切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2021, Vol. 10 ›› Issue (02) : 81 -89. doi: 10.3877/cma.j.issn.2095-3216.2021.02.005

所属专题: 文献

论著

高尿酸通过TXNIP/NLRP3通路导致内皮细胞焦亡
迟坤1, 付章宁1, 宋成成1, 耿晓东1, 刘超1, 蔡广研1, 陈香美1, 洪权1,()   
  1. 1. 100853 北京,解放军医学院、解放军总医院第一医学中心肾脏病医学部,解放军肾脏病研究所,肾脏疾病国家重点实验室,国家慢性肾病临床医学研究中心,肾脏疾病研究北京市重点实验室
  • 收稿日期:2020-12-28 出版日期:2021-04-30
  • 通信作者: 洪权
  • 基金资助:
    国家自然科学基金面上项目(81870491,82070741)

High uric acid caused pyroptosis of endothelial cells through the TXNIP/NLRP3 pathway

Kun Chi1, Zhangning Fu1, Chengcheng Song1, Xiaodong Geng1, Chao Liu1, Guangyan Cai1, Xiangmei Chen1, Quan Hong1,()   

  1. 1. Medical School of Chinese PLA, Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing 100853, China
  • Received:2020-12-28 Published:2021-04-30
  • Corresponding author: Quan Hong
引用本文:

迟坤, 付章宁, 宋成成, 耿晓东, 刘超, 蔡广研, 陈香美, 洪权. 高尿酸通过TXNIP/NLRP3通路导致内皮细胞焦亡[J]. 中华肾病研究电子杂志, 2021, 10(02): 81-89.

Kun Chi, Zhangning Fu, Chengcheng Song, Xiaodong Geng, Chao Liu, Guangyan Cai, Xiangmei Chen, Quan Hong. High uric acid caused pyroptosis of endothelial cells through the TXNIP/NLRP3 pathway[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2021, 10(02): 81-89.

目的

高尿酸血症(HUA)可激活结合核苷酸的寡聚化结构域样受体蛋白3(NLRP3)炎症小体,导致内皮细胞功能障碍,引起内皮损伤,但机制不明。本研究拟探究尿酸(UA)是否通过活性氧(ROS)影响炎症小体的表观调控和激活、从而导致内皮损害。

方法

600 μmol/L UA处理人脐静脉内皮细胞(HUVEC)24 h,Western印迹检测焦亡相关蛋白的表达变化,包括NLRP3、半胱氨酸天冬氨酸蛋白水解酶1(Caspase-1)、消皮素D氨基端蛋白(GSDMD-N);ELISA法检测细胞上清乳酸脱氢酶(LDH)、白细胞介素-1β(IL-1β)和白细胞介素-18(IL-18)。通过功能获得和缺失实验,验证NLRP3炎症小体在高尿酸导致的内皮细胞焦亡中的作用;利用免疫沉淀(IP)检测高尿酸环境中氧化应激相关蛋白硫氧还蛋白互作蛋白(TXNIP)、硫氧还蛋白(TRX)和NLRP3的相互作用。利用慢病毒过表达和敲低TXNIP,进一步验证TXNIP对NLRP3的调控关系,及其对内皮细胞焦亡的影响。

结果

高尿酸处理的HUVEC的焦亡相关蛋白(NLRP3、Caspase-1、GSDMD-N)表达升高,细胞上清LDH及炎症因子IL-1β,IL-18的释放增加,HUVEC增殖明显受到抑制。功能获得和缺失实验证实高尿酸通过NLRP3炎症小体导致内皮细胞焦亡。使用ROS清除剂mito-Tempo处理HUVEC细胞,可抑制TXNIP/TRX的解离,从而阻断TXNIP和NLRP3之间的相互作用,最终抑制NLRP3炎症小体激活和焦亡发生。过表达TXNIP,可导致NLRP3激活及后续焦亡发生,而敲低TXNIP,则观察到相反的结果。

结论

本研究证实高尿酸导致内皮细胞炎症反应及后续的焦亡发生,是通过ROS促进了TXNIP/TRX解离,随后激活了NLRP3炎症小体。

Objective

Hyperuricemia can lead to the activation of NLRP3 inflammasomes, resulting in the dysfunction and injury of endothelial cells, but the mechanism is unclear. This study aimed to explore whether uric acid (UA) could affect the epigenetic regulation and activation of inflammasomes through reactive oxygen species (ROS), leading to the endothelial damage.

Methods

Human umbilical vein endothelial cells (HUVEC) were cultured with UA (600 μmol/L) for 24 hours. Western blot was used to determine expression changes of pyroptosis-related proteins including NLRP3, caspase-1, and GSDMD-N. The levels of LDH, IL-1β, and IL-18 in the cells supernatant were detected by ELISA. The gain-of-function and loss-of-function experiments were performed to verify the role of NLRP3 inflammasomes in the pyroptosis of endothelial cells induced by high uric acid. Immunoprecipitation method was used to detect the interaction among oxidative stress-related proteins of TXNIP, TRX, and NLRP3 in the high uric acid environment. Overexpression and knock-down of TXNIP with lentivirus were used to further verify the regulation of NLRP3 by TXNIP, as well as its effect on pyroptosis of endothelial cells.

Results

The expression of pyroptosis-related proteins as NLRP3, caspase-1, and GSDMD-N in HUVEC treated with UA was increased, while the release of LDH, IL-1β, and IL-18 in the cells supernatant was also increased, with the proliferation of HUVEC being significantly inhibited. Gain-of-function and loss-of-function experiments confirmed that high uric acid led to pyroptosis of endothelial cells via NLRP3 inflammasomes. Treating the HUVEC with the ROS scavenger mito-Tempo inhibited the dissociation of TXNIP/TRX, thereby blocked the interaction between TXNIP and NLRP3, eventually resulting in inhibiting both the activation of NLRP3 inflammasomes and pyroptosis. Overexpression of TXNIP led to the activation of NLRP3 and subsequent pyroptosis, while knock-down of TXNIP caused the opposite results.

Conclusion

This study demonstrated that high uric acid caused inflammation and subsequent pyroptosis of the endothelial cells through ROS promoting the dissociation of TXNIP/TRX and then activating the NLRP3 inflammasomes.

图1 研究设计思路图
图2 高尿酸对内皮细胞NLRP3炎症小体以及细胞焦亡的影响
图3 NLRP3炎症小体在尿酸诱导的内皮细胞焦亡中的作用
图4 ROS在调控内皮细胞焦亡中的作用
图5 高尿酸通过ROS导致HUVEC细胞TXNIP/TRX解离,并促进TXNIP与NLRP3结合
图6 高尿酸通过TXNIP/NLRP3轴导致内皮细胞焦亡
[1]
Wang H, Zhang H, Sun L, et al. Roles of hyperuricemia in metabolic syndrome and cardiac-kidney-vascular system diseases [J]. Am J Transl Res, 2018, 10(9): 2749-2763.
[2]
Fu J, Lee K, Chuang PY, et al. Glomerular endothelial cell injury and cross talk in diabetic kidney disease [J]. Am J Physiol Renal Physiol, 2015, 308(4): F287-F297.
[3]
Jourde-Chiche N, Fakhouri F, Dou L, et al. Endothelium structure and function in kidney health and disease [J]. Nat Rev Nephrol, 2019, 15(2): 87-108.
[4]
Verma SK, Molitoris BA. Renal endothelial injury and microvascular dysfunction in acute kidney injury [J]. Semin Nephrol, 2015, 35(1): 96-107.
[5]
Yu S, Hong Q, Wang Y, et al. High concentrations of uric acid inhibit angiogenesis via regulation of the Kruppel-like factor 2-vascular endothelial growth factor-A axis by miR-92a [J]. Circ J, 2015, 79(11): 2487-2498.
[6]
Place DE, Kanneganti TD. Recent advances in inflammasome biology [J]. Curr Opin Immunol, 2018, 50: 32-38.
[7]
Schroder K, Tschopp J. The inflammasomes [J]. Cell, 2010, 140(6): 821-832.
[8]
Bergsbaken T, Fink SL, Cookson BT. Pyroptosis: host cell death and inflammation [J]. Nat Rev Microbiol, 2009, 7(2): 99-109.
[9]
Xu J, Jiang Y, Wang J, et al. Macrophage endocytosis of high-mobility group box 1 triggers pyroptosis [J]. Cell Death Differ, 2014, 21(8): 1229-1239.
[10]
Lin J, Cheng A, Cheng K, et al. New insights into the mechanisms of pyroptosis and implications for diabetic kidney disease [J]. Int J Mol Sci, 2020, 21(19): 7057.
[11]
Priante G, Gianesello L, Ceol M, et al. Cell death in the kidney [J]. Int J Mol Sci, 2019, 20(14): 3598.
[12]
Zhou R, Yazdi AS, Menu P, et al. A role for mitochondria in NLRP3 inflammasome activation [J]. Nature, 2011, 469(7329): 221-225.
[13]
Li Y, Yang J, Chen MH, et al. Ilexgenin A inhibits endoplasmic reticulum stress and ameliorates endothelial dysfunction via suppression of TXNIP/NLRP3 inflammasome activation in an AMPK dependent manner [J]. Pharmacol Res, 2015, 99: 101-115.
[14]
Yoshihara E, Masaki S, Matsuo Y, et al. Thioredoxin/Txnip: redoxisome, as a redox switch for the pathogenesis of diseases [J]. Front Immunol, 2014, 4: 514.
[15]
Hong Q, Qi K, Feng Z, et al. Hyperuricemia induces endothelial dysfunction via mitochondrial Na+/Ca2+ exchanger-mediated mitochondrial calcium overload [J]. Cell Calcium, 2012, 51(5): 402-410.
[16]
Bellomo G, Venanzi S, Verdura C, et al. Association of uric acid with change in kidney function in healthy normotensive individuals [J]. Am J Kidney Dis, 2010, 56(2): 264-272.
[17]
Kanbay M, Segal M, Afsar B, et al. The role of uric acid in the pathogenesis of human cardiovascular disease [J]. Heart, 2013, 99(11): 759-766.
[18]
Isaka Y, Takabatake Y, Takahashi A, et al. Hyperuricemia-induced inflammasome and kidney diseases [J]. Nephrol Dial Transplant, 2016, 31(6): 890-896.
[19]
Wang G, Zuo T, Li R. The mechanism of Arhalofenate in alleviating hyperuricemia-activating PPARγ thereby reducing caspase-1 activity [J]. Drug Dev Res, 2020, 81(7): 859-866.
[20]
Rashidi M, Wicks IP, Vince JE. Inflammasomes and cell death: common pathways in microparticle diseases [J]. Trends Mol Med, 2020, 26(11): 1003-1020.
[21]
刘冰,洪权,冯哲. 高糖与高尿酸通过醛糖还原酶通路协同作用加重内皮细胞损伤[J/CD]. 中华肾病研究电子杂志,2018, 7(1): 34-38.
[22]
Khosla UM, Zharikov S, Finch JL, et al. Hyperuricemia induces endothelial dysfunction [J]. Kidney Int, 2005, 67(5): 1739-1742.
[23]
Cruz CM, Rinna A, Forman HJ, et al. ATP activates a reactive oxygen species-dependent oxidative stress response and secretion of proinflammatory cytokines in macrophages [J]. J Biol Chem, 2007, 282(5): 2871-2879.
[24]
Wang W, Wu QH, Sui Y, et al. Rutin protects endothelial dysfunction by disturbing Nox4 and ROS-sensitive NLRP3 inflammasome [J]. Biomed Pharmacother, 2017, 86: 32-40.
[25]
Zhou R, Tardivel A, Thorens B, et al. Thioredoxin-interacting protein links oxidative stress to inflammasome activation [J]. Nat Immunol, 2010, 11(2): 136-140.
[26]
Abais JM, Xia M, Li G, et al. Nod-like receptor protein 3 (NLRP3) inflammasome activation and podocyte injury via thioredoxin-interacting protein (TXNIP) during hyperhomocysteinemia [J]. J Biol Chem, 2014, 289(39): 27159-27168.
[27]
Wang XQ, Nigro P, World C, et al. Thioredoxin interacting protein promotes endothelial cell inflammation in response to disturbed flow by increasing leukocyte adhesion and repressing Kruppel-like factor 2 [J]. Circ Res, 2012, 110(4): 560-568.
[1] 马尧, 杨明义, 许珂, 郝博, 许鹏. 细胞焦亡与类风湿性关节炎的相关研究进展[J]. 中华关节外科杂志(电子版), 2022, 16(05): 586-591.
[2] 尹娟, 杨兴, 李平, 徐旻馨, 鲍玉, 张志鹏, 薛慧. 低强度脉冲式超声波在脂多糖诱导的RAW264.7巨噬细胞分化中的抗炎和抗氧化作用[J]. 中华口腔医学研究杂志(电子版), 2023, 17(01): 26-36.
[3] 赵路, 张哲儒, 贾骏麒, 宗春琳, 景莉, 郭凯, 田磊. M2型巨噬细胞抑制放射后骨髓间充质干细胞向肌成纤维细胞转化的实验研究[J]. 中华口腔医学研究杂志(电子版), 2021, 15(04): 198-206.
[4] 蒲娇, 龚忠诚. 细胞焦亡在糖尿病牙周炎中的研究进展[J]. 中华口腔医学研究杂志(电子版), 2021, 15(03): 189-192.
[5] 邵浩仁, 郭佳. 铁死亡的分子机制及其在前列腺癌治疗中的研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(03): 294-298.
[6] 刘欣, 李艳敏, 郑佳, 赵商岐, 唐晓慧, 赵静, 周文涛, 周晓涛. COPD患者NLRP3炎症小体及TNF-α、HMGB1的表达及相互关系[J]. 中华肺部疾病杂志(电子版), 2022, 15(04): 468-472.
[7] 张江河, 李玉红, 李余杰, 张洪壮, 张一鸣. 低浓度过氧化氢对HaCat细胞增殖和大鼠创面愈合的作用与机制研究[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(02): 75-82.
[8] 孙文琦, 吴欣荣, 王运荣, 赵贝, 窦晓坛, 李雯, 邹晓平, 王雷, 陈敏. 结直肠上皮细胞ROS及FH检测对结直肠癌筛查的应用价值[J]. 中华结直肠疾病电子杂志, 2023, 12(04): 326-330.
[9] 李燕辰, 李建宁, 涂晓文, 李峰生. 核辐射导致急性肾损伤中铁死亡的作用研究进展[J]. 中华肾病研究电子杂志, 2022, 11(06): 338-341.
[10] 都一鸣, 陈鑫, 赵世光. 急性缺血性脑卒中氧化应激机制的研究进展[J]. 中华神经创伤外科电子杂志, 2021, 07(02): 121-124.
[11] 隆昱洲, 柳华, 张云茜, 李兴统, 范云虎, 尚正良, 宋镇妤, 罗丽华. 依达拉奉预适应延长急性缺血性脑卒中溶栓时间窗的研究及ROS/TXNIP/NLRP3通路参与机制的探讨[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(02): 65-74.
[12] 蒋晨, 万新娟, 谢小东, 丁琳. 糖化血红蛋白、硫氧还蛋白、硫氧还蛋白互作蛋白与皮质性白内障的关系[J]. 中华临床医师杂志(电子版), 2022, 16(09): 914-918.
[13] 蒲友敏, 赵洪雯, 申兵冰, 周强, 谢攀, 吴雄飞. TRPC6靶向miR-214负调控Caspase-1表达以改善肾缺血再灌注损伤的机制研究[J]. 中华临床医师杂志(电子版), 2022, 16(01): 84-93.
[14] 阳泽宇, 杨霞, 王嘉伟, 谭兴领, 张敏敏, 宁宗. GSDMD依赖性细胞焦亡在毒蛇咬伤患者中的表达[J]. 中华临床医师杂志(电子版), 2021, 15(03): 187-190.
[15] 李少莹, 文莹, 贾翠萍, 张媛, 邓伟豪. 抑制糖毒性通路对细胞线粒体功能障碍的影响和潜在意义[J]. 中华临床实验室管理电子杂志, 2023, 11(02): 65-70.
阅读次数
全文


摘要