[1] |
Pedchenko V, Kitching AR, Hudson BG. Goodpasture′s autoimmune disease- a collagen IV disorder [J]. Matrix Biol, 2018, 71-72: 240-249.
|
[2] |
Foster MH. Basement membranes and autoimmune diseases [J]. Matrix Biol, 2017, 57-58: 149-168.
|
[3] |
Elshirbeny M, Alkadi MM, Mujeeb I, et al. Atypical anti-glomerular basement membrane disease with diffuse crescentic membranoproliferative glomerulonephritis: case report and review of literature [J]. Qatar Med J, 2020, 2020(1): 16.
|
[4] |
Okabayashi Y, Nagasaka S, Kanzaki G, et al. Group 1 innate lymphoid cells are involved in the progression of experimental anti-glomerular basement membrane glomerulonephritis and are regulated by peroxisome proliferator-activated receptor α [J]. Kidney Int, 2019, 96(4): 942-956.
|
[5] |
Tachibana S, Iyoda M, Matsumoto K, et al. Recombinant human soluble thrombomodulin attenuates anti-glomerular basement membrane glomerulonephritis in Wistar-Kyoto rats through anti-inflammatory effects [J]. Nephrol Dial Transplant, 2019, 34(5): 774-782.
|
[6] |
Ye C, Xiong W, Lei CT, et al. MAD2B contributes to parietal epithelial cell activation and crescentic glomerulonephritis via Skp2 [J]. Am J Physiol Renal Physiol, 2020, 319(4): F636-F646.
|
[7] |
Moschovaki-Filippidou F, Steiger S, Lorenz G, et al. Growth differentiation factor 15 ameliorates anti-glomerular basement membrane glomerulonephritis in mice [J]. Int J Mol Sci, 2020, 21(19): 6978.
|
[8] |
Chen A, Lee K, Guan T, et al. Role of CD8+ T cells in crescentic glomerulonephritis [J]. Nephrol Dial Transplant, 2020, 35(4): 564-572.
|
[9] |
Klinge S, Yan K, Reimers D, et al. Role of regulatory T cells in experimental autoimmune glomerulonephritis [J]. Am J Physiol Renal Physiol, 2019, 316(3): F572-F581.
|
[10] |
Leinonen A, Netzer KO, Boutaud A, et al. Goodpasture antigen: expression of the full-length α3(IV) chain of collagen IV and localization of epitopes exclusively to the noncollagenous domain [J]. Kidney Int, 1999, 55(3): 926-935.
|
[11] |
Borza DB, Hudson BG. Molecular characterization of the target antigens of anti-glomerular basement membrane antibody disease [J]. Springer Semin Immunopathol, 2003, 24(4): 345-361.
|
[12] |
Naylor RW, Morais MRPT, Lennon R. Complexities of the glomerular basement membrane [J]. Nat Rev Nephrol, 2021, 17(2): 112-127.
|
[13] |
Abrahamson DR, Hudson BG, Stroganova L, et al. Cellular origins of type IV collagen networks in developing glomeruli [J]. J Am Soc Nephrol, 2009, 20(7): 1471-1479.
|
[14] |
Abraham AP, Ma FY, Mulley WR, et al. Matrix metalloproteinase-12 deficiency attenuates experimental crescentic anti-glomerular basement membrane glomerulonephritis [J]. Nephrology (Carlton), 2018, 23(2): 183-189.
|
[15] |
Fukuda A, Minakawa A, Sato Y, et al. Urinary podocyte and TGF-β1 mRNA as markers for disease activity and progression in anti-glomerular basement membrane nephritis [J]. Nephrol Dial Transplant, 2017, 32(11): 1818-1830.
|
[16] |
Hu SY, Jia XY, Li JN, et al. T cell infiltration is associated with kidney injury in patients with anti-glomerular basement membrane disease [J]. Sci China Life Sci, 2016, 59(12): 1282-1289.
|
[17] |
Arends J, Wu J, Borillo J, et al. T cell epitope mimicry in antiglomerular basement membrane disease [J]. J Immunol, 2006, 176(2): 1252-1258.
|
[18] |
Chen A, Lee K, Guan T, et al. Role of CD8+ T cells in crescentic glomerulonephritis [J]. Nephrol Dial Transplant, 2020, 35(4): 564-572.
|
[19] |
Krebs CF, Schmidt T, Riedel JH, et al. T helper type 17 cells in immune-mediated glomerular disease [J]. Nat Rev Nephrol, 2017, 13(10): 647-659.
|
[20] |
Muhammad S. Nephrotoxic nephritis and glomerulonephritis: animal model versus human disease [J]. Br J Biomed Sci, 2014, 71(4): 168-171.
|