切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2021, Vol. 10 ›› Issue (02) : 103 -108. doi: 10.3877/cma.j.issn.2095-3216.2021.02.009

所属专题: 文献

综述

血液净化膜材料的临床发展
于茜1, 周建辉1,(), 赵小淋1, 谢大洋1, 曹雪莹1   
  1. 1. 100853 北京,解放军总医院第一医学中心肾脏病医学部,解放军肾脏病研究所,肾脏疾病国家重点实验室,国家慢性肾病临床医学研究中心,肾脏疾病研究北京市重点实验室
  • 收稿日期:2020-11-10 出版日期:2021-04-30
  • 通信作者: 周建辉
  • 基金资助:
    国家重点研发计划课题(2016YFC1103004)

Clinical development of blood purification membrane materials

Qian Yu1, Jianhui Zhou1,(), Xiaolin Zhao1, Dayang Xie1, Xueying Cao1   

  1. 1. Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing 100853, China
  • Received:2020-11-10 Published:2021-04-30
  • Corresponding author: Jianhui Zhou
引用本文:

于茜, 周建辉, 赵小淋, 谢大洋, 曹雪莹. 血液净化膜材料的临床发展[J]. 中华肾病研究电子杂志, 2021, 10(02): 103-108.

Qian Yu, Jianhui Zhou, Xiaolin Zhao, Dayang Xie, Xueying Cao. Clinical development of blood purification membrane materials[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2021, 10(02): 103-108.

血液净化技术在不断发展,影响透析质量很重要的一方面是透析器膜材料。膜材料以及制备工艺的探索,是临床血液净化技术发展的重要部分。本文介绍了血液净化膜材料的历史及临床需求,概括了目前主要发展方向:以增加大分子量毒素清除来改善终末期肾衰竭患者的临床结局、提高生物相容性、减少凝血,列举了多项新型膜材料及其优势。

With the continuous development of blood purification technology, the membrane material of dialyzer is one of the most important factors affecting the quality of dialysis. The exploration of membrane materials and preparation technology is an important part of the development of clinical blood purification technology. This paper introduced the history and clinical requirements of blood purification membrane materials, and summarized the main development direction: to improve the clinical outcome of patients with end-stage renal failure by increasing the removal of toxins of large molecular weight, improve biocompatibility, and reduce coagulation. A number of new membrane materials and their advantages were listed.

图1 内部过滤/回滤的演示图
表1 几种膜材料的优缺点
膜材料 优点 缺点
未改良纤维素膜    
  铜仿膜 溶质去除效果好 补体和PMN细胞激活高;透析液中细菌产物渗入;中大分子不能清除
改良纤维素    
  醋酸纤维素(CA) 补体激活低 中性粒细胞凋亡高于PS膜;与合成膜相比补体活化仍高;中大分子清除较合成膜低
合成膜    
  聚碳酸酯(PC) 天然亲水性;与未改良的纤维素膜相比,补体活化低 与PAM膜相比炎性标志物产生较高;与PAN和PS膜相比补体激活高
  聚砜(PS) β2MG清除率较好;与纤维素膜相比,死亡率更低 引起中性粒细胞活化,中性粒细胞的激活率高于EVAL膜;增加促炎细胞因子的产生
  聚酰胺(尼龙)(PAM) β2MG清除率较好 过敏反应风险;轻微补体激活的持续性
  聚醚砜(PES) 中大分子清除率高 膜表面蛋白吸附;免疫系统持续激活
  聚丙烯腈(PAN) 吸附促炎因子、中、低蛋白及细菌产物;中性粒细胞活化低于PMMA膜 缓激肽的产生;与其他合成膜相比,有较高的过敏反应风险;轻微补体激活的持续性
  聚甲基丙烯酸甲酯(PMMA) 中大分子清除率高;与PS膜相比,更低促炎细胞因子的产生 轻微补体激活的持续性;导致轻微的白血球减少症
  聚酯聚合物合金 白蛋白渗透较低;β2MG清除率较好 持续低补体激活
  聚乙烯醇共聚物(EVAL) 天然亲水性,低蛋白吸附;去除高分子量分子;与CA膜相比,更好地减少氧化应激;中性粒细胞活化低于PS膜 潜在的临床血液透析治疗价值没有进一步研究,可能因为机械强度不够
生物活性膜    
  维生素E涂层 减少氧化应激;改善炎症状态和贫血。 补体激活持续
[8]
Tielemans C, Madhoun P, Lenaers M, et al. Anaphylactoid reactions during hemodialysis on AN69 membranes in patients receiving ACE inhibitors [J]. Kidney Int, 1990, 38(5): 982-984.
[9]
Doi K, Iwagami M, Yoshida E, et al. Associations of polyethylenimine-coated AN69ST membrane in CRRT with the intensive care outcomes observations from a claims data base from Japan [J]. Blood Purif, 2017, 44(3): 184-192.
[10]
Michikoshi J, Matsumoto S, Miyawaki H, et al. Evaluation of proteins and cells that adsorb to dialysis membranes used in continuous hemodiafiltration: comparison of AN69ST, polymethylmethacrylate, and polysulfone membranes [J]. Blood Purif, 2019, 48(4): 358-367.
[11]
Marshall MR, 张凌, 王敏敏,等. oXiris-内毒素吸附技术的临床应用[J]. 华西医学,2018, 33(7): 797-800.
[12]
Malard B, Lambert C, Kellum JA. In vitro comparison of the adsorption of inflammatory mediators by blood purification devices [J]. Intensive Care Med Exp, 2018, 6(1): 12.
[13]
Bacelar Marques ID, Pinheiro KF, de Freitas do Carmo LP, et al. Anaphylactic reaction induced by a polysulfone/polyvinyl pyrrolidone membrane in the10th session of hemodialysis with the same dialyzer [J]. Hemodial Int, 2011, 15(3): 399-403.
[14]
Ronco C, Clark WR. Haemodialysis membranes [J]. Nat Rev Nephrol, 2018, 14(6): 394-410.
[15]
Ronco C. The rise of expanded hemodialysis [J]. Blood Purif, 2017, 44(2):Ⅰ-Ⅷ.
[16]
García-Prieto A, Vega A, Linares T, et al. Evaluation of the efficacy of a medium cut-off dialyser and comparison with other high-flux dialysers in conventional haemodialysis and online haemodiafiltration [J]. Clin Kidney J, 2018, 11(5): 742-746.
[17]
Hulko M, Speidel R, Gauss J, et al. In vitro benchmark of cytokine removal by dialyzers with various permeability profiles [J]. Int J Artif Organs, 2017, 40(11): 615-621.
[18]
Hulko M, Dietrich V, Koch I, et al. Pyrogen retention: comparison of the novel medium cut-off (MCO) membrane with other dialyser membranes [J]. Sci Rep, 2019, 9(1): 6791.
[19]
Haroon S, Davenport A. Choosing a dialyzer: what clinicians need to know [J]. Hemodial Int, 2018, 22(S2): S65-S74.
[20]
Ronco C, La Manna G. Expanded hemodialysis: a new therapy for a new class of membranes [J]. Contrib Nephrol, 2017, 190: 124-133.
[21]
Liakopoulos V, Roumeliotis S, Zarogiannis S, et al. Oxidative stress in hemodialysis: causative mechanisms, clinical implications, and possible therapeutic interventions [J]. Semin Dial, 2019, 32(1): 58-71.
[22]
Ronco C, Brendolan A, Nalesso F, et al. Prospective, randomized, multicenter, controlled trial (TRIATHRON1) on a new antithrombogenic hydrophilic dialysis membrane [J]. Int J Artif Organs, 2017, 40(5): 234-239.
[23]
Chanard J, Lavaud S, Randoux C, et al. New insights in dialysis membrane biocompatibility: relevance of adsorption properties and heparin binding [J]. Nephrol Dial Transplant, 2003, 18(2): 252-257.
[24]
Fu X, Ning JP. Synthesis and biocompatibility of an argatroban-modified polysulfone membrane that directly inhibits thrombosis [J]. J Mater Sci Mater Med, 2018, 29(5): 66.
[25]
Piroddi M, Pilolli F, Aritomi M, et al. Vitamin E as a functional and biocompatibility modifier of synthetic hemodialyzer membranes: an overview of the literature on vitamin E-modified hemodialyzer membranes [J]. Am J Nephrol, 2012, 35(6): 559-572.
[26]
Sepe V, Gregorini M, Rampino T, et al. Vitamin E-loaded membrane dialyzers reduce hemodialysis inflammaging [J]. BMC Nephrol, 2019, 20(1): 412.
[27]
Huang J, Yi B, Li AM, et al. Effects of vitamin E-coated dialysis membranes on anemia, nutrition and dyslipidemia status in hemodialysis patients: a meta-analysis [J]. Ren Fail, 2015, 37(3): 398-407.
[28]
Kiaii M, Aritomi M, Nagase M, et al. Clinical evaluation of performance, biocompatibility, and safety of vitamin E-bonded polysulfone membrane hemodialyzer compared to non-vitamin E-bonded hemodialyzer [J]. J Artif Organs, 2019, 22(4): 307-315.
[29]
Pavlenko D, van Geffen E, van Steenbergen MJ, et al. New low-flux mixed matrix membranes that offer superior removal of protein-bound toxins from human plasma [J]. Sci Rep, 2016, 6: 34429.
[30]
Hill K, Walker SN, Salminen A, et al. Second generation nanoporous silicon nitride membranes for high toxin clearance and small format hemodialysis [J]. Adv Healthc Mater, 2020, 9(4): e1900750.
[31]
Li X, Johnson D, Ma W, et al. Modification of nanoporous silicon nitride with stable and functional organic monolayers [J]. Chem Mater, 2017, 29(5): 2294-2302.
[32]
Ahmadi A, Mazooji N, Roozbeh J,et al. Effect of alpha-lipoic acid and vitamin E supplementation on oxidative stress, inflammation, and malnutrition in hemodialysis patients [J]. Iran J Kidney Dis, 2013, 11(6): 461-467.
[33]
Kohlová M, Amorim CG, Araújo A, et al. The biocompatibility and bioactivity of hemodialysis membranes: their impact in end-stage renal disease [J]. J Artif Organs, 2019, 22(1): 14-28.
[34]
Ferraz N, Carlsson DO, Hong J, et al. Haemocompatibility and ion exchange capability of nanocellulose polypyrrole membranes intended for blood purification [J]. J R Soc Interface, 2012, 9(73): 1943-1955.
[35]
Ferraz N, Mihranyan A. Is there a future for electrochemically assisted hemodialysis? Focus on the application of polypyrrole-nanocellulose composites [J]. Nanomedicine (Lond), 2014, 9(7): 1095-1110.
[36]
Zhou S, Nyholm L, Strømme M, et al. Cladophora cellulose: unique biopolymer nanofibrils for emerging energy, environmental, and life science applications [J]. Acc Chem Res, 2019, 52(8): 2232-2243.
[37]
Chevtchik NV, Fedecostante M, Jansen J, et al. Upscaling of a living membrane for bioartificial kidney device [J]. Eur J Pharmacol, 2016, 790: 28-35.
[38]
van Gelder MK, Mihaila SM, Jansen J, et al. From portable dialysis to a bioengineered kidney [J]. Expert Rev Med Devices, 2018, 15(5): 323-336.
[39]
Modi A, Verma SK, Bellare J. Extracellular matrix-coated polyethersulfone-TPGS hollow fiber membranes showing improved biocompatibility and uremic toxins removal for bioartificial kidney application [J]. Colloids Surf B Biointerfaces, 2018, 167: 457-467.
[40]
Bonomini M, Pieroni L, Di Liberato L, et al. Examining hemodialyzer membrane performance using proteomic technologies [J]. Ther Clin Risk Manag, 2017, 14: 1-9.
[41]
Salani M, Roy S, Fissell WH 4th. Innovations in wearable and implantable artificial kidneys [J]. Am J Kidney Dis, 2018, 72(5): 745-751.
[1]
Mineshima M. Optimal design of dialyzers [J]. Contrib Nephrol, 2017, 189: 204-209.
[2]
Piroddi M, Pilolli F, Aritomi M, et al. Vitamin E as a functional and biocompatibility modifier of synthetic hemodialyzer membranes: an overview of the literature on vitamin E-modified hemodialyzer membranes [J]. Am J Nephrol, 2012, 35(6): 559-572.
[3]
Koga Y, Meguro H, Fujieda H, et al. A new hydrophilic polysulfone hemodialysis membrane can prevent platelet-neutrophil interactions and successive neutrophil activation [J]. Int J Artif Organs, 2019, 42(4): 175-181.
[4]
Irfan M, Irfan M, Idris A, et al. Fabrication and performance evaluation of blood compatible hemodialysis membrane using carboxylic multiwall carbon nanotubes and low molecular weight polyvinylpyrrolidone based nanocomposites [J]. J Biomed Mater Res A, 2019, 107(3): 513-525.
[5]
Hoseinpour V, Ghaee A, Vatanpour V, et al. Surface modification of PES membrane via aminolysis and immobilization of carboxymethylcellulose and sulphated carboxymethylcellulose for hemodialysis [J]. Carbohydr Polym, 2018, 188: 37-47.
[6]
Aucella F, Gesuete A, Vigilante M, et al. Adsorption dialysis: from physical principles to clinical applications [J]. Blood Purif, 2013, 35(Suppl 2): 42-47.
[7]
Oshihara W, Fujieda H, Ueno Y. A new poly (methyl methacrylate) membrane dialyzer, NF, with adsorptive and antithrombotic properties [J]. Contrib Nephrol, 2017, 189: 230-236.
[1] 柴浩卜, 王俏杰, 张先龙. 具有骨免疫调节性能的骨科生物材料研究进展[J]. 中华关节外科杂志(电子版), 2022, 16(01): 37-43.
[2] 于承浩, 张益, 陈进利, 戚超, 李海峰, 于腾波. 肩袖补片在巨大肩袖损伤治疗中的研究进展[J]. 中华关节外科杂志(电子版), 2021, 15(02): 225-230.
[3] 郝林杰, 张育民, 文鹏飞, 宋伟, 王军, 马涛. 宏基因二代测序在假体周围感染病原菌检测中的应用[J]. 中华关节外科杂志(电子版), 2021, 15(02): 185-191.
[4] 刘艳波, 陆远强. 宏基因组二代测序技术在社区获得性肺炎患者病原学检测中的应用[J]. 中华危重症医学杂志(电子版), 2023, 16(01): 20-27.
[5] 廖雄宇, 邱坤银, 黄科, 黎阳, 徐宏贵, 方建培, 周敦华. 支气管肺泡灌洗液宏基因组二代测序对儿童肺部感染的病原体诊断价值[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(05): 562-568.
[6] 王大燕, 李小兵, 赖盼建. citrin缺陷所致新生儿肝内胆汁淤积症的SLC25A13基因IVS16ins3kb突变类型分析[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(03): 315-322.
[7] 王晟, 许卓然, 夏德萌, 李磊, 许硕贵. 穿皮骨整合截肢假体与上皮细胞生长迁移的研究进展[J]. 中华损伤与修复杂志(电子版), 2021, 16(02): 166-169.
[8] 阮毅, 艾俊, 江春, 招洛丹, 夏昕, 刘墨. 牙龈卟啉单胞菌外膜囊泡差异表达mRNA的生物信息学分析[J]. 中华口腔医学研究杂志(电子版), 2021, 15(03): 135-141.
[9] 彭雨诗, 苗芸, 严紫嫣. 宏基因组高通量测序诊断肾移植术后华支睾吸虫感染一例[J]. 中华移植杂志(电子版), 2023, 17(05): 297-299.
[10] 许皓月, 董魁, 姬璇, 康志明, 李俊红. 婴幼儿和儿童眼部菌群对眼部健康状态的影响[J]. 中华眼科医学杂志(电子版), 2023, 13(02): 114-118.
[11] 杨翠萍, 杨晓金, 李婷, 吴云林, 陈平, 张惟郁. 舒林酸联合双歧杆菌三联活菌治疗家族性腺瘤性息肉病的作用及其机制初探[J]. 中华消化病与影像杂志(电子版), 2022, 12(05): 286-290.
[12] 马涛, 李秀勇, 王丽, 刘正亮, 张甜甜, 王瑞雪, 张磊, 王心亮. 高通血液透析联合生血宁对维持性血液透析老年患者肾性贫血及氧化应激的影响[J]. 中华临床医师杂志(电子版), 2021, 15(12): 1009-1015.
[13] 陈钟玉, 井水. 高通量测序技术在稽留流产孕妇绒毛染色体异常观察中的价值及其发病的影响因素分析[J]. 中华临床医师杂志(电子版), 2021, 15(12): 1003-1008.
[14] 黄慧, 王卫云, 成晨, 刘娅, 陈欣林. Meckel-Gruber综合征的产前诊断学特征及文献复习[J]. 中华诊断学电子杂志, 2022, 10(02): 77-82.
[15] 黄炎驱, 司徒对苗, 余丹红, 林延明. 高通量血液透析对老年肾代谢和少肌性肥胖的影响[J]. 中华肥胖与代谢病电子杂志, 2023, 09(02): 126-130.
阅读次数
全文


摘要