切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2022, Vol. 11 ›› Issue (02) : 109 -113. doi: 10.3877/cma.j.issn.2095-3216.2022.02.011

综述

1型心肾综合征的早期诊断及生物标志物研究进展
赵红亮1, 崔炜2,()   
  1. 1. 050000 石家庄,河北医科大学第二医院心内科;050031 石家庄,河北医科大学第一医院心内科
    2. 050000 石家庄,河北医科大学第二医院心内科
  • 收稿日期:2021-09-13 出版日期:2022-04-28
  • 通信作者: 崔炜

Advances in early diagnosis and biomarkers of cardiorenal syndrome type 1

Hongliang Zhao1, Wei Cui2,()   

  1. 1. Department of Cardiology, Second Hospital of Hebei Medical University, Shijiazhuang 050000; Department of Cardiology, First Hospital of Hebei Medical University, Shijiazhuang 050031; Hebei Province, China
    2. Department of Cardiology, Second Hospital of Hebei Medical University, Shijiazhuang 050000
  • Received:2021-09-13 Published:2022-04-28
  • Corresponding author: Wei Cui
引用本文:

赵红亮, 崔炜. 1型心肾综合征的早期诊断及生物标志物研究进展[J]. 中华肾病研究电子杂志, 2022, 11(02): 109-113.

Hongliang Zhao, Wei Cui. Advances in early diagnosis and biomarkers of cardiorenal syndrome type 1[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2022, 11(02): 109-113.

1型心肾综合征(CRS1)被定义为急性心功能恶化导致的急性肾损伤(AKI),其病理机制复杂、临床表现多种多样,早期诊断和防治AKI对改善CRS1患者的预后至关重要。AKI诊断的传统方法主要依赖血清肌酐(SCr)和尿量评估,可能导致对AKI的诊断延迟、以及入院率和死亡率增加。本文对CRS1的亚型和病理生理进行了描述,并讨论了早期诊断CRS1的重要潜在生物标志物,包括B型钠肽(BNP)、氨基末端BNP前体(NT-proBNP)、心肌肌钙蛋白(cTn)、可溶性基质裂解素2(sST2)、半乳糖凝集素3(Gal-3)、胱抑素C、中性粒细胞明胶酶相关载脂蛋白(NGAL)、肾损伤分子1(KIM-1)、脂肪酸结合蛋白(FABP)、金属蛋白酶组织抑制剂2(TIMP-2)与胰岛素样生长因子结合蛋白7(IGFBP7)乘积、N-乙酰-β-D-氨基葡萄糖苷酶(NAG)、成纤维细胞生长因子23(FGF-23)、白细胞介素18(IL-8)及微小RNA等,以便为CRS1患者的临床早期诊断和风险评估、进而改善预后提供参考。

Cardiorenal syndrome type 1 (CRS1) is defined as acute kidney injury (AKI) caused by acute cardiac function deterioration. Its pathological mechanism is complex and clinical manifestations are diverse. Early diagnosis and prevention of AKI are crucial to improving the prognosis of CRS1 patients. The traditional method for AKI diagnosis mainly relies on the assessment of serum creatinine (SCr) and urine volume, which may lead to delayed diagnosis of AKI and increased hospital admission and mortality. This article described the subtypes and pathophysiology of CRS1, and discussed important potential biomarkers for early diagnosis of CRS1, including B-type natriuretic peptide (BNP), N-terminal proBNP (NT-proBNP), cardiac troponin (cTn), soluble stromelysin 2 (sST2), galectin 3 (Gal-3), cystatin C, neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule 1 (KIM-1), fatty acid-binding protein (FABP), the product of tissue inhibitor of metalloproteinase 2 (TIMP-2) and insulin-like growth factor-binding protein 7 (IGFBP7), N-acetyl-β-D-glucosaminidase (NAG), fibroblast growth factor 23 (FGF-23), interleukin-18 (IL-8), and microRNA (miRNA), etc, in order to provide a reference for the early clinical diagnosis, risk assessment, and prognosis improvement of CRS1 patients.

表1 心肾综合征的分型[1,9]
表2 KDIGO标准定义的AKI阶段[9]
[1]
Rangaswami J, Bhalla V, Blair JEA, et al. Cardiorenal syndrome: classification, pathophysiology, diagnosis, and treatment strategies: a scientific statement from the American Heart Association [J]. Circulation, 2019, 139(16): e840-e878.
[2]
Ronco C, Cicoira M, McCullough PA. Cardiorenal syndrome type 1: pathophysiological crosstalk leading to combined heart and kidney dysfunction in the setting of acutely decompensated heart failure [J]. J Am Coll Cardiol, 2012, 60(12): 1031-1042.
[3]
Doshi R, Dhawan T, Rendon C, et al. Incidence and implications of acute kidney injury in patients hospitalized with acute decompensated heart failure [J]. Intern Emerg Med, 2020, 15(3): 421-428.
[4]
Marenzi G, Cosentino N, Bartorelli AL. Acute kidney injury in patients with acute coronary syndromes [J]. Heart, 2015, 101(22): 1778-1785.
[5]
Ostermann M, Bellomo R, Burdmann EA, et al. Controversies in acute kidney injury: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) conference [J]. Kidney Int, 2020, 98(2): 294-309.
[6]
Palazzuoli A, Ruocco G. Heart-kidney interactions in cardiorenal syndrome type 1 [J]. Adv Chronic Kidney Dis, 2018, 25(5): 408-417.
[7]
Mullens W, Abrahams Z, Francis GS, et al. Importance of venous congestion for worsening of renal function in advanced decompensated heart failure [J]. J Am Coll Cardiol, 2009, 53(7): 589-596.
[8]
Patoulias D, Stavropoulos K, Imprialos K, et al. Inflammatory markers in cardiovascular disease; lessons learned and future perspectives [J]. Curr Vasc Pharmacol, 2021, 19(3): 323-342.
[9]
Khwaja A. KDIGO clinical practice guidelines for acute kidney injury [J]. Nephron Clin Pract, 2012, 120(4): c179-c184.
[10]
Bouquegneau A, Krzesinski JM, Delanaye P, et al. Biomarkers and physiopathology in the cardiorenal syndrome [J]. Clin Chim Acta, 2015, 443: 100-107.
[11]
Schaub JA, Coca SG, Moledina DG, et al. Amino-terminal pro-B-type natriuretic peptide for diagnosis and prognosis in patients with renal dysfunction: a systematic review and meta-analysis [J]. JACC Heart Fail, 2015, 3(12): 977-989.
[12]
Sinkovič A, Masnik K, Mihevc M. Predictors of acute kidney injury (AKI) in high-risk ST-elevation myocardial infarction (STEMI) patients: a single-center retrospective observational study [J]. Bosn J Basic Med Sci, 2019, 19(1): 101-108.
[13]
Fan PC, Chang CH, Chen YC. Biomarkers for acute cardiorenal syndrome [J]. Nephrology (Carlton), 2018, 23 (Suppl 4): 68-71.
[14]
Yancy CW, Jessup M, Bozkurt B, et al. 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines and the Heart Failure Society of America [J]. Circulation, 2017, 136(6): e137-e161.
[15]
Tung YC, Chang CH, Chen YC, et al. Combined biomarker analysis for risk of acute kidney injury in patients with ST-segment elevation myocardial infarction [J]. PLoS One, 2015, 10(4): e0125282.
[16]
Greenberg JH, Parsons M, Zappitelli M, et al. Cardiac biomarkers for risk stratification of acute kidney injury after pediatric cardiac surgery [J]. Ann Thorac Surg, 2021, 111(1): 191-198.
[17]
Sun H, Peng J, Cai S, et al. A translational study of galectin-3 as an early biomarker and potential therapeutic target for ischemic-reperfusion induced acute kidney injury [J]. J Crit Care, 2021, 65: 192-199.
[18]
Ernst A, Köhrle J, Bergmann A. Proenkephalin A 119-159, a stable proenkephalin A precursor fragment identified in human circulation [J]. Peptides, 2006, 27(7): 1835-1840.
[19]
Ng LL, Squire IB, Jones DJL, et al. Proenkephalin, renal dysfunction, and prognosis in patients with acute heart failure: a great network study [J]. J Am Coll Cardiol, 2017, 69(1): 56-69.
[20]
Mossanen JC, Pracht J, Jansen TU, et al. Elevated soluble urokinase plasminogen activator receptor and proenkephalin serum levels predict the development of acute kidney injury after cardiac surgery [J]. Int J Mol Sci, 2017, 18(8): 1662.
[21]
Zhang Z, Lu B, Sheng X, et al. Cystatin C in prediction of acute kidney injury: a systemic review and meta-analysis [J]. Am J Kidney Dis, 2011, 58(3): 356-365.
[22]
Fouad M, Boraie M. Cystatin C as an early marker of acute kidney injury and predictor of mortality in the intensive care unit after acute myocardial infarction [J]. Arab J Nephrol Transplant, 2013, 6(1): 21-26.
[23]
Herbert C, Patel M, Nugent A, et al. Serum cystatin C as an early marker of neutrophil gelatinase-associated lipocalin-positive acute kidney injury resulting from cardiopulmonary bypass in infants with congenital heart disease [J]. Congenit Heart Dis, 2015, 10(4): E180-E188.
[24]
Lassus JP, Nieminen MS, Peuhkurinen K, et al. Markers of renal function and acute kidney injury in acute heart failure: definitions and impact on outcomes of the cardiorenal syndrome [J]. Eur Heart J, 2010, 31(22): 2791-2798.
[25]
Buonafine M, Martinez-Martinez E, Jaisser F. More than a simple biomarker: the role of NGAL in cardiovascular and renal diseases [J]. Clin Sci (Lond), 2018, 132(9): 909-923.
[26]
Shang W, Wang Z. The update of NGAL in acute kidney injury [J]. Curr Protein Pept Sci, 2017, 18(12): 1211-1217.
[27]
Maisel AS, Wettersten N, van Veldhuisen DJ, et al. Neutrophil gelatinase-associated lipocalin for acute kidney injury during acute heart failure hospitalizations: the AKINESIS study [J]. J Am Coll Cardiol, 2016, 68(13): 1420-1431.
[28]
Yin C, Wang N. Kidney injury molecule-1 in kidney disease [J]. Ren Fail, 2016, 38(10): 1567-1573.
[29]
Savic-Radojevic A, Pljesa-Ercegovac M, Matic M, et al. Novel biomarkers of heart failure [J]. Adv Clin Chem, 2017, 79: 93-152.
[30]
Atici A, Emet S, Toprak ID, et al. The role of kidney injury molecule-1 in predicting cardiorenal syndrome type 1 after diuretic treatment [J]. Arch Med Sci Atheroscler Dis, 2019, 4: e208-e214.
[31]
Fan W, Ankawi G, Zhang J, et al. Current understanding and future directions in the application of TIMP-2 and IGFBP7 in AKI clinical practice [J]. Clin Chem Lab Med, 2019, 57(5): 567-576.
[32]
Schanz M, Shi J, Wasser C, et al. Urinary [TIMP-2]×[IGFBP7] for risk prediction of acute kidney injury in decompensated heart failure [J]. Clin Cardiol, 2017, 40(7): 485-491.
[33]
Tai Q, Yi H, Wei X, et al. The accuracy of urinary TIMP-2 and IGFBP7 for the diagnosis of cardiac surgery-associated acute kidney injury: a systematic review and meta-analysis [J]. J Intensive Care Med, 2020, 35(10): 1013-1025.
[34]
Kaufmann M, Schlossbauer M, Hubauer U, et al. N-acetyl-β-D-glucosaminidase: a potential biomarker for early detection of acute kidney injury in acute chest pain [J]. Nephrology (Carlton), 2020, 25(2): 135-143.
[35]
Ho J, Tangri N, Komenda P, et al. Urinary, plasma, and serum biomarkers′ utility for predicting acute kidney injury associated with cardiac surgery in adults: a meta-analysis [J]. Am J Kidney Dis, 2015, 66(6): 993-1005.
[36]
Shirakabe A, Hata N, Kobayashi N, et al. Serum heart-type fatty acid-binding protein level can be used to detect acute kidney injury on admission and predict an adverse outcome in patients with acute heart failure [J]. Circ J, 2015, 79(1): 119-128.
[37]
Hishikari K, Hikita H, Nakamura S, et al. Urinary liver-type fatty acid-binding protein level as a predictive biomarker of acute kidney injury in patients with acute decompensated heart failure [J]. Cardiorenal Med, 2017, 7(4): 267-275.
[38]
Leaf DE, Wolf M, Waikar SS, et al. FGF-23 levels in patients with AKI and risk of adverse outcomes [J]. Clin J Am Soc Nephrol, 2012, 7(8): 1217-1223.
[39]
Andersen IA, Huntley BK, Sandberg SS, et al. Elevation of circulating but not myocardial FGF23 in human acute decompensated heart failure [J]. Nephrol Dial Transplant, 2016, 31(5): 767-772.
[40]
Pramong N, Gojaseni P, Suttipongkeat S, et al. Diagnostic accuracy of fibroblast growth factor 23 for predicting acute kidney injury in patients with acute decompensated heart failure [J]. Nephrology (Carlton), 2021, 26(2): 126-133.
[41]
Teo SH, Endre ZH. Biomarkers in acute kidney injury (AKI) [J]. Best Pract Res Clin Anaesthesiol, 2017, 31(3): 331-344.
[42]
Lin X, Yuan J, Zhao Y, et al. Urine interleukin-18 in prediction of acute kidney injury: a systemic review and meta-analysis [J]. J Nephrol, 2015, 28(1): 7-16.
[43]
Yuan SM. Acute kidney injury after cardiac surgery: risk factors and novel biomarkers [J]. Braz J Cardiovasc Surg, 2019, 34(3): 352-360.
[44]
Verbrugge FH, Dupont M, Shao Z, et al. Novel urinary biomarkers in detecting acute kidney injury, persistent renal impairment, and all-cause mortality following decongestive therapy in acute decompensated heart failure [J]. J Card Fail, 2013, 19(9): 621-628.
[45]
Van Meter EN, Onyango JA, Teske KA. A review of currently identified small molecule modulators of microRNA function [J]. Eur J Med Chem, 2020, 188: 112008.
[46]
Templeton EM, Cameron VA, Pickering JW, et al. Emerging microRNA biomarkers for acute kidney injury in acute decompensated heart failure [J]. Heart Fail Rev, 2021, 26(5): 1203-1217.
[47]
Bruno N, ter Maaten JM, Ovchinnikova ES, et al. MicroRNAs relate to early worsening of renal function in patients with acute heart failure [J]. Int J Cardiol, 2016, 203: 564-569.
[48]
Zhang H, Liu J, Li X, et al. MicroRNA-423-5p as a biomarker for early diagnosis and outcome prediction of acute kidney injury in patients with acute decompensated heart failure [J]. Int J Urol, 2021, 28(1): 25-32.
[49]
Liu J, Zhang H, Li X, et al. Diagnostic and prognostic significance of aberrant miR-652-3p levels in patients with acute decompensated heart failure and acute kidney injury [J]. J Int Med Res, 2020, 48(11): 300060520967829.
[1] 赵之栋, 李众利. 骨关节炎早期诊治的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 689-693.
[2] 罗丹, 孔为民, 陈姝宁, 赵小玲, 谢云凯. 子宫内膜异位症患者在位及异位内膜上皮细胞-间充质转化相关生物标志物的变化[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 530-539.
[3] 代雯荣, 赵丽娟, 李智慧. 细胞外囊泡对胚胎着床影响的研究进展[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 616-620.
[4] 魏徐, 张鸽, 伍金林. 新生儿脓毒症相关性凝血病的监测和治疗[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 379-386.
[5] 李越洲, 张孔玺, 李小红, 商中华. 基于生物信息学分析胃癌中PUM的预后意义[J]. 中华普通外科学文献(电子版), 2023, 17(06): 426-432.
[6] 李智铭, 郭晨明, 庄晓晨, 候雪琴, 高军喜. 早期乳腺癌超声造影定性及定量指标的对比研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 639-643.
[7] 李腾成, 狄金明. 2023 V1版前列腺癌NCCN指南更新要点解读[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 313-318.
[8] 陈坤, 何傅梅, 方婷, 陈文瑞. 血清sCD73与EGFR/ALK野生型非小细胞肺癌免疫治疗效果的相关性分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 504-507.
[9] 陈安, 冯娟, 杨振宇, 杜锡林, 柏强善, 阴继凯, 臧莉, 鲁建国. 基于生物信息学分析CCN4在肝细胞癌中表达及其临床意义[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 702-707.
[10] 顾睿祈, 方洪生, 蔡国响. 循环肿瘤DNA检测在结直肠癌诊治中的应用与进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 453-459.
[11] 任加发, 邬步云, 邢昌赢, 毛慧娟. 2022年急性肾损伤领域基础与临床研究进展[J]. 中华肾病研究电子杂志, 2023, 12(05): 276-281.
[12] 金刚, 李英真, 施维, 李博. 帕金森病在病理生理学中的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 315-319.
[13] 吴蓉菊, 向平超. COPD频繁急性加重表型与炎性因子相关性研究[J]. 中华临床医师杂志(电子版), 2023, 17(9): 939-947.
[14] 蔡荇, 郑瑞强. 肝素结合蛋白在脓毒症中的应用及研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(04): 487-490.
[15] 郭芳芳, 李珉珉. 狼疮肾炎无创生物标志物的研究进展[J]. 中华诊断学电子杂志, 2023, 11(04): 271-275.
阅读次数
全文


摘要