切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2021, Vol. 10 ›› Issue (02) : 90 -95. doi: 10.3877/cma.j.issn.2095-3216.2021.02.006

所属专题: 文献

综述

糖尿病肾病分子机制的研究新进展
张志蓉1, 韩伟霞1, 王晨1,()   
  1. 1. 030001 太原,山西医科大学第二医院病理科
  • 收稿日期:2020-10-09 出版日期:2021-04-30
  • 通信作者: 王晨

New progress in the research on molecular mechanism of diabetic nephropathy

Zhirong Zhang1, Weixia Han1, Chen Wang1,()   

  1. 1. Department of Pathology, Second Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
  • Received:2020-10-09 Published:2021-04-30
  • Corresponding author: Chen Wang
引用本文:

张志蓉, 韩伟霞, 王晨. 糖尿病肾病分子机制的研究新进展[J/OL]. 中华肾病研究电子杂志, 2021, 10(02): 90-95.

Zhirong Zhang, Weixia Han, Chen Wang. New progress in the research on molecular mechanism of diabetic nephropathy[J/OL]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2021, 10(02): 90-95.

糖尿病肾病(DN)是糖尿病严重的微血管并发症,是引起终末期肾病(ESRD)的主要原因。DN发病机制复杂,包括糖与脂代谢紊乱、血流动力学异常、氧化应激及炎症。近年研究发现,非编码RNA、自噬、焦亡和外泌体等在DN发展中发挥重要作用。本文就以上分子机制的最新研究进展予以综述,以期对早期诊断、个体化精准治疗和延缓DN进展提供新的见解。

Diabetic nephropathy (DN) is a serious microvascular complication of diabetes, and is the main cause of end-stage renal disease (ESRD). The pathogenesis of DN is complex, including glucose and lipid metabolism disorders, abnormal hemodynamics, oxidative stress, and inflammation. Recent studies have found that non-coding RNA, autophagy, pyroptosis, and exosomes, etc, play an important role in the development of DN. This article reviewed the latest research progress of the above molecular mechanisms in order to provide new insights on early diagnosis, individualized precision treatment, and delaying of DN progression.

表1 参与糖尿病肾病发病机制的非编码RNA
图2 糖尿病肾病的分子机制
表2 参与糖尿病肾病发病机制的炎症分子
图1 三种细胞焦亡的分子机制
[1]
Kanwar YS, Sun L, Xie P, et al. A glimpse of various pathogenetic mechanisms of diabetic nephropathy [J]. Annu Rev Pathol, 2011, 6: 395-423.
[2]
Lv J, Wu Y, Mai Y, et al. Noncoding RNAs in diabetic nephropathy: pathogenesis, biomarkers, and therapy [J]. J Diabetes Res, 2020, 2020: 3960857.
[3]
Loganathan TS, Sulaiman SA, Abdul Murad NA, et al. Interactions among non-coding RNAs in diabetic nephropathy [J]. Front Pharmacol, 2020, 11: 191.
[4]
Yao T, Zha D, Hu C, et al. Circ_0000285 promotes podocyte injury through sponging miR-654-3p and activating MAPK6 in diabetic nephropathy [J]. Gene, 2020, 747: 144661.
[5]
Zhang JR, Sun HJ. Roles of circular RNAs in diabetic complications: from molecular mechanisms to therapeutic potential [J]. Gene, 2020, 763: 145066.
[6]
Nguyen D, Ping F, Mu W, et al. Macrophage accumulation in human progressive diabetic nephropathy [J]. Nephrology (Carlton), 2006, 11(3): 226-231.
[7]
Calle P, Hotter G. Macrophage phenotype and fibrosis in diabetic nephropathy [J]. Int J Mol Sci, 2020, 21(8): 2806.
[8]
Yuan Y, Li L, Zhu L,et al. Mesenchymal stem cells elicit macrophages into M2 phenotype via improving transcription factor EB-mediated autophagy to alleviate diabetic nephropathy [J]. Stem Cells, 2020, 38(5): 639-652.
[9]
Pérez-Morales RE, Del Pino MD, Valdivielso JM, et al. Inflammation in diabetic kidney disease [J]. Nephron, 2019, 143(1): 12-16.
[10]
Fang Y, Tian S, Pan Y, et al. Pyroptosis: a new frontier in cancer [J]. Biomed Pharmacother, 2020, 121: 109595.
[11]
Wang Y, Zhu X, Yuan S, et al. TLR4/NF-κB signaling induces GSDMD-related pyroptosis in tubular cells in diabetic kidney disease [J]. Front Endocrinol (Lausanne), 2019, 10: 603.
[12]
Zhu B, Cheng X, Jiang Y, et al. Silencing of KCNQ1OT1 decreases oxidative stress and pyroptosis of renal tubular epithelial cells [J]. Diabetes Metab Syndr Obes, 2020, 13: 365-375.
[13]
Li X, Zeng L, Cao C, et al. Long noncoding RNA MALAT1 regulates renal tubular epithelial pyroptosis by modulated miR-23c targeting of ELAVL1 in diabetic nephropathy [J]. Exp Cell Res, 2017, 350(2): 327-335.
[14]
Zhang P, Cao L, Zhou R, et al. The lncRNA Neat1 promotes activation of inflammasomes in macrophages [J]. Nat Commun, 2019, 10(1): 1495.
[15]
Wen S, Li S, Li L, et al. CircACTR2: a novel mechanism regulating high glucose-induced fibrosis in renal tubular cells via pyroptosis [J]. Biol Pharm Bull, 2020, 43(3): 558-564.
[16]
Tagawa A, Yasuda M, Kume S, et al. Impaired podocyte autophagy exacerbates proteinuria in diabetic nephropathy [J]. Diabetes, 2016, 65(3): 755-767.
[17]
Xu J, Deng Y, Wang Y, et al. SPAG5-AS1 inhibited autophagy and aggravated apoptosis of podocytes via SPAG5/AKT/mTOR pathway [J]. Cell Prolif, 2020, 53(2): e12738.
[18]
Ma T, Zhu J, Chen X, et al. High glucose induces autophagy in podocytes [J]. Exp Cell Res, 2013, 319(6): 779-789.
[19]
Wei M, Li Z, Yang Z. Crosstalk between protective autophagy and NF-κB signal in high glucose-induced podocytes [J]. Mol Cell Biochem, 2014, 394(1-2): 261-273.
[20]
Lenoir O, Jasiek M, Hénique C, et al. Endothelial cell and podocyte autophagy synergistically protect from diabetes-induced glomerulosclerosis [J]. Autophagy, 2015, 11(7): 1130-1145.
[21]
Lim JH, Kim HW, Kim MY, et al. Cinacalcet-mediated activation of the CaMKKβ-LKB1-AMPK pathway attenuates diabetic nephropathy in db/db mice by modulation of apoptosis and autophagy [J]. Cell Death Dis, 2018, 9(3): 270.
[22]
Yoshibayashi M, Kume S, Yasuda-Yamahara M, et al. Protective role of podocyte autophagy against glomerular endothelial dysfunction in diabetes [J]. Biochem Biophys Res Commun, 2020, 525(2): 319-325.
[23]
Fiorentino L, Cavalera M, Menini S, et al. Loss of TIMP3 underlies diabetic nephropathy via FoxO1/STAT1 interplay [J]. EMBO Mol Med, 2013, 5(3): 441-455.
[24]
Gao C, Fan F, Chen J, et al. FBW7 regulates the autophagy signal in mesangial cells induced by high glucose [J]. Biomed Res Int, 2019, 2019: 6061594.
[25]
Wang A, Ren J, Wang CP, et al. Heparin prevents intracellular hyaluronan synthesis and autophagy responses in hyperglycemic dividing mesangial cells and activates synthesis of an extensive extracellular monocyte-adhesive hyaluronan matrix after completing cell division [J]. J Biol Chem, 2014, 289(13): 9418-9429.
[26]
Huang C, Zhang Y, Kelly DJ, et al. Thioredoxin interacting protein (TXNIP) regulates tubular autophagy and mitophagy in diabetic nephropathy through the mTOR signaling pathway [J]. Sci Rep, 2016, 6: 29196.
[27]
Wang Y, Zheng ZJ, Jia YJ, et al. Role of p53/miR-155-5p/sirt1 loop in renal tubular injury of diabetic kidney disease [J]. J Transl Med, 2018, 16(1): 146.
[28]
Zhao X, Liu G, Shen H, et al. Liraglutide inhibits autophagy and apoptosis induced by high glucose through GLP-1R in renal tubular epithelial cells [J]. Int J Mol Med, 2015, 35(3): 684-692.
[29]
Gou R, Chen J, Sheng S, et al. KIM-1 mediates high glucose-induced autophagy and apoptosis in renal tubular epithelial cells [J]. Cell Physiol Biochem, 2016, 38(6): 2479-2488.
[30]
Sakai S, Yamamoto T, Takabatake Y, et al. Proximal tubule autophagy differs in type 1 and 2 diabetes [J]. J Am Soc Nephrol, 2019, 30(6): 929-945.
[31]
Van Krieken R, Chen G, Gao B, et al. Sterol regulatory element binding protein (SREBP)-1 is a novel regulator of the transforming growth factor (TGF)-β receptor I (TβRI) through exosomal secretion [J]. Cell Signal, 2017, 29: 158-167.
[32]
Wu X, Gao Y, Xu L, et al. Exosomes from high glucose-treated glomerular endothelial cells trigger the epithelial-mesenchymal transition and dysfunction of podocytes [J]. Sci Rep, 2017, 7(1): 9371.
[33]
Wu XM, Gao YB, Cui FQ, et al. Exosomes from high glucose-treated glomerular endothelial cells activate mesangial cells to promote renal fibrosis [J]. Biol Open, 2016, 5(4): 484-491.
[34]
Zhu QJ, Zhu M, Xu XX, et al. Exosomes from high glucose-treated macrophages activate glomerular mesangial cells via TGF-β1/Smad 3 pathway in vivo and in vitro [J]. FASEB J, 2019, 33(8): 9279-9290.
[35]
Lv LL, Feng Y, Wu M, et al. Exosomal miRNA-19b-3p of tubular epithelial cells promotes M1 macrophage activation in kidney injury [J]. Cell Death Differ, 2020, 27(1): 210-226.
[36]
Ling L, Tan Z, Zhang C, et al. CircRNAs in exosomes from high glucose-treated glomerular endothelial cells activate mesangial cells [J]. Am J Transl Res, 2019, 11(8): 4667-4682.
[1] 刘伟, 牛云峰, 安杰. LINC01232 通过miR-516a-5p/BCL9 轴促进三阴性乳腺癌的恶性进展[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 330-338.
[2] 吴杰, 周志强, 符菁, 李喜功, 张钦. 吸入性氢气对大鼠脊髓损伤后自噬及神经功能的影响[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 363-371.
[3] 诸琴红, 夏典平, 葛芳娣, 崔大伟. 抗氧化和炎症指标在糖尿病肾病患者中的临床意义[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 307-311.
[4] 黄蓉, 梁自毓, 祁文瑾. NLRP3炎症小体在胎膜早破孕妇血清中的表达及其意义[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 540-548.
[5] 宋勤琴, 李双汝, 李林, 杜鹃, 刘继松. 间充质干细胞源性外泌体在改善病理性瘢痕中作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 550-553.
[6] 刘昌玲, 张金丽, 张志, 李孝建, 汤文彬, 胡逸萍, 陈宾, 谢晓娜. 负载人脂肪干细胞外泌体的甲基丙烯酰化明胶水凝胶对人皮肤成纤维细胞增殖和迁移的影响[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 517-525.
[7] 李争光, 宰爽嘉, 吴火峰, 孙华, 张永博, 陈浏阳, 戴睿, 张亮. 昼夜节律相关因子在椎间盘退行性变发病机制中作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 457-461.
[8] 蔡定钦, 孙建国, 陈旭. 外泌体非编码RNAs与肺癌放射治疗的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 655-658.
[9] 袁雨涵, 杨盛力. 体液和组织蛋白质组学分析在肝癌早期分子诊断中的研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 883-888.
[10] 王向前, 李清峰, 陈磊, 丘文丹, 姚志成, 李熠, 吴荣焕. 姜黄素抑制肝细胞癌索拉非尼耐药作用及其调控机制[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 729-735.
[11] 翟航, 张广权, 吴芳芳, 史宪杰. 非编码RNA调控胰腺纤维化研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(04): 583-587.
[12] 王国强, 张纲, 唐建坡, 张玉国, 杨永江. LINC00839 调节miR-17-5p/WEE1 轴对结直肠癌细胞增殖、凋亡和迁移的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 491-499.
[13] 史清泉, 苗彬, 王烁, 陶琳, 沈晨. miR-181a-5p 靶向ATG5 抑制雨蛙素诱导的大鼠胰腺腺泡细胞AR42J自噬的机制研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 524-530.
[14] 邱岭, 朱旭丽, 浦坚, 邢苗苗, 吴佳玲. 糖尿病肾病患者肠道菌群生态特点与胃肠道功能障碍的关联性研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 453-458.
[15] 丁洪基, 赵长江, 孙鹏飞, 王灿, 王贵珍, 李龙龙. 细胞焦亡与疾病的关系研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 682-686.
阅读次数
全文


摘要