切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2021, Vol. 10 ›› Issue (02) : 100 -102. doi: 10.3877/cma.j.issn.2095-3216.2021.02.008

所属专题: 文献

综述

生物电阻抗分析在维持性透析患者中的应用进展
舒亮辉1,(), 郑梦蕾1   
  1. 1. 214044 无锡,苏州大学附属无锡市第九人民医院肾内科
  • 收稿日期:2020-11-25 出版日期:2021-04-30
  • 通信作者: 舒亮辉
  • 基金资助:
    无锡市青年科研项目(Q201753)

Progress in application of bioelectrical impedance analysis in patients undergoing maintenance dialysis

Lianghui Shu1,(), Menglei Zheng1   

  1. 1. Department of Nephrology, Wuxi 9th People′s Hospital Affiliated to Soochow University, Wuxi 214044, Jiangsu Province, China
  • Received:2020-11-25 Published:2021-04-30
  • Corresponding author: Lianghui Shu
引用本文:

舒亮辉, 郑梦蕾. 生物电阻抗分析在维持性透析患者中的应用进展[J/OL]. 中华肾病研究电子杂志, 2021, 10(02): 100-102.

Lianghui Shu, Menglei Zheng. Progress in application of bioelectrical impedance analysis in patients undergoing maintenance dialysis[J/OL]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2021, 10(02): 100-102.

透析患者普遍存在容量过载、营养不良、骨骼肌减少等并发症,严重影响患者生活质量及生存率。生物电阻抗分析技术根据生物组织的电学特性测量人体成分及其变化,已被广泛应用于透析患者的综合管理与评估,并指导临床治疗。本文对生物电阻抗分析技术在透析患者中的应用进展做一综述。

Overhydration, malnutrition, and sarcopenia are common complications in maintenance dialysis patients, which seriously affect the quality of life and survival rate of the patients. Bioelectrical impedance analysis technology measures the body composition and its change based on the electrical properties of biological tissues, and has been widely used in the comprehensive management and evaluation of dialysis patients, and in guiding the clinical treatment. This article reviewed the progress in application of bioelectrical impedance analysis technology in dialysis patients.

[1]
Venuthurupalli SK, Hoy WE, Healy HG, et al. CKD screening and surveillance in Australia: past, present, and future [J]. Kidney Int Rep, 2018, 3(1): 36-46.
[2]
Piccoli GB, Nielsen L, Gendrot L, et al. Prescribing hemodialysis or hemodiafiltration: when one size does not fit all the proposal of a personalized approach based on comorbidity and nutritional status [J]. J Clin Med, 2018, 7(10): 331.
[3]
张周沧,王梅. 生物电阻抗分析在维持性血液透析患者容量管理的应用现状[J]. 中国血液净化,2019, 18(6): 411-414.
[4]
Gonzalez MC, Heymsfield SB. Bioelectrical impedance analysis for diagnosing sarcopenia and cachexia: what are we really estimating? [J]. J Cachexia Sarcopenia Muscle, 2017, 8(2): 187-189.
[5]
Park JH, Jo YI, Lee JH. Clinical usefulness of bioimpedance analysis for assessing volume status in patients receiving maintenance dialysis [J]. Korean J Intern Med, 2018, 33(4): 660-669.
[6]
Bellafronte NT, Sizoto GR, Vega-Piris L, et al. Bed-side measures for diagnosis of low muscle mass, sarcopenia, obesity, and sarcopenic obesity in patients with chronic kidney disease under non-dialysis-dependent, dialysis dependent and kidney transplant therapy [J]. PLoS One, 2020, 15(11): e0242671.
[7]
万美燕,韩昆,崔永军,等. 生物电阻抗评估血液滤过患者血容量及心功能的价值[J].中华实用诊断与治疗杂志,2015, 29(5): 460-461, 464.
[8]
Huan-Sheng C, Yeong-Chang C, Ming-Hsing H, et al. Application of bioimpedance spectroscopy in Asian dialysis patients (ABISAD-Ⅲ): a randomized controlled trial for clinical outcomes [J]. Int Urol Nephrol, 2016, 48(11): 1897-1909.
[9]
Kim CR, Shin JH, Hwang JH, et al. Monitoring volume status using bioelectrical impedance analysis in chronic hemodialysis patients [J]. ASAIO J, 2018, 64(2): 245-252.
[10]
El-Kateb S, Davenport A. Changes in hydration following haemodialysis estimated with bioimpedance spectroscopy [J]. Nephrology (Carlton), 2016, 21(5): 410-415.
[11]
Vujicic B, Dorcic G, Babic V, et al. Comparison of clinical assessment and multifrequency bioimpedance analysis as methods of estimating volume status in peritoneal dialysis patients - a single-center experience [J]. Clin Nephrol, 2019, 91(6): 334-343.
[12]
Rimsevicius L, Gincaite A, Vicka V, et al. Malnutrition assessment in hemodialysis patients: role of bioelectrical impedance analysis phase angle [J]. J Ren Nutr, 2016, 26(6): 391-395.
[13]
Beberashvili I, Azar A, Sinuani I, et al. Longitudinal changes in bioimpedance phase angle reflect inverse changes in serum IL-6 levels in maintenance hemodialysis patients [J]. Nutrition, 2014, 30(3): 297-304.
[14]
Tan RS, Liang DH, Liu Y, et al. Bioelectrical impedance analysis-derived phase angle predicts protein-energy wasting in maintenance hemodialysis patients [J]. J Ren Nutr, 2019, 29(4): 295-301.
[15]
Muñoz-Pérez E, Espinosa-Cuevas MLA, Miranda-Alatriste PV, et al. Combined assessment of nutritional status in patients with peritoneal dialysis using bioelectrical impedance vectors and malnutrition inflammation score [J]. Nutr Hosp, 2017, 34(5): 1125-1132.
[16]
Han BG, Lee JY, Kim JS, et al. Clinical significance of phase angle in non-dialysis CKD stage 5 and peritoneal dialysis patients [J]. Nutrients, 2018, 10(9): 1331.
[17]
王国勤,徐彩棉,李狄,等. 主观综合评分联合生物电阻抗法评估血液透析患者的营养状况[J].中国血液净化,2016, 15(1): 14-17.
[18]
Tangvoraphonkchai K, Davenport A. Changes in body composition following haemodialysis as assessed by bioimpedance spectroscopy [J]. Eur J Clin Nutr, 2017, 71(2): 169-172.
[19]
Antonelou M, El-Kateb S, Davies N, et al. Changes in serum osmotic pressure following haemodialysis treatments lead to changes in bioimpedance spectroscopy estimates of lean and adipose tissue [J]. Eur J Clin Nutr, 2017, 71(4): 564-565.
[20]
Chin AI, Sheth V, Kim J, et al. Estimating residual native kidney urea clearance in hemodialysis patients with and without 24-hour urine volume [J]. Kidney Med, 2019, 1(6): 376-382.
[21]
Davies SJ, Caskey FJ, Coyle D, et al. Rationale and design of BISTRO: a randomized controlled trial to determine whether bioimpedance spectroscopy-guided fluid management maintains residual kidney function in incident haemodialysis patients [J]. BMC Nephrol, 2017, 18(1): 138.
[22]
Beberashvili I, Yermolayeva T, Katkov A, et al. Estimating of residual kidney function by multi-frequency bioelectrical impedance analysis in hemodialysis patients without urine collection [J]. Kidney Blood Press Res, 2018, 43(1): 98-109.
[1] 唐博, 罗季平, 周桃, 黄多, 刘廷琼, 陈亚萍, 岳文胜. 慢性肾衰竭血液透析患者造瘘侧上肢肱动脉-指端微小动脉血流动力学变化特点分析[J/OL]. 中华医学超声杂志(电子版), 2023, 20(12): 1276-1281.
[2] 杜军霞, 赵小淋, 王浩然, 高志远, 王曼茜, 万楠熙, 张冬, 丁潇楠, 任琴琴, 段颖洁, 汤力, 朱晗玉. 2 型糖尿病的血液透析患者肠道微生物组学高通量测序分析[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 313-320.
[3] 张少青, 吕玉风, 董海霞. 中性粒细胞百分比/白蛋白比值对维持性血液透析患者全因死亡的预测作用[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 321-326.
[4] 王涛, 刘静, 高玉伟, 王兴华, 胡秀红, 崔红蕊, 徐保振, 杨洪娟. 抗生素耐药背景下中医药防治腹膜透析相关性腹膜炎研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 340-344.
[5] 苏朝江, 刘佳丽, 姜燕, 许厅, 刘俪婷, 陈彦, 刘宗旸. 血透患者小直径动脉经皮腔内血管成形术后行动静脉内瘘术的疗效[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 249-255.
[6] 周敏, 徐阳, 胡莹, 黄先凤. 维持性血液透析患者血清β-CTX、N-MID 和PICP 与冠状动脉钙化的关系及其诊断价值[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 256-260.
[7] 崔文鹏. 腹膜透析在老年终末期肾脏疾病患者中的应用[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 300-300.
[8] 张晓青, 唐雯. 基于临床化验指标重新计算的生物标记物在预测腹膜透析患者预后中的作用研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(04): 213-218.
[9] 刘俊, 陈客宏. 终末期肾脏病患者运动干预的作用研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(04): 219-225.
[10] 马丽洁, 赵素梅, 孙芳, 孙倩美. 平均血小板体积和平均血小板体积/血小板计数比值对血液透析患者血管通路失功的潜在预测价值[J/OL]. 中华肾病研究电子杂志, 2024, 13(02): 61-67.
[11] 唐全兴, 周畅. 维持性血液透析患者血清suPAR对动静脉内瘘狭窄发生的诊断价值[J/OL]. 中华肾病研究电子杂志, 2024, 13(02): 74-78.
[12] 张今宜, 李月红. 慢性肾脏病患者接种新型冠状病毒疫苗有效力及接种策略的研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(02): 97-100.
[13] 冯娟, 詹伟强. 维持性血液透析患者血清热休克蛋白70及簇集蛋白水平与主要不良心血管事件的相关性[J/OL]. 中华肾病研究电子杂志, 2024, 13(01): 34-38.
[14] 赵伟, 李晓帆, 赵海丹. 维持性血液透析患者血尿酸等代谢指标的纵向数据分析[J/OL]. 中华临床医师杂志(电子版), 2023, 17(10): 1064-1070.
[15] 蒲蕾, 冯韵霖, 洪大情, 何强, 李贵森, 陈瑾. 蛋白质-能量消耗对血液透析患者预后的影响[J/OL]. 中华临床医师杂志(电子版), 2023, 17(10): 1051-1057.
阅读次数
全文


摘要