[1] |
Jennette JC, Falk RJ, Bacon PA, et al. 2012 revised International Chapel Hill Consensus Conference Nomenclature of Vasculitides [J]. Arthritis Rheum, 2013, 65(1): 1-11.
|
[2] |
Gibson KM, Kain R, Luqmani RA, et al. Autoantibodies against lysosome associated membrane protein-2 (LAMP-2) in pediatric chronic primary systemic vasculitis [J]. Front Immunol, 2020, 11: 624758.
|
[3] |
Kimura H, Matsuyama Y, Araki S, et al. The effect and possible clinical efficacy of in vivo inhibition of neutrophil extracellular traps by blockade of PI3K-gamma on the pathogenesis of microscopic polyangiitis [J]. Mod Rheumatol, 2018, 28(3): 530-541.
|
[4] |
Chen M, Yu F, Wang SX, et al. Antineutrophil cytoplasmic autoantibody-negative pauci-immune crescentic glomerulonephritis [J]. J Am Soc Nephrol, 2007, 18(2): 599-605.
|
[5] |
Ohlsson S, Holm L, Hansson C, et al. Neutrophils from ANCA-associated vasculitis patients show an increased capacity to activate the complement system via the alternative pathway after ANCA stimulation [J]. PLoS One, 2019, 14(6): e0218272.
|
[6] |
Chen M, Jayne DRW, Zhao MH. Complement in ANCA-associated vasculitis: mechanisms and implications for management [J]. Nat Rev Nephrol, 2017, 13(6): 359-367.
|
[7] |
魏丹丹,林旭红,白春洋. FcγRⅡa及相关炎症分子在ANCA相关性血管炎中的意义[J]. 现代预防医学,2014, 41(22): 4184-4185, 4196.
|
[8] |
Nakazawa D, Masuda S, Tomaru U, et al. Pathogenesis and therapeutic interventions for ANCA-associated vasculitis [J]. Nat Rev Rheumatol, 2019, 15(2): 91-101.
|
[9] |
Wang H, Wang C, Zhao MH, et al. Neutrophil extracellular traps can activate alternative complement pathways [J]. Clin Exp Immunol, 2015, 181(3): 518-527.
|
[10] |
贾庆龄. 中性粒细胞胞外诱捕网激活单核细胞在ANCA相关性血管炎的作用[D]. 重庆:第三军医大学,2017.
|
[11] |
Lee KH, Kronbichler A, Park DD, et al. Neutrophil extracellular traps (NETs) in autoimmune diseases: a comprehensive review [J]. Autoimmun Rev, 2017, 16(11): 1160-1173.
|
[12] |
Choi H, Kim Y, Jung SM, et al. Low serum complement 3 level is associated with severe ANCA-associated vasculitis at diagnosis [J]. Clin Exp Nephrol, 2019, 23(2): 223-230.
|
[13] |
Wu EY, McInnis EA, Boyer-Suavet S, et al. Measuring circulating complement activation products in myeloperoxidase- and proteinase 3-antineutrophil cytoplasmic antibody-associated vasculitis [J]. Arthritis Rheumatol, 2019, 71(11): 1894-1903.
|
[14] |
Ort M, Dingemanse J, van den Anker J, et al. Treatment of rare inflammatory kidney diseases: drugs targeting the terminal complement pathway [J]. Front Immunol, 2020, 11: 599417.
|
[15] |
Wester Trejo MAC, Trouw LA, Bajema IM. The role of complement in antineutrophil cytoplasmic antibody-associated vasculitis [J]. Curr Opin Rheumatol, 2019, 31(1): 3-8.
|
[16] |
Dick J, Gan PY, Ford SL, et al. C5a receptor 1 promotes autoimmunity, neutrophil dysfunction and injury in experimental anti-myeloperoxidase glomerulonephritis [J]. Kidney Int, 2018, 93(3): 615-625.
|
[17] |
Finsterbusch M, Hall P, Li A, et al. Patrolling monocytes promote intravascular neutrophil activation and glomerular injury in the acutely inflamed glomerulus [J]. Proc Natl Acad Sci USA, 2016, 113(35): E5172-E5181.
|
[18] |
Popat RJ, Hakki S, Thakker A, et al. Anti-myeloperoxidase antibodies attenuate the monocyte response to LPS and shape macrophage development [J]. JCI Insight, 2017, 2(2): e87379.
|
[19] |
Tang PM, Nikolic-Paterson DJ, Lan HY. Macrophages: versatile players in renal inflammation and fibrosis [J]. Nat Rev Nephrol, 2019, 15(3): 144-158.
|
[20] |
Nakazawa D, Marschner JA, Platen L, et al. Extracellular traps in kidney disease [J]. Kidney Int, 2018, 94(6): 1087-1098.
|
[21] |
Gao Z, Gao Y, Li Z, et al. Synergy between IL-6 and TGF-β signaling promotes FOXP3 degradation [J]. Int J Clin Exp Pathol, 2012, 5(7): 626-633.
|
[22] |
Yang C, Huang XR, Fung E, et al. The regulatory t-cell transcription factor Foxp3 protects against crescentic glomerulonephritis [J]. Sci Rep, 2017, 7(1): 1481.
|
[23] |
Casal Moura M, Irazabal MV, Eirin A, et al. Efficacy of rituximab and plasma exchange in antineutrophil cytoplasmic antibody-associated vasculitis with severe kidney disease [J]. J Am Soc Nephrol, 2020, 31(11): 2688-2704.
|
[24] |
Dolff S, Witzke O, Wilde B. Th17 cells: do regulatory B-cells (Breg) take control in ANCA-vasculitis? [J]. Rheumatology (Oxford), 2019, 58(8): 1329-1330.
|
[25] |
Kronbichler A, Lee KH, Denicolò S, et al. Immunopathogenesis of ANCA-associated vasculitis [J]. Int J Mol Sci, 2020, 21(19): 7319.
|
[26] |
Huugen D, Tervaert JW, Heeringa P. TNF-alpha bioactivity-inhibiting therapy in ANCA-associated vasculitis: clinical and experimental considerations [J]. Clin J Am Soc Nephrol, 2006, 1(5): 1100-1107.
|
[27] |
Karras A, Lazareth H, Chauvet S. B-cell treatment in ANCA-associated vasculitis [J]. Rheumatology (Oxford), 2020, 59(Suppl 3): iii68-iii73.
|
[28] |
Wang C, Chang DY, Chen M, et al. HMGB1 contributes to glomerular endothelial cell injury in ANCA-associated vasculitis through enhancing endothelium-neutrophil interactions [J]. J Cell Mol Med, 2017, 21(7): 1351-1360.
|
[29] |
Cortvrindt C, Speeckaert R, Moerman A, et al. The role of interleukin-17A in the pathogenesis of kidney diseases [J]. Pathology, 2017, 49(3): 247-258.
|
[30] |
Li ZY, Ma TT, Chen M, et al. The prevalence and management of anti-neutrophil cytoplasmic antibody-associated vasculitis in China [J]. Kidney Dis (Basel), 2016, 1(4): 216-223.
|
[31] |
Wechsler ME, Akuthota P, Jayne D, et al. Mepolizumab or placebo for eosinophilic granulomatosis with polyangiitis [J]. N Engl J Med, 2017, 376(20): 1921-1932.
|
[32] |
Jayne DRW, Bruchfeld AN, Harper L, et al. Randomized trial of C5a receptor inhibitor avacopan in ANCA-associated vasculitis [J]. J Am Soc Nephrol, 2017, 28(9): 2756-2767.
|
[33] |
Sakai R, Kondo T, Kurasawa T, et al. Current clinical evidence of tocilizumab for the treatment of ANCA-associated vasculitis: a prospective case series for microscopic polyangiitis in a combination with corticosteroids and literature review [J]. Clin Rheumatol, 2017, 36(10): 2383-2392.
|
[34] |
Walsh M, Merkel PA, Peh CA, et al. Plasma exchange and glucocorticoids in severe ANCA-associated vasculitis [J]. N Engl J Med, 2020, 382(7): 622-631.
|