切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2022, Vol. 11 ›› Issue (01) : 1 -6. doi: 10.3877/cma.j.issn.2095-3216.2022.01.001

论著

线性多肽α3127-148诱导抗肾小球基底膜肾炎大鼠模型的建立
石美涵1, 周诚2, 杨蕴钊2, 白雪源1,()   
  1. 1. 300191 天津,南开大学医学院;100853 北京,解放军总医院第一医学中心肾脏病医学部、解放军肾脏病研究所、肾脏疾病国家重点实验室、国家慢性肾病临床医学研究中心、肾脏疾病研究北京市重点实验室
    2. 100853 北京,解放军总医院第一医学中心肾脏病医学部、解放军肾脏病研究所、肾脏疾病国家重点实验室、国家慢性肾病临床医学研究中心、肾脏疾病研究北京市重点实验室
  • 收稿日期:2021-12-24 出版日期:2022-02-28
  • 通信作者: 白雪源
  • 基金资助:
    国家重点研发计划项目(2020YFA0113004); 国家自然科学基金重点项目(81830060)

Establishment of a rat model of anti-glomerular basement membrane glomerulonephritis induced by linear polypeptide α3127-148

Meihan Shi1, Cheng Zhou2, Yunzhao Yang2, Xueyuan Bai1,()   

  1. 1. Nankai University School of Medicine, Tianjin 300191; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing 100853, China
    2. Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing 100853, China
  • Received:2021-12-24 Published:2022-02-28
  • Corresponding author: Xueyuan Bai
引用本文:

石美涵, 周诚, 杨蕴钊, 白雪源. 线性多肽α3127-148诱导抗肾小球基底膜肾炎大鼠模型的建立[J]. 中华肾病研究电子杂志, 2022, 11(01): 1-6.

Meihan Shi, Cheng Zhou, Yunzhao Yang, Xueyuan Bai. Establishment of a rat model of anti-glomerular basement membrane glomerulonephritis induced by linear polypeptide α3127-148[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2022, 11(01): 1-6.

目的

以人Ⅳ型胶原α3链非胶原区结构域1[α3(Ⅳ)NC1]上的线性多肽α3127-148作为抗原,建立抗肾小球基底膜(GBM)肾炎大鼠模型。

方法

7~8周龄雌性WKY大鼠30只,体重100~150 g,随机分为3组(10只/组):对照组、低剂量多肽免疫组(低剂量组)、高剂量多肽免疫组(高剂量组)。多肽α3127-148一次性注射于大鼠后足垫来进行建模,低剂量组注射200 μg/kg、高剂量组注射300 μg/kg、对照组仅注射等体积溶剂。每周定时收集24 h尿测尿蛋白浓度。所有动物在第6周末处死,检测血清肌酐和尿素氮。大鼠肾组织切片进行PAS染色、Masson染色及免疫荧光染色。

结果

与对照组相比,高剂量组24 h尿蛋白浓度自第3周末开始明显升高(P<0.05),第6周末血清尿素氮和肌酐水平均明显升高(P<0.05),PAS染色可见肾小球硬化、弥漫性新月体形成,荧光染色可见IgG在GBM呈明显线性沉积。与对照组比较,低剂量组第6周末24 h尿蛋白浓度明显升高(P<0.05),PAS染色亦见肾小球有明显损伤,但较高剂量组轻。

结论

本研究采用线性多肽α3127-148免疫WKY大鼠,成功地建立了抗GBM肾炎模型,该方法简单、效率高。

Objective

To establish a rat model of anti-glomerular basement membrane (GBM) glomerulonephritis induced by the linear polypeptide α3127-148 on the non-collagen domain 1 of the α3 chain of human type IV collagen [α3(IV)NC1] as the antigen.

Methods

Thirty female WKY rats aged 7-8 weeks, weighing 100-150 g, were randomly divided into 3 groups: the control group, the low-dose polypeptide immunization group (low-dose group), and the high-dose polypeptide immunization group (high-dose group) with 10 rats each. The polypeptide α3127-148 in the solvent was injected into the hind foot pad of rats only once for modeling. The low-dose group was injected with the polypeptide α3127-148 of 200 μg/kg, the high-dose group with 300 μg/kg, and the control group was injected with the solvent of the equal volume. After immunization, the 24-hour urine was collected regularly each week to measure the urine protein concentration. All the rats were sacrificed at the end of the 6th week, and serum creatinine and blood urea nitrogen were measured. Rat kidney tissue sections were subjected to PAS staining, Masson staining, and immunofluorescence staining.

Results

Compared with the control group, the high-dose group showed significantly higher level of the 24-hour urine protein from the end of the 3rd week (P<0.05), and significantly higher level of the serum urea nitrogen and creatinine at the end of the 6th week (P<0.05), together with glomerular sclerosis and diffuse crescent formation in PAS staining, as well as GBM linear deposit of IgG in fluorescent staining. Compared with the control group at the end of the 6th week, the low-dose group displayed higher level of 24-hour urine protein (P<0.05) and obvious damage to the glomeruli in PAS staining, but the latter was milder than that in the high-dose group.

Conclusion

In this study, a linear polypeptide α3127-148 was used to immunize WKY rats and an anti-GBM nephritis model was successfully established, the method of which was simple and efficient.

图1 3组大鼠24 h蛋白尿浓度变化注:与对照组比较,aP<0.05、bP<0.01
图2 第6周末3组大鼠血清尿素氮和肌酐水平注:A:第6周末大鼠血清尿素氮水平;B:第6周末大鼠血清肌酐水平;与对照组相比,aP<0.05、bP<0.01
图3 第6周末3组大鼠肺组织肉眼观察注:A:对照组;B:低剂量组;C:高剂量组,可见肺组织出血点
图4 3组大鼠肾组织PAS及Masson染色(×400)注:A、D:对照组;B、E:低剂量组;C、F:高剂量组
图5 IgG免疫荧光染色分析(×200)注:A:对照组;B:低剂量组;C:高剂量组
[1]
Pedchenko V, Kitching AR, Hudson BG. Goodpasture′s autoimmune disease- a collagen IV disorder [J]. Matrix Biol, 2018, 71-72: 240-249.
[2]
Foster MH. Basement membranes and autoimmune diseases [J]. Matrix Biol, 2017, 57-58: 149-168.
[3]
Elshirbeny M, Alkadi MM, Mujeeb I, et al. Atypical anti-glomerular basement membrane disease with diffuse crescentic membranoproliferative glomerulonephritis: case report and review of literature [J]. Qatar Med J, 2020, 2020(1): 16.
[4]
Okabayashi Y, Nagasaka S, Kanzaki G, et al. Group 1 innate lymphoid cells are involved in the progression of experimental anti-glomerular basement membrane glomerulonephritis and are regulated by peroxisome proliferator-activated receptor α [J]. Kidney Int, 2019, 96(4): 942-956.
[5]
Tachibana S, Iyoda M, Matsumoto K, et al. Recombinant human soluble thrombomodulin attenuates anti-glomerular basement membrane glomerulonephritis in Wistar-Kyoto rats through anti-inflammatory effects [J]. Nephrol Dial Transplant, 2019, 34(5): 774-782.
[6]
Ye C, Xiong W, Lei CT, et al. MAD2B contributes to parietal epithelial cell activation and crescentic glomerulonephritis via Skp2 [J]. Am J Physiol Renal Physiol, 2020, 319(4): F636-F646.
[7]
Moschovaki-Filippidou F, Steiger S, Lorenz G, et al. Growth differentiation factor 15 ameliorates anti-glomerular basement membrane glomerulonephritis in mice [J]. Int J Mol Sci, 2020, 21(19): 6978.
[8]
Chen A, Lee K, Guan T, et al. Role of CD8+ T cells in crescentic glomerulonephritis [J]. Nephrol Dial Transplant, 2020, 35(4): 564-572.
[9]
Klinge S, Yan K, Reimers D, et al. Role of regulatory T cells in experimental autoimmune glomerulonephritis [J]. Am J Physiol Renal Physiol, 2019, 316(3): F572-F581.
[10]
Leinonen A, Netzer KO, Boutaud A, et al. Goodpasture antigen: expression of the full-length α3(IV) chain of collagen IV and localization of epitopes exclusively to the noncollagenous domain [J]. Kidney Int, 1999, 55(3): 926-935.
[11]
Borza DB, Hudson BG. Molecular characterization of the target antigens of anti-glomerular basement membrane antibody disease [J]. Springer Semin Immunopathol, 2003, 24(4): 345-361.
[12]
Naylor RW, Morais MRPT, Lennon R. Complexities of the glomerular basement membrane [J]. Nat Rev Nephrol, 2021, 17(2): 112-127.
[13]
Abrahamson DR, Hudson BG, Stroganova L, et al. Cellular origins of type IV collagen networks in developing glomeruli [J]. J Am Soc Nephrol, 2009, 20(7): 1471-1479.
[14]
Abraham AP, Ma FY, Mulley WR, et al. Matrix metalloproteinase-12 deficiency attenuates experimental crescentic anti-glomerular basement membrane glomerulonephritis [J]. Nephrology (Carlton), 2018, 23(2): 183-189.
[15]
Fukuda A, Minakawa A, Sato Y, et al. Urinary podocyte and TGF-β1 mRNA as markers for disease activity and progression in anti-glomerular basement membrane nephritis [J]. Nephrol Dial Transplant, 2017, 32(11): 1818-1830.
[16]
Hu SY, Jia XY, Li JN, et al. T cell infiltration is associated with kidney injury in patients with anti-glomerular basement membrane disease [J]. Sci China Life Sci, 2016, 59(12): 1282-1289.
[17]
Arends J, Wu J, Borillo J, et al. T cell epitope mimicry in antiglomerular basement membrane disease [J]. J Immunol, 2006, 176(2): 1252-1258.
[18]
Chen A, Lee K, Guan T, et al. Role of CD8+ T cells in crescentic glomerulonephritis [J]. Nephrol Dial Transplant, 2020, 35(4): 564-572.
[19]
Krebs CF, Schmidt T, Riedel JH, et al. T helper type 17 cells in immune-mediated glomerular disease [J]. Nat Rev Nephrol, 2017, 13(10): 647-659.
[20]
Muhammad S. Nephrotoxic nephritis and glomerulonephritis: animal model versus human disease [J]. Br J Biomed Sci, 2014, 71(4): 168-171.
[1] 李正东, 方凡, 徐波, 陈安群. 全反式维甲酸对抗肾小球基底膜肾炎小鼠模型肾脏损害的保护作用[J]. 中华肾病研究电子杂志, 2019, 08(03): 114-120.
[2] 南蕾, 王慧, 贾妮亚, 王彩丽, 张艳辉. 伴有新月体形成的原发性IgA肾病的临床与病理特点及预后分析[J]. 中华肾病研究电子杂志, 2016, 05(05): 218-222.
阅读次数
全文


摘要