[1] |
Kanwar YS, Sun L, Xie P, et al. A glimpse of various pathogenetic mechanisms of diabetic nephropathy [J]. Annu Rev Pathol, 2011, 6: 395-423.
|
[2] |
Lv J, Wu Y, Mai Y, et al. Noncoding RNAs in diabetic nephropathy: pathogenesis, biomarkers, and therapy [J]. J Diabetes Res, 2020, 2020: 3960857.
|
[3] |
Loganathan TS, Sulaiman SA, Abdul Murad NA, et al. Interactions among non-coding RNAs in diabetic nephropathy [J]. Front Pharmacol, 2020, 11: 191.
|
[4] |
Yao T, Zha D, Hu C, et al. Circ_0000285 promotes podocyte injury through sponging miR-654-3p and activating MAPK6 in diabetic nephropathy [J]. Gene, 2020, 747: 144661.
|
[5] |
Zhang JR, Sun HJ. Roles of circular RNAs in diabetic complications: from molecular mechanisms to therapeutic potential [J]. Gene, 2020, 763: 145066.
|
[6] |
Nguyen D, Ping F, Mu W, et al. Macrophage accumulation in human progressive diabetic nephropathy [J]. Nephrology (Carlton), 2006, 11(3): 226-231.
|
[7] |
Calle P, Hotter G. Macrophage phenotype and fibrosis in diabetic nephropathy [J]. Int J Mol Sci, 2020, 21(8): 2806.
|
[8] |
Yuan Y, Li L, Zhu L,et al. Mesenchymal stem cells elicit macrophages into M2 phenotype via improving transcription factor EB-mediated autophagy to alleviate diabetic nephropathy [J]. Stem Cells, 2020, 38(5): 639-652.
|
[9] |
Pérez-Morales RE, Del Pino MD, Valdivielso JM, et al. Inflammation in diabetic kidney disease [J]. Nephron, 2019, 143(1): 12-16.
|
[10] |
Fang Y, Tian S, Pan Y, et al. Pyroptosis: a new frontier in cancer [J]. Biomed Pharmacother, 2020, 121: 109595.
|
[11] |
Wang Y, Zhu X, Yuan S, et al. TLR4/NF-κB signaling induces GSDMD-related pyroptosis in tubular cells in diabetic kidney disease [J]. Front Endocrinol (Lausanne), 2019, 10: 603.
|
[12] |
Zhu B, Cheng X, Jiang Y, et al. Silencing of KCNQ1OT1 decreases oxidative stress and pyroptosis of renal tubular epithelial cells [J]. Diabetes Metab Syndr Obes, 2020, 13: 365-375.
|
[13] |
Li X, Zeng L, Cao C, et al. Long noncoding RNA MALAT1 regulates renal tubular epithelial pyroptosis by modulated miR-23c targeting of ELAVL1 in diabetic nephropathy [J]. Exp Cell Res, 2017, 350(2): 327-335.
|
[14] |
Zhang P, Cao L, Zhou R, et al. The lncRNA Neat1 promotes activation of inflammasomes in macrophages [J]. Nat Commun, 2019, 10(1): 1495.
|
[15] |
Wen S, Li S, Li L, et al. CircACTR2: a novel mechanism regulating high glucose-induced fibrosis in renal tubular cells via pyroptosis [J]. Biol Pharm Bull, 2020, 43(3): 558-564.
|
[16] |
Tagawa A, Yasuda M, Kume S, et al. Impaired podocyte autophagy exacerbates proteinuria in diabetic nephropathy [J]. Diabetes, 2016, 65(3): 755-767.
|
[17] |
Xu J, Deng Y, Wang Y, et al. SPAG5-AS1 inhibited autophagy and aggravated apoptosis of podocytes via SPAG5/AKT/mTOR pathway [J]. Cell Prolif, 2020, 53(2): e12738.
|
[18] |
Ma T, Zhu J, Chen X, et al. High glucose induces autophagy in podocytes [J]. Exp Cell Res, 2013, 319(6): 779-789.
|
[19] |
Wei M, Li Z, Yang Z. Crosstalk between protective autophagy and NF-κB signal in high glucose-induced podocytes [J]. Mol Cell Biochem, 2014, 394(1-2): 261-273.
|
[20] |
Lenoir O, Jasiek M, Hénique C, et al. Endothelial cell and podocyte autophagy synergistically protect from diabetes-induced glomerulosclerosis [J]. Autophagy, 2015, 11(7): 1130-1145.
|
[21] |
Lim JH, Kim HW, Kim MY, et al. Cinacalcet-mediated activation of the CaMKKβ-LKB1-AMPK pathway attenuates diabetic nephropathy in db/db mice by modulation of apoptosis and autophagy [J]. Cell Death Dis, 2018, 9(3): 270.
|
[22] |
Yoshibayashi M, Kume S, Yasuda-Yamahara M, et al. Protective role of podocyte autophagy against glomerular endothelial dysfunction in diabetes [J]. Biochem Biophys Res Commun, 2020, 525(2): 319-325.
|
[23] |
Fiorentino L, Cavalera M, Menini S, et al. Loss of TIMP3 underlies diabetic nephropathy via FoxO1/STAT1 interplay [J]. EMBO Mol Med, 2013, 5(3): 441-455.
|
[24] |
Gao C, Fan F, Chen J, et al. FBW7 regulates the autophagy signal in mesangial cells induced by high glucose [J]. Biomed Res Int, 2019, 2019: 6061594.
|
[25] |
Wang A, Ren J, Wang CP, et al. Heparin prevents intracellular hyaluronan synthesis and autophagy responses in hyperglycemic dividing mesangial cells and activates synthesis of an extensive extracellular monocyte-adhesive hyaluronan matrix after completing cell division [J]. J Biol Chem, 2014, 289(13): 9418-9429.
|
[26] |
Huang C, Zhang Y, Kelly DJ, et al. Thioredoxin interacting protein (TXNIP) regulates tubular autophagy and mitophagy in diabetic nephropathy through the mTOR signaling pathway [J]. Sci Rep, 2016, 6: 29196.
|
[27] |
Wang Y, Zheng ZJ, Jia YJ, et al. Role of p53/miR-155-5p/sirt1 loop in renal tubular injury of diabetic kidney disease [J]. J Transl Med, 2018, 16(1): 146.
|
[28] |
Zhao X, Liu G, Shen H, et al. Liraglutide inhibits autophagy and apoptosis induced by high glucose through GLP-1R in renal tubular epithelial cells [J]. Int J Mol Med, 2015, 35(3): 684-692.
|
[29] |
Gou R, Chen J, Sheng S, et al. KIM-1 mediates high glucose-induced autophagy and apoptosis in renal tubular epithelial cells [J]. Cell Physiol Biochem, 2016, 38(6): 2479-2488.
|
[30] |
Sakai S, Yamamoto T, Takabatake Y, et al. Proximal tubule autophagy differs in type 1 and 2 diabetes [J]. J Am Soc Nephrol, 2019, 30(6): 929-945.
|
[31] |
Van Krieken R, Chen G, Gao B, et al. Sterol regulatory element binding protein (SREBP)-1 is a novel regulator of the transforming growth factor (TGF)-β receptor I (TβRI) through exosomal secretion [J]. Cell Signal, 2017, 29: 158-167.
|
[32] |
Wu X, Gao Y, Xu L, et al. Exosomes from high glucose-treated glomerular endothelial cells trigger the epithelial-mesenchymal transition and dysfunction of podocytes [J]. Sci Rep, 2017, 7(1): 9371.
|
[33] |
Wu XM, Gao YB, Cui FQ, et al. Exosomes from high glucose-treated glomerular endothelial cells activate mesangial cells to promote renal fibrosis [J]. Biol Open, 2016, 5(4): 484-491.
|
[34] |
Zhu QJ, Zhu M, Xu XX, et al. Exosomes from high glucose-treated macrophages activate glomerular mesangial cells via TGF-β1/Smad 3 pathway in vivo and in vitro [J]. FASEB J, 2019, 33(8): 9279-9290.
|
[35] |
Lv LL, Feng Y, Wu M, et al. Exosomal miRNA-19b-3p of tubular epithelial cells promotes M1 macrophage activation in kidney injury [J]. Cell Death Differ, 2020, 27(1): 210-226.
|
[36] |
Ling L, Tan Z, Zhang C, et al. CircRNAs in exosomes from high glucose-treated glomerular endothelial cells activate mesangial cells [J]. Am J Transl Res, 2019, 11(8): 4667-4682.
|