytokine-adsorbing hemofilters for continuous renal replacement therapy: a single-center retrospective comparative study [J]. Acute Med Surg, 2019, 6(1): 60-67.
[23]
Malard B, Lambert C, Kellum JA. In vitro comparison of the adsorption of inflammatory mediators by blood purification devices [J]. Intensive Care Med Exp, 2018, 6(1): 12.
[24]
Laville M, Dorval M, Fort Ros J, et al. Results of the HepZero study comparing heparin-grafted membrane and standard care show that heparin-grafted dialyzer is safe and easy to use for heparin-free dialysis [J]. Kidney Int, 2014, 86(6): 1260-1267.
[25]
Kessler M, Gangemi C, Gutierrez Martones A, et al. Heparin-grafted dialysis membrane allows minimal systemic anticoagulation in regular hemodialysis patients: a prospective proof-of-concept study [J]. Hemodial Int, 2013, 17(2): 282-293.
[26]
Shum HP, Chan KC, Kwan MC, et al. Application of endotoxin and cytokine adsorption haemofilter in septic acute kidney injury due to Gram-negative bacterial infection [J]. Hong Kong Med J, 2013, 19(6): 491-497.
[27]
Tian Q, Gomersall CD, Ip M, et al. Adsorption of amikacin, a significant mechanism of elimination by hemofiltration [J]. Antimicrob Agents Chemother, 2008, 52(3): 1009-1013.
[28]
De Vriese AS, Colardyn FA, Philippe JJ, et al. Cytokine removal during continuous hemofiltration in septic patients [J]. J Am Soc Nephrol, 1999, 10(4): 846-853.
[29]
McCrea K, Ward R, LaRosa SP. Removal of carbapenem-resistant Enterobacteriaceae (CRE) from blood by heparin-functional hemoperfusion media [J]. PLoS One, 2014, 9(12): e114242.
[30]
Kang JH, Super M, Yung CW, et al. An extracorporeal blood-cleansing device for sepsis therapy [J]. Nat Med, 2014, 20(10): 1211-1216.
[31]
Buttner S, Koch B, Dolnik O, et al. Extracorporeal virus elimination for the treatment of severe Ebola virus disease--first experience with lectin affinity plasmapheresis [J]. Blood Purif, 2014, 38(3-4): 286-291.
[32]
Pino CJ, Yevzlin AS, Tumlin J, et al. Cell-based strategies for the treatment of kidney dysfunction: a review [J]. Blood Purif, 2012, 34(2): 117-123.
[33]
Pino CJ, Yevzlin AS, Lee K, et al. Cell-based approaches for the treatment of systemic inflammation [J]. Nephrol Dial Transplant, 2013, 28(2): 296-302.
[34]
Ding F, Song JH, Jung JY, et al. A biomimetic membrane device that modulates the excessive inflammatory response to sepsis [J]. PLoS One, 2011, 6(4): e18584.
[35]
Srisawat N, Tungsanga S, Lumlertgul N, et al. The effect of polymyxin B hemoperfusion on modulation of human leukocyte antigen DR in severe sepsis patients [J]. Crit Care, 2018, 22(1): 279.
[36]
Gossez M, Rimmele T, Andrieu T, et al. Proof of concept study of mass cytometry in septic shock patients reveals novel immune alterations [J]. Sci Rep, 2018, 8(1): 17296.
[1]
Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3) [J]. JAMA, 2016, 315(8): 801-810.
[2]
Shankar-Hari M, Deutschman CS, Singer M. Do we need a new definition of sepsis? [J]. Intensive Care Med, 2015, 41(5): 909-911.
[3]
Ankawi G, Neri M, Zhang J, et al. Extracorporeal techniques for the treatment of critically ill patients with sepsis beyond conventional blood purification therapy: the promises and the pitfalls [J]. Crit Care, 2018, 22(1): 262.
[4]
Zarbock A, Gomez H, Kellum JA. Sepsis-induced acute kidney injury revisited: pathophysiology, prevention and future therapies [J]. Curr Opin Crit Care, 2014, 20(6): 588-595.
[5]
Ronco C, Tetta C, Mariano F, et al. Interpreting the mechanisms of continuous renal replacement therapy in sepsis: the peak concentration hypothesis [J]. Artif Organs, 2003, 27(9): 792-801.
[6]
Bhatia M, Moochhala S. Role of inflammatory mediators in the pathophysiology of acute respiratory distress syndrome [J]. J Pathol, 2004, 202(2): 145-156.
[7]
Marshall JC, Foster D, Vincent JL, et al. Diagnostic and prognostic implications of endotoxemia in critical illness: results of the MEDIC study [J]. J Infect Dis, 2004, 190(3): 527-534.
[8]
Peng ZY, Wang HZ, Carter MJ, et al. Acute removal of common sepsis mediators does not explain the effects of extracorporeal blood purification in experimental sepsis [J]. Kidney Int, 2012, 81(4): 363-369.
[1] 庄燕, 戴林峰, 张海东, 陈秋华, 聂清芳. 脓毒症患者早期生存影响因素及Cox 风险预测模型构建[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 372-378.
[2] 杨瑾, 刘雪克, 张媛媛, 金钧, 韦瑶. 肠道微生物来源石胆酸对脓毒症相关肝损伤的保护作用[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 265-274.
[3] 张霞, 张瑞, 郑志波, 张勤. 紫草素调控乳酸化修饰和线粒体功能改善脓毒症心肌病小鼠的预后[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 275-284.
[4] 张婧琦, 江洋, 孙佳璐, 唐兴喆, 赵宇飞, 崔颖, 李信响, 戴景月, 傅琳, 彭新桂. 基于肾周CT特征结合血清肌酐水平探讨脓毒症伴急性肾损伤的早期识别[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 285-292.
[5] 李振翮, 魏长青, 甄国栋, 李振富. 脓毒症并发急性呼吸窘迫综合征患者血清S1P、Wnt5a变化及其临床意义[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 293-300.
[6] 樊恒, 孙敏, 朱建华. 红景天苷通过抑制PI3K/AKT/mTOR信号通路对大鼠脓毒症急性肾损伤的保护作用[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(03): 188-195.
[7] 陈曦, 吴宗盛, 郑明珠, 邱海波. 胸腺萎缩在脓毒症免疫紊乱中的研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 379-383.
[8] 杨翔, 郭兰骐, 谢剑锋, 邱海波. 转录组学在脓毒症诊疗中的临床研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 384-388.
[9] 成人脓毒症患者β-内酰胺类抗生素延长输注专家共识编写组. 成人脓毒症患者β-内酰胺类抗生素延长输注专家共识[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 313-324.
[10] 胡梓菡, 彭菲, 孙骎, 杨毅. 细胞外囊泡在脓毒症血管内皮损伤作用中的研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(03): 265-270.
[11] 刘娟丽, 马四清, 乌仁塔娜. 髓源性抑制细胞在脓毒症中的研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(03): 271-278.
[12] 苏生林, 马金兰, 于弘明, 杨晓军. 单细胞测序技术在脓毒症免疫研究中的应用进展[J/OL]. 中华重症医学电子杂志, 2024, 10(03): 279-286.
[13] 陈惠英, 邱敏珊, 邵汉权. 脓毒症诱发肠黏膜屏障功能损伤的风险因素模型构建与应用效果[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 448-452.
[14] 傅新露, 李之岳, 卢丹. 妊娠合并结肠癌穿孔致脓毒症休克一例并文献复习[J/OL]. 中华产科急救电子杂志, 2024, 13(04): 227-231.
[15] 席静妮, 李娜, 张琪. 中性粒细胞与淋巴细胞比值对老年重症社区获得性肺炎进展为脓毒症的预测价值[J/OL]. 中华老年病研究电子杂志, 2024, 11(03): 28-31.
阅读次数
全文


摘要