切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2021, Vol. 10 ›› Issue (02) : 90 -95. doi: 10.3877/cma.j.issn.2095-3216.2021.02.006

所属专题: 文献

综述

糖尿病肾病分子机制的研究新进展
张志蓉1, 韩伟霞1, 王晨1,()   
  1. 1. 030001 太原,山西医科大学第二医院病理科
  • 收稿日期:2020-10-09 出版日期:2021-04-30
  • 通信作者: 王晨

New progress in the research on molecular mechanism of diabetic nephropathy

Zhirong Zhang1, Weixia Han1, Chen Wang1,()   

  1. 1. Department of Pathology, Second Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
  • Received:2020-10-09 Published:2021-04-30
  • Corresponding author: Chen Wang
引用本文:

张志蓉, 韩伟霞, 王晨. 糖尿病肾病分子机制的研究新进展[J]. 中华肾病研究电子杂志, 2021, 10(02): 90-95.

Zhirong Zhang, Weixia Han, Chen Wang. New progress in the research on molecular mechanism of diabetic nephropathy[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2021, 10(02): 90-95.

糖尿病肾病(DN)是糖尿病严重的微血管并发症,是引起终末期肾病(ESRD)的主要原因。DN发病机制复杂,包括糖与脂代谢紊乱、血流动力学异常、氧化应激及炎症。近年研究发现,非编码RNA、自噬、焦亡和外泌体等在DN发展中发挥重要作用。本文就以上分子机制的最新研究进展予以综述,以期对早期诊断、个体化精准治疗和延缓DN进展提供新的见解。

Diabetic nephropathy (DN) is a serious microvascular complication of diabetes, and is the main cause of end-stage renal disease (ESRD). The pathogenesis of DN is complex, including glucose and lipid metabolism disorders, abnormal hemodynamics, oxidative stress, and inflammation. Recent studies have found that non-coding RNA, autophagy, pyroptosis, and exosomes, etc, play an important role in the development of DN. This article reviewed the latest research progress of the above molecular mechanisms in order to provide new insights on early diagnosis, individualized precision treatment, and delaying of DN progression.

表1 参与糖尿病肾病发病机制的非编码RNA
图2 糖尿病肾病的分子机制
表2 参与糖尿病肾病发病机制的炎症分子
图1 三种细胞焦亡的分子机制
[1]
Kanwar YS, Sun L, Xie P, et al. A glimpse of various pathogenetic mechanisms of diabetic nephropathy [J]. Annu Rev Pathol, 2011, 6: 395-423.
[2]
Lv J, Wu Y, Mai Y, et al. Noncoding RNAs in diabetic nephropathy: pathogenesis, biomarkers, and therapy [J]. J Diabetes Res, 2020, 2020: 3960857.
[3]
Loganathan TS, Sulaiman SA, Abdul Murad NA, et al. Interactions among non-coding RNAs in diabetic nephropathy [J]. Front Pharmacol, 2020, 11: 191.
[4]
Yao T, Zha D, Hu C, et al. Circ_0000285 promotes podocyte injury through sponging miR-654-3p and activating MAPK6 in diabetic nephropathy [J]. Gene, 2020, 747: 144661.
[5]
Zhang JR, Sun HJ. Roles of circular RNAs in diabetic complications: from molecular mechanisms to therapeutic potential [J]. Gene, 2020, 763: 145066.
[6]
Nguyen D, Ping F, Mu W, et al. Macrophage accumulation in human progressive diabetic nephropathy [J]. Nephrology (Carlton), 2006, 11(3): 226-231.
[7]
Calle P, Hotter G. Macrophage phenotype and fibrosis in diabetic nephropathy [J]. Int J Mol Sci, 2020, 21(8): 2806.
[8]
Yuan Y, Li L, Zhu L,et al. Mesenchymal stem cells elicit macrophages into M2 phenotype via improving transcription factor EB-mediated autophagy to alleviate diabetic nephropathy [J]. Stem Cells, 2020, 38(5): 639-652.
[9]
Pérez-Morales RE, Del Pino MD, Valdivielso JM, et al. Inflammation in diabetic kidney disease [J]. Nephron, 2019, 143(1): 12-16.
[10]
Fang Y, Tian S, Pan Y, et al. Pyroptosis: a new frontier in cancer [J]. Biomed Pharmacother, 2020, 121: 109595.
[11]
Wang Y, Zhu X, Yuan S, et al. TLR4/NF-κB signaling induces GSDMD-related pyroptosis in tubular cells in diabetic kidney disease [J]. Front Endocrinol (Lausanne), 2019, 10: 603.
[12]
Zhu B, Cheng X, Jiang Y, et al. Silencing of KCNQ1OT1 decreases oxidative stress and pyroptosis of renal tubular epithelial cells [J]. Diabetes Metab Syndr Obes, 2020, 13: 365-375.
[13]
Li X, Zeng L, Cao C, et al. Long noncoding RNA MALAT1 regulates renal tubular epithelial pyroptosis by modulated miR-23c targeting of ELAVL1 in diabetic nephropathy [J]. Exp Cell Res, 2017, 350(2): 327-335.
[14]
Zhang P, Cao L, Zhou R, et al. The lncRNA Neat1 promotes activation of inflammasomes in macrophages [J]. Nat Commun, 2019, 10(1): 1495.
[15]
Wen S, Li S, Li L, et al. CircACTR2: a novel mechanism regulating high glucose-induced fibrosis in renal tubular cells via pyroptosis [J]. Biol Pharm Bull, 2020, 43(3): 558-564.
[16]
Tagawa A, Yasuda M, Kume S, et al. Impaired podocyte autophagy exacerbates proteinuria in diabetic nephropathy [J]. Diabetes, 2016, 65(3): 755-767.
[17]
Xu J, Deng Y, Wang Y, et al. SPAG5-AS1 inhibited autophagy and aggravated apoptosis of podocytes via SPAG5/AKT/mTOR pathway [J]. Cell Prolif, 2020, 53(2): e12738.
[18]
Ma T, Zhu J, Chen X, et al. High glucose induces autophagy in podocytes [J]. Exp Cell Res, 2013, 319(6): 779-789.
[19]
Wei M, Li Z, Yang Z. Crosstalk between protective autophagy and NF-κB signal in high glucose-induced podocytes [J]. Mol Cell Biochem, 2014, 394(1-2): 261-273.
[20]
Lenoir O, Jasiek M, Hénique C, et al. Endothelial cell and podocyte autophagy synergistically protect from diabetes-induced glomerulosclerosis [J]. Autophagy, 2015, 11(7): 1130-1145.
[21]
Lim JH, Kim HW, Kim MY, et al. Cinacalcet-mediated activation of the CaMKKβ-LKB1-AMPK pathway attenuates diabetic nephropathy in db/db mice by modulation of apoptosis and autophagy [J]. Cell Death Dis, 2018, 9(3): 270.
[22]
Yoshibayashi M, Kume S, Yasuda-Yamahara M, et al. Protective role of podocyte autophagy against glomerular endothelial dysfunction in diabetes [J]. Biochem Biophys Res Commun, 2020, 525(2): 319-325.
[23]
Fiorentino L, Cavalera M, Menini S, et al. Loss of TIMP3 underlies diabetic nephropathy via FoxO1/STAT1 interplay [J]. EMBO Mol Med, 2013, 5(3): 441-455.
[24]
Gao C, Fan F, Chen J, et al. FBW7 regulates the autophagy signal in mesangial cells induced by high glucose [J]. Biomed Res Int, 2019, 2019: 6061594.
[25]
Wang A, Ren J, Wang CP, et al. Heparin prevents intracellular hyaluronan synthesis and autophagy responses in hyperglycemic dividing mesangial cells and activates synthesis of an extensive extracellular monocyte-adhesive hyaluronan matrix after completing cell division [J]. J Biol Chem, 2014, 289(13): 9418-9429.
[26]
Huang C, Zhang Y, Kelly DJ, et al. Thioredoxin interacting protein (TXNIP) regulates tubular autophagy and mitophagy in diabetic nephropathy through the mTOR signaling pathway [J]. Sci Rep, 2016, 6: 29196.
[27]
Wang Y, Zheng ZJ, Jia YJ, et al. Role of p53/miR-155-5p/sirt1 loop in renal tubular injury of diabetic kidney disease [J]. J Transl Med, 2018, 16(1): 146.
[28]
Zhao X, Liu G, Shen H, et al. Liraglutide inhibits autophagy and apoptosis induced by high glucose through GLP-1R in renal tubular epithelial cells [J]. Int J Mol Med, 2015, 35(3): 684-692.
[29]
Gou R, Chen J, Sheng S, et al. KIM-1 mediates high glucose-induced autophagy and apoptosis in renal tubular epithelial cells [J]. Cell Physiol Biochem, 2016, 38(6): 2479-2488.
[30]
Sakai S, Yamamoto T, Takabatake Y, et al. Proximal tubule autophagy differs in type 1 and 2 diabetes [J]. J Am Soc Nephrol, 2019, 30(6): 929-945.
[31]
Van Krieken R, Chen G, Gao B, et al. Sterol regulatory element binding protein (SREBP)-1 is a novel regulator of the transforming growth factor (TGF)-β receptor I (TβRI) through exosomal secretion [J]. Cell Signal, 2017, 29: 158-167.
[32]
Wu X, Gao Y, Xu L, et al. Exosomes from high glucose-treated glomerular endothelial cells trigger the epithelial-mesenchymal transition and dysfunction of podocytes [J]. Sci Rep, 2017, 7(1): 9371.
[33]
Wu XM, Gao YB, Cui FQ, et al. Exosomes from high glucose-treated glomerular endothelial cells activate mesangial cells to promote renal fibrosis [J]. Biol Open, 2016, 5(4): 484-491.
[34]
Zhu QJ, Zhu M, Xu XX, et al. Exosomes from high glucose-treated macrophages activate glomerular mesangial cells via TGF-β1/Smad 3 pathway in vivo and in vitro [J]. FASEB J, 2019, 33(8): 9279-9290.
[35]
Lv LL, Feng Y, Wu M, et al. Exosomal miRNA-19b-3p of tubular epithelial cells promotes M1 macrophage activation in kidney injury [J]. Cell Death Differ, 2020, 27(1): 210-226.
[36]
Ling L, Tan Z, Zhang C, et al. CircRNAs in exosomes from high glucose-treated glomerular endothelial cells activate mesangial cells [J]. Am J Transl Res, 2019, 11(8): 4667-4682.
[1] 李康, 冀亮, 赵维, 林乐岷. 自噬在乳腺癌生物学进展中的双重作用[J]. 中华乳腺病杂志(电子版), 2023, 17(04): 195-202.
[2] 王岩, 马剑雄, 郎爽, 董本超, 田爱现, 李岩, 孙磊, 靳洪震, 卢斌, 王颖, 柏豪豪, 马信龙. 外泌体在骨质疏松症诊疗中应用的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 673-678.
[3] 贺敬龙, 孙炜, 高明宏, 谢伟, 姜骆永, 何琦非, 岳家吉. 外泌体非编码RNA在骨关节炎发病机制中的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(04): 520-527.
[4] 孔莹莹, 谢璐涛, 卢晓驰, 徐杰丰, 周光居, 张茂. 丁酸钠对猪心脏骤停复苏后心脑损伤的保护作用及机制研究[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 355-362.
[5] 代雯荣, 赵丽娟, 李智慧. 细胞外囊泡对胚胎着床影响的研究进展[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 616-620.
[6] 周子慧, 李恭驰, 李炳辉, 王知, 刘慧真, 王卉, 邹利军. 细胞自噬在创面愈合中作用的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 542-546.
[7] 高雷, 李芳, 巴雅力嘎, 李全, 巴特. 干细胞源性外泌体在创伤修复中免疫作用的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 364-367.
[8] 朱韵莹, 高晓琳, 戈艳萍, 王张嵩, 林钊宇, 李劲松, 武东辉. 缺氧相关的长链非编码RNA LINC00970在唾液腺腺样囊性癌中的表达及其作用[J]. 中华口腔医学研究杂志(电子版), 2023, 17(03): 210-217.
[9] 黄威, 刘启, 陈流华, 滕茶香, 区喆建, 刘韩笑, 陈健聪, 张昆松. 新定义的可预测肝癌预后的焦亡相关lncRNA模型[J]. 中华普通外科学文献(电子版), 2023, 17(05): 357-365.
[10] 黄承路, 廖飞, 刘显平, 王志强. 血清外泌体Has_circ_0060937过度表达与NSCLC转移和不良预后的关系[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 490-494.
[11] 王楚风, 蒋安. 原发性肝癌的分子诊断[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 499-503.
[12] 程莉, 章晓良. 血尿酸和胱抑素C与糖尿病视网膜病变患者合并糖尿病肾病的关系及影响因素[J]. 中华肾病研究电子杂志, 2023, 12(04): 194-199.
[13] 王小红, 钱晶, 翁文俊, 周国雄, 朱顺星, 祁小鸣, 刘春, 王萍, 沈伟, 程睿智, 秦璟灏. 巯基丙酮酸硫基转移酶调控核因子κB信号介导自噬对重症急性胰腺炎大鼠的影响及机制[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 422-426.
[14] 郭如烨, 孟黎明, 陈楠, 宋玉莹, 尹海燕, 郭岩. Apelin/APJ系统对帕金森病模型的神经保护作用及机制研究进展[J]. 中华诊断学电子杂志, 2023, 11(04): 276-282.
[15] 邱甜, 杨苗娟, 胡波, 郭毅, 何奕涛. 亚低温治疗脑梗死机制的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 518-521.
阅读次数
全文


摘要