切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2022, Vol. 11 ›› Issue (02) : 109 -113. doi: 10.3877/cma.j.issn.2095-3216.2022.02.011

综述

1型心肾综合征的早期诊断及生物标志物研究进展
赵红亮1, 崔炜2,()   
  1. 1. 050000 石家庄,河北医科大学第二医院心内科;050031 石家庄,河北医科大学第一医院心内科
    2. 050000 石家庄,河北医科大学第二医院心内科
  • 收稿日期:2021-09-13 出版日期:2022-04-28
  • 通信作者: 崔炜

Advances in early diagnosis and biomarkers of cardiorenal syndrome type 1

Hongliang Zhao1, Wei Cui2,()   

  1. 1. Department of Cardiology, Second Hospital of Hebei Medical University, Shijiazhuang 050000; Department of Cardiology, First Hospital of Hebei Medical University, Shijiazhuang 050031; Hebei Province, China
    2. Department of Cardiology, Second Hospital of Hebei Medical University, Shijiazhuang 050000
  • Received:2021-09-13 Published:2022-04-28
  • Corresponding author: Wei Cui
引用本文:

赵红亮, 崔炜. 1型心肾综合征的早期诊断及生物标志物研究进展[J/OL]. 中华肾病研究电子杂志, 2022, 11(02): 109-113.

Hongliang Zhao, Wei Cui. Advances in early diagnosis and biomarkers of cardiorenal syndrome type 1[J/OL]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2022, 11(02): 109-113.

1型心肾综合征(CRS1)被定义为急性心功能恶化导致的急性肾损伤(AKI),其病理机制复杂、临床表现多种多样,早期诊断和防治AKI对改善CRS1患者的预后至关重要。AKI诊断的传统方法主要依赖血清肌酐(SCr)和尿量评估,可能导致对AKI的诊断延迟、以及入院率和死亡率增加。本文对CRS1的亚型和病理生理进行了描述,并讨论了早期诊断CRS1的重要潜在生物标志物,包括B型钠肽(BNP)、氨基末端BNP前体(NT-proBNP)、心肌肌钙蛋白(cTn)、可溶性基质裂解素2(sST2)、半乳糖凝集素3(Gal-3)、胱抑素C、中性粒细胞明胶酶相关载脂蛋白(NGAL)、肾损伤分子1(KIM-1)、脂肪酸结合蛋白(FABP)、金属蛋白酶组织抑制剂2(TIMP-2)与胰岛素样生长因子结合蛋白7(IGFBP7)乘积、N-乙酰-β-D-氨基葡萄糖苷酶(NAG)、成纤维细胞生长因子23(FGF-23)、白细胞介素18(IL-8)及微小RNA等,以便为CRS1患者的临床早期诊断和风险评估、进而改善预后提供参考。

Cardiorenal syndrome type 1 (CRS1) is defined as acute kidney injury (AKI) caused by acute cardiac function deterioration. Its pathological mechanism is complex and clinical manifestations are diverse. Early diagnosis and prevention of AKI are crucial to improving the prognosis of CRS1 patients. The traditional method for AKI diagnosis mainly relies on the assessment of serum creatinine (SCr) and urine volume, which may lead to delayed diagnosis of AKI and increased hospital admission and mortality. This article described the subtypes and pathophysiology of CRS1, and discussed important potential biomarkers for early diagnosis of CRS1, including B-type natriuretic peptide (BNP), N-terminal proBNP (NT-proBNP), cardiac troponin (cTn), soluble stromelysin 2 (sST2), galectin 3 (Gal-3), cystatin C, neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule 1 (KIM-1), fatty acid-binding protein (FABP), the product of tissue inhibitor of metalloproteinase 2 (TIMP-2) and insulin-like growth factor-binding protein 7 (IGFBP7), N-acetyl-β-D-glucosaminidase (NAG), fibroblast growth factor 23 (FGF-23), interleukin-18 (IL-8), and microRNA (miRNA), etc, in order to provide a reference for the early clinical diagnosis, risk assessment, and prognosis improvement of CRS1 patients.

表1 心肾综合征的分型[1,9]
表2 KDIGO标准定义的AKI阶段[9]
[1]
Rangaswami J, Bhalla V, Blair JEA, et al. Cardiorenal syndrome: classification, pathophysiology, diagnosis, and treatment strategies: a scientific statement from the American Heart Association [J]. Circulation, 2019, 139(16): e840-e878.
[2]
Ronco C, Cicoira M, McCullough PA. Cardiorenal syndrome type 1: pathophysiological crosstalk leading to combined heart and kidney dysfunction in the setting of acutely decompensated heart failure [J]. J Am Coll Cardiol, 2012, 60(12): 1031-1042.
[3]
Doshi R, Dhawan T, Rendon C, et al. Incidence and implications of acute kidney injury in patients hospitalized with acute decompensated heart failure [J]. Intern Emerg Med, 2020, 15(3): 421-428.
[4]
Marenzi G, Cosentino N, Bartorelli AL. Acute kidney injury in patients with acute coronary syndromes [J]. Heart, 2015, 101(22): 1778-1785.
[5]
Ostermann M, Bellomo R, Burdmann EA, et al. Controversies in acute kidney injury: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) conference [J]. Kidney Int, 2020, 98(2): 294-309.
[6]
Palazzuoli A, Ruocco G. Heart-kidney interactions in cardiorenal syndrome type 1 [J]. Adv Chronic Kidney Dis, 2018, 25(5): 408-417.
[7]
Mullens W, Abrahams Z, Francis GS, et al. Importance of venous congestion for worsening of renal function in advanced decompensated heart failure [J]. J Am Coll Cardiol, 2009, 53(7): 589-596.
[8]
Patoulias D, Stavropoulos K, Imprialos K, et al. Inflammatory markers in cardiovascular disease; lessons learned and future perspectives [J]. Curr Vasc Pharmacol, 2021, 19(3): 323-342.
[9]
Khwaja A. KDIGO clinical practice guidelines for acute kidney injury [J]. Nephron Clin Pract, 2012, 120(4): c179-c184.
[10]
Bouquegneau A, Krzesinski JM, Delanaye P, et al. Biomarkers and physiopathology in the cardiorenal syndrome [J]. Clin Chim Acta, 2015, 443: 100-107.
[11]
Schaub JA, Coca SG, Moledina DG, et al. Amino-terminal pro-B-type natriuretic peptide for diagnosis and prognosis in patients with renal dysfunction: a systematic review and meta-analysis [J]. JACC Heart Fail, 2015, 3(12): 977-989.
[12]
Sinkovič A, Masnik K, Mihevc M. Predictors of acute kidney injury (AKI) in high-risk ST-elevation myocardial infarction (STEMI) patients: a single-center retrospective observational study [J]. Bosn J Basic Med Sci, 2019, 19(1): 101-108.
[13]
Fan PC, Chang CH, Chen YC. Biomarkers for acute cardiorenal syndrome [J]. Nephrology (Carlton), 2018, 23 (Suppl 4): 68-71.
[14]
Yancy CW, Jessup M, Bozkurt B, et al. 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines and the Heart Failure Society of America [J]. Circulation, 2017, 136(6): e137-e161.
[15]
Tung YC, Chang CH, Chen YC, et al. Combined biomarker analysis for risk of acute kidney injury in patients with ST-segment elevation myocardial infarction [J]. PLoS One, 2015, 10(4): e0125282.
[16]
Greenberg JH, Parsons M, Zappitelli M, et al. Cardiac biomarkers for risk stratification of acute kidney injury after pediatric cardiac surgery [J]. Ann Thorac Surg, 2021, 111(1): 191-198.
[17]
Sun H, Peng J, Cai S, et al. A translational study of galectin-3 as an early biomarker and potential therapeutic target for ischemic-reperfusion induced acute kidney injury [J]. J Crit Care, 2021, 65: 192-199.
[18]
Ernst A, Köhrle J, Bergmann A. Proenkephalin A 119-159, a stable proenkephalin A precursor fragment identified in human circulation [J]. Peptides, 2006, 27(7): 1835-1840.
[19]
Ng LL, Squire IB, Jones DJL, et al. Proenkephalin, renal dysfunction, and prognosis in patients with acute heart failure: a great network study [J]. J Am Coll Cardiol, 2017, 69(1): 56-69.
[20]
Mossanen JC, Pracht J, Jansen TU, et al. Elevated soluble urokinase plasminogen activator receptor and proenkephalin serum levels predict the development of acute kidney injury after cardiac surgery [J]. Int J Mol Sci, 2017, 18(8): 1662.
[21]
Zhang Z, Lu B, Sheng X, et al. Cystatin C in prediction of acute kidney injury: a systemic review and meta-analysis [J]. Am J Kidney Dis, 2011, 58(3): 356-365.
[22]
Fouad M, Boraie M. Cystatin C as an early marker of acute kidney injury and predictor of mortality in the intensive care unit after acute myocardial infarction [J]. Arab J Nephrol Transplant, 2013, 6(1): 21-26.
[23]
Herbert C, Patel M, Nugent A, et al. Serum cystatin C as an early marker of neutrophil gelatinase-associated lipocalin-positive acute kidney injury resulting from cardiopulmonary bypass in infants with congenital heart disease [J]. Congenit Heart Dis, 2015, 10(4): E180-E188.
[24]
Lassus JP, Nieminen MS, Peuhkurinen K, et al. Markers of renal function and acute kidney injury in acute heart failure: definitions and impact on outcomes of the cardiorenal syndrome [J]. Eur Heart J, 2010, 31(22): 2791-2798.
[25]
Buonafine M, Martinez-Martinez E, Jaisser F. More than a simple biomarker: the role of NGAL in cardiovascular and renal diseases [J]. Clin Sci (Lond), 2018, 132(9): 909-923.
[26]
Shang W, Wang Z. The update of NGAL in acute kidney injury [J]. Curr Protein Pept Sci, 2017, 18(12): 1211-1217.
[27]
Maisel AS, Wettersten N, van Veldhuisen DJ, et al. Neutrophil gelatinase-associated lipocalin for acute kidney injury during acute heart failure hospitalizations: the AKINESIS study [J]. J Am Coll Cardiol, 2016, 68(13): 1420-1431.
[28]
Yin C, Wang N. Kidney injury molecule-1 in kidney disease [J]. Ren Fail, 2016, 38(10): 1567-1573.
[29]
Savic-Radojevic A, Pljesa-Ercegovac M, Matic M, et al. Novel biomarkers of heart failure [J]. Adv Clin Chem, 2017, 79: 93-152.
[30]
Atici A, Emet S, Toprak ID, et al. The role of kidney injury molecule-1 in predicting cardiorenal syndrome type 1 after diuretic treatment [J]. Arch Med Sci Atheroscler Dis, 2019, 4: e208-e214.
[31]
Fan W, Ankawi G, Zhang J, et al. Current understanding and future directions in the application of TIMP-2 and IGFBP7 in AKI clinical practice [J]. Clin Chem Lab Med, 2019, 57(5): 567-576.
[32]
Schanz M, Shi J, Wasser C, et al. Urinary [TIMP-2]×[IGFBP7] for risk prediction of acute kidney injury in decompensated heart failure [J]. Clin Cardiol, 2017, 40(7): 485-491.
[33]
Tai Q, Yi H, Wei X, et al. The accuracy of urinary TIMP-2 and IGFBP7 for the diagnosis of cardiac surgery-associated acute kidney injury: a systematic review and meta-analysis [J]. J Intensive Care Med, 2020, 35(10): 1013-1025.
[34]
Kaufmann M, Schlossbauer M, Hubauer U, et al. N-acetyl-β-D-glucosaminidase: a potential biomarker for early detection of acute kidney injury in acute chest pain [J]. Nephrology (Carlton), 2020, 25(2): 135-143.
[35]
Ho J, Tangri N, Komenda P, et al. Urinary, plasma, and serum biomarkers′ utility for predicting acute kidney injury associated with cardiac surgery in adults: a meta-analysis [J]. Am J Kidney Dis, 2015, 66(6): 993-1005.
[36]
Shirakabe A, Hata N, Kobayashi N, et al. Serum heart-type fatty acid-binding protein level can be used to detect acute kidney injury on admission and predict an adverse outcome in patients with acute heart failure [J]. Circ J, 2015, 79(1): 119-128.
[37]
Hishikari K, Hikita H, Nakamura S, et al. Urinary liver-type fatty acid-binding protein level as a predictive biomarker of acute kidney injury in patients with acute decompensated heart failure [J]. Cardiorenal Med, 2017, 7(4): 267-275.
[38]
Leaf DE, Wolf M, Waikar SS, et al. FGF-23 levels in patients with AKI and risk of adverse outcomes [J]. Clin J Am Soc Nephrol, 2012, 7(8): 1217-1223.
[39]
Andersen IA, Huntley BK, Sandberg SS, et al. Elevation of circulating but not myocardial FGF23 in human acute decompensated heart failure [J]. Nephrol Dial Transplant, 2016, 31(5): 767-772.
[40]
Pramong N, Gojaseni P, Suttipongkeat S, et al. Diagnostic accuracy of fibroblast growth factor 23 for predicting acute kidney injury in patients with acute decompensated heart failure [J]. Nephrology (Carlton), 2021, 26(2): 126-133.
[41]
Teo SH, Endre ZH. Biomarkers in acute kidney injury (AKI) [J]. Best Pract Res Clin Anaesthesiol, 2017, 31(3): 331-344.
[42]
Lin X, Yuan J, Zhao Y, et al. Urine interleukin-18 in prediction of acute kidney injury: a systemic review and meta-analysis [J]. J Nephrol, 2015, 28(1): 7-16.
[43]
Yuan SM. Acute kidney injury after cardiac surgery: risk factors and novel biomarkers [J]. Braz J Cardiovasc Surg, 2019, 34(3): 352-360.
[44]
Verbrugge FH, Dupont M, Shao Z, et al. Novel urinary biomarkers in detecting acute kidney injury, persistent renal impairment, and all-cause mortality following decongestive therapy in acute decompensated heart failure [J]. J Card Fail, 2013, 19(9): 621-628.
[45]
Van Meter EN, Onyango JA, Teske KA. A review of currently identified small molecule modulators of microRNA function [J]. Eur J Med Chem, 2020, 188: 112008.
[46]
Templeton EM, Cameron VA, Pickering JW, et al. Emerging microRNA biomarkers for acute kidney injury in acute decompensated heart failure [J]. Heart Fail Rev, 2021, 26(5): 1203-1217.
[47]
Bruno N, ter Maaten JM, Ovchinnikova ES, et al. MicroRNAs relate to early worsening of renal function in patients with acute heart failure [J]. Int J Cardiol, 2016, 203: 564-569.
[48]
Zhang H, Liu J, Li X, et al. MicroRNA-423-5p as a biomarker for early diagnosis and outcome prediction of acute kidney injury in patients with acute decompensated heart failure [J]. Int J Urol, 2021, 28(1): 25-32.
[49]
Liu J, Zhang H, Li X, et al. Diagnostic and prognostic significance of aberrant miR-652-3p levels in patients with acute decompensated heart failure and acute kidney injury [J]. J Int Med Res, 2020, 48(11): 300060520967829.
[1] 杨桂清, 孟静静. 哺乳期亚临床乳腺炎的研究进展[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 376-379.
[2] 何淳诺, 田志敏, 李焕玺, 吴昊越, 庄凯鹏, 周胜虎, 张浩强. 小儿发育性髋关节发育不良诊治的研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(04): 497-504.
[3] 赵林娟, 吕婕, 王文胜, 马德茂, 侯涛. 超声引导下染色剂标记切缘的梭柱型和圆柱型保乳区段切除术的效果研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 634-637.
[4] 杜彦斌, 黄涛, 寇天阔, 石英. 双镜联合根治术与腹腔镜根治术在早期结肠癌患者中的应用效果[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(03): 275-278.
[5] 吕军好, 林锦雯, 张心怡, 陈江华. 细胞外囊泡在肾移植诊断和治疗中的研究进展[J/OL]. 中华移植杂志(电子版), 2024, 18(03): 186-192.
[6] 刘中文, 刘畅, 高洋, 刘东, 林世庆, 杨建华, 赵福义. 尿液microRNA-326与腹腔镜根治性膀胱切除术治疗膀胱癌患者预后的相关性研究[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 386-391.
[7] 甘志新, 胡雍军, 肖晶, 胡明冬. 降钙素原在脓毒血症与肺部感染中的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 663-666.
[8] 赵静, 范晔, 游雅婷, 陈慧, 王静, 张静. 虚拟支气管镜导航联合径向超声支气管镜在周围型肺癌中的诊断意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 524-528.
[9] 袁雨涵, 杨盛力. 体液和组织蛋白质组学分析在肝癌早期分子诊断中的研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 883-888.
[10] 季鹏程, 鄂一民, 陆晨, 喻春钊. 循环外泌体相关生物标志物在结直肠癌诊断中的研究进展[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(04): 265-273.
[11] 冯熔熔, 苏晓乐, 王利华. 慢性肾脏病患者并发心血管疾病相关生物标志物研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 273-278.
[12] 张晓青, 唐雯. 基于临床化验指标重新计算的生物标记物在预测腹膜透析患者预后中的作用研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(04): 213-218.
[13] 潘冬生, 梁国标. 颅脑创伤治疗的最新进展与未来趋势[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(04): 193-197.
[14] 王江波, 尹一鸣, 张冠群. 外周血生物标志物在阿尔茨海默病早期诊断中的价值[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 244-249.
[15] 曹亚丽, 高雨萌, 张英谦, 李博, 杜军保, 金红芳. 儿童坐位不耐受的临床进展[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 510-515.
阅读次数
全文


摘要