切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2022, Vol. 11 ›› Issue (03) : 167 -171. doi: 10.3877/cma.j.issn.2095-3216.2022.03.010

综述

细胞外囊泡在急性肾损伤中的作用研究进展
陆梦婷1, 包嘉欣1, 曹长春1,()   
  1. 1. 211100 南京医科大学附属逸夫医院肾内科
  • 收稿日期:2022-02-07 出版日期:2022-06-28
  • 通信作者: 曹长春
  • 基金资助:
    国家自然科学基金(82170698)

Research progress on the role of extracellular vesicles in acute kidney injury

Mengting Lu1, Jiaxin Bao1, Changchun Cao1,()   

  1. 1. Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211100, Jiangsu Province, China
  • Received:2022-02-07 Published:2022-06-28
  • Corresponding author: Changchun Cao
引用本文:

陆梦婷, 包嘉欣, 曹长春. 细胞外囊泡在急性肾损伤中的作用研究进展[J]. 中华肾病研究电子杂志, 2022, 11(03): 167-171.

Mengting Lu, Jiaxin Bao, Changchun Cao. Research progress on the role of extracellular vesicles in acute kidney injury[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2022, 11(03): 167-171.

急性肾损伤(AKI)是一组多种原因引起的以肾功能快速下降及代谢废物蓄积为表现的危重综合征。AKI的发病率日渐增高,且在重症监护病房中有很高的死亡率。目前,临床上依据血肌酐及尿量诊断AKI,并不能敏感和及时地提示肾损伤,并且对于AKI的治疗尚无有效手段。尿液中的细胞外囊泡(EVs)来源于肾脏固有细胞,参与肾脏的病理生理过程,在AKI过程中起重要作用。此外,EVs作为天然的纳米级膜囊泡,可靶向肾脏输送治疗性分子,减轻肾损伤。本文综述了EVs的种类、识别、生理功能,并着重介绍EVs在AKI中的诊断和治疗价值。

Acute kidney injury (AKI) is a group of critical syndromes, which is caused by multiple causes and characterized by rapid decline in renal function and accumulation of metabolic waste. The incidence of AKI is increasing, and it has a high mortality rate in the intensive care unit. Currently, the clinical diagnosis of AKI is based on the level of serum creatinine and the urine output, which are not sensitive and timely to indicate renal injury. And there are no effective methods for the treatment of AKI yet. Extracellular vesicles (EVs) in the urine are derived from the renal intrinsic cells, and participate in the pathophysiological process of the kidney, playing an important role in the process of AKI. In addition, EVs are natural nano-scale membrane vesicles that can be used for targeting the kidney to deliver therapeutic molecules and alleviate the kidney damage. This article reviewed the types, recognition, and physiological functions of EVs, and focused on the diagnostic and therapeutic value of EVs in AKI.

表1 细胞外囊泡作为急性肾损伤的诊断标志物
表2 细胞外囊泡在急性肾损伤的治疗作用
[1]
Ronco C, Bellomo R, Kellum JA. Acute kidney injury [J]. Lancet, 2019, 394(10212): 1949-1964.
[2]
Hoste EAJ, Kellum JA, Selby NM, et al. Global epidemiology and outcomes of acute kidney injury [J]. Nat Rev Nephrol, 2018, 14(10): 607-625.
[3]
James MT, Bhatt M, Pannu N, et al. Long-term outcomes of acute kidney injury and strategies for improved care [J]. Nat Rev Nephrol, 2020, 16(4): 193-205.
[4]
Shah R, Patel T, Freedman JE. Circulating extracellular vesicles in human disease [J]. N Engl J Med, 2018, 379(10): 958-966.
[5]
Blander JM. The many ways tissue phagocytes respond to dying cells [J]. Immunol Rev, 2017, 277(1): 158-173.
[6]
Ma L, Li Y, Peng J, et al. Discovery of the migrasome, an organelle mediating release of cytoplasmic contents during cell migration [J]. Cell Res, 2015, 25(1): 24-38.
[7]
Théry C, Witwer KW, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines [J]. J Extracell Vesicles, 2018, 7(1): 1535750.
[8]
Crowley LC, Marfell BJ, Scott AP, et al. Quantitation of apoptosis and necrosis by annexin V binding, propidium iodide uptake, and flow cytometry [J]. Cold Spring Harb Protoc, 2016, 2016(11): doi: 10.1101/pdb.prot087288.
[9]
Zhao X, Lei Y, Zheng J, et al. Identification of markers for migrasome detection [J]. Cell Discov, 2019, 5: 27.
[10]
Görgens A, Bremer M, Ferrer-Tur R, et al. Optimisation of imaging flow cytometry for the analysis of single extracellular vesicles by using fluorescence-tagged vesicles as biological reference material [J]. J Extracell Vesicles, 2019, 8(1): 1587567.
[11]
Pienimaeki-Roemer A, Kuhlmann K, Böttcher A, et al. Lipidomic and proteomic characterization of platelet extracellular vesicle subfractions from senescent platelets [J]. Transfusion, 2015, 55(3): 507-521.
[12]
Turchinovich A, Drapkina O, Tonevitsky A. Transcriptome of extracellular vesicles: state-of-the-art [J]. Front Immunol, 2019, 10: 202.
[13]
Battistelli M, Falcieri E. Apoptotic bodies: particular extracellular vesicles involved in intercellular communication [J]. Biology (Basel), 2020, 9(1): 21.
[14]
Zhou H, Pisitkun T, Aponte A, et al. Exosomal fetuin-A identified by proteomics: a novel urinary biomarker for detecting acute kidney injury [J]. Kidney Int, 2006, 70(10): 1847-1857.
[15]
Panich T, Chancharoenthana W, Somparn P, et al. Urinary exosomal activating transcriptional factor 3 as the early diagnostic biomarker for sepsis-induced acute kidney injury [J]. BMC Nephrol, 2017, 18(1): 10.
[16]
Chen HH, Lai PF, Lan YF, et al. Exosomal ATF3 RNA attenuates pro-inflammatory gene MCP-1 transcription in renal ischemia-reperfusion [J]. J Cell Physiol, 2014, 229(9): 1202-1211.
[17]
Bulacio RP, Anzai N, Ouchi M, et al. Organic anion transporter 5 (Oat5) urinary excretion is a specific biomarker of kidney injury: evaluation of urinary excretion of exosomal Oat5 after N-acetylcysteine prevention of cisplatin induced nephrotoxicity [J]. Chem Res Toxicol, 2015, 28(8): 1595-1602.
[18]
du Cheyron D, Daubin C, Poggioli J, et al. Urinary measurement of Na+/H+ exchanger isoform 3 (NHE3) protein as new marker of tubule injury in critically ill patients with ARF [J]. Am J Kidney Dis, 2003, 42(3): 497-506.
[19]
Asvapromtada S, Sonoda H, Kinouchi M, et al. Characterization of urinary exosomal release of aquaporin-1 and -2 after renal ischemia-reperfusion in rats [J]. Am J Physiol Renal Physiol, 2018, 314(4): F584-F601.
[20]
Saito M, Horie S, Yasuhara H, et al. Metabolomic profiling of urine-derived extracellular vesicles from rat model of drug-induced acute kidney injury [J]. Biochem Biophys Res Commun, 2021, 546: 103-110.
[21]
Sonoda H, Lee BR, Park KH, et al. miRNA profiling of urinary exosomes to assess the progression of acute kidney injury [J]. Sci Rep, 2019, 9(1): 4692.
[22]
Lv LL, Feng Y, Wu M, et al. Exosomal miRNA-19b-3p of tubular epithelial cells promotes M1 macrophage activation in kidney injury [J]. Cell Death Differ, 2020, 27(1): 210-226.
[23]
Yun CY, Lim JH, Oh JH, et al. Urinary exosomal microRNA-21 as a marker for scrub typhus-associated acute kidney injury [J]. Genet Test Mol Biomarkers, 2021, 25(2): 140-144.
[24]
Lee HK, Lee BR, Lee TJ, et al. Differential release of extracellular vesicle tRNA from oxidative stressed renal cells and ischemic kidneys [J]. Sci Rep, 2022, 12(1): 1646.
[25]
Tökés-Füzesi M, Woth G, Ernyey B, et al. Microparticles and acute renal dysfunction in septic patients [J]. J Crit Care, 2013, 28(2): 141-147.
[26]
Wu XQ, Tian XY, Wang ZW, et al. miR-191 secreted by platelet-derived microvesicles induced apoptosis of renal tubular epithelial cells and participated in renal ischemia-reperfusion injury via inhibiting CBS [J]. Cell Cycle, 2019, 18(2): 119-129.
[27]
Zhao M, Liu S, Wang C, et al. Mesenchymal stem cell-derived extracellular vesicles attenuate mitochondrial damage and inflammation by stabilizing mitochondrial DNA [J]. ACS Nano, 2021, 15(1): 1519-1538.
[28]
Cao JY, Wang B, Tang TT, et al. Exosomal miR-125b-5p deriving from mesenchymal stem cells promotes tubular repair by suppression of p53 in ischemic acute kidney injury [J]. Theranostics, 2021, 11(11): 5248-5266.
[29]
Zhu G, Pei L, Lin F, et al. Exosomes from human-bone-marrow-derived mesenchymal stem cells protect against renal ischemia/reperfusion injury via transferring miR-199a-3p [J]. J Cell Physiol, 2019, 234(12): 23736-23749.
[30]
Collino F, Bruno S, Incarnato D, et al. AKI recovery induced by mesenchymal stromal cell-derived extracellular vesicles carrying microRNAs [J]. J Am Soc Nephrol, 2015, 26(10): 2349-2360.
[31]
Ullah M, Liu DD, Rai S, et al. HSP70-mediated NLRP3 inflammasome suppression underlies reversal of acute kidney injury following extracellular vesicle and focused ultrasound combination therapy [J]. Int J Mol Sci, 2020, 21(11): 4085.
[32]
Ullah M, Liu DD, Rai S, et al. Pulsed focused ultrasound enhances the therapeutic effect of mesenchymal stromal cell-derived extracellular vesicles in acute kidney injury [J]. Stem Cell Res Ther, 2020, 11(1): 398.
[33]
Cao J, Wang B, Tang T, et al. Three-dimensional culture of MSCs produces exosomes with improved yield and enhanced therapeutic efficacy for cisplatin-induced acute kidney injury [J]. Stem Cell Res Ther, 2020, 11(1): 206.
[34]
Ullah M, Liu DD, Rai S, et al. A novel approach to deliver therapeutic extracellular vesicles directly into the mouse kidney via its arterial blood supply [J]. Cells, 2020, 9(4): 937.
[35]
Gao F, Zuo B, Wang Y, et al. Protective function of exosomes from adipose tissue-derived mesenchymal stem cells in acute kidney injury through SIRT1 pathway [J]. Life Sci, 2020, 255: 117719.
[36]
Li Y, Meng Y, Zhu X, et al. Metabolic syndrome increases senescence-associated micro-RNAs in extracellular vesicles derived from swine and human mesenchymal stem/stromal cells [J]. Cell Commun Signal, 2020, 18(1): 124.
[37]
Collino F, Lopes JA, Corrêa S, et al. Adipose-derived mesenchymal stromal cells under hypoxia: changes in extracellular vesicles secretion and improvement of renal recovery after ischemic injury [J]. Cell Physiol Biochem, 2019, 52(6): 1463-1483.
[38]
Zhang K, Chen S, Sun H, et al. In vivo two-photon microscopy reveals the contribution of Sox9+ cell to kidney regeneration in a mouse model with extracellular vesicle treatment [J]. J Biol Chem, 2020, 295(34): 12203-12213.
[39]
Collino F, Lopes JA, Tapparo M, et al. Extracellular vesicles derived from induced pluripotent stem cells promote renoprotection in acute kidney injury model [J]. Cells, 2020, 9(2): 453.
[40]
Li X, Liao J, Su X, et al. Human urine-derived stem cells protect against renal ischemia/reperfusion injury in a rat model via exosomal miR-146a-5p which targets IRAK1 [J]. Theranostics, 2020, 10(21): 9561-9578.
[41]
Tang TT, Wang B, Wu M, et al. Extracellular vesicle-encapsulated IL-10 as novel nanotherapeutics against ischemic AKI [J]. Sci Adv, 2020, 6(33): eaaz0748.
[42]
Kim S, Lee SA, Yoon H, et al. Exosome-based delivery of super-repressor IκBα ameliorates kidney ischemia-reperfusion injury [J]. Kidney Int, 2021, 100(3): 570-584.
[43]
Tang TT, Wang B, Li ZL, et al. Kim-1 targeted extracellular vesicles: a new therapeutic platform for RNAi to treat AKI [J]. J Am Soc Nephrol, 2021, 32(10): 2467-2483.
[1] 杨水华, 何桂丹, 覃桂灿, 梁蒙凤, 罗艳合, 李雪芹, 唐娟松. 胎儿孤立性完全型肺静脉异位引流的超声心动图特征及高分辨率血流联合时间-空间相关成像的应用[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1061-1067.
[2] 王宏宇. 固定与活动平台假体在全膝关节置换术中的应用价值[J]. 中华关节外科杂志(电子版), 2023, 17(06): 871-876.
[3] 李善武, 叶永杰, 王兵, 王子呓, 银毅, 孙官军, 张大刚. 胫骨高位截骨与单髁置换的早期疗效比较[J]. 中华关节外科杂志(电子版), 2023, 17(06): 882-888.
[4] 江泽莹, 王安婷, 王姣丽, 陈慈, 周秋玲, 黄燕娟, 周芳, 薛琰, 周剑烽, 谭文勇, 杜美芳. 多种植物油组分预防肿瘤放化疗相关毒性反应的效果分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 523-527.
[5] 王得晨, 杨康, 杨自杰, 归明彬, 屈莲平, 张小凤, 高峰. 结直肠癌微卫星稳定状态和程序性死亡、吲哚胺2,3-双加氧酶关系的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(06): 462-465.
[6] 彭旭, 邵永孚, 李铎, 邹瑞, 邢贞明. 结肠肝曲癌的诊断和外科治疗[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 108-110.
[7] 马伟强, 马斌林, 吴中语, 张莹. microRNA在三阴性乳腺癌进展中发挥的作用[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 111-114.
[8] 顾睿祈, 方洪生, 蔡国响. 循环肿瘤DNA检测在结直肠癌诊治中的应用与进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 453-459.
[9] 袁媛, 赵良平, 刘智慧, 张丽萍, 谭丽梅, 閤梦琴. 子宫内膜癌组织中miR-25-3p、PTEN的表达及与病理参数的关系[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1016-1020.
[10] 陆志峰, 周佳佳, 梁舒. 虚拟现实技术在治疗弱视中的临床应用研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 891-895.
[11] 李田, 徐洪, 刘和亮. 尘肺病的相关研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 900-905.
[12] 易成, 韦伟, 赵宇亮. 急性肾脏病的概念沿革[J]. 中华临床医师杂志(电子版), 2023, 17(08): 906-910.
[13] 岳瑞雪, 孔令欣, 郝鑫, 杨进强, 韩猛, 崔国忠, 王建军, 张志生, 孔凡庭, 张维, 何文博, 李现桥, 周新平, 徐东宏, 胡崇珠. 乳腺癌HER2蛋白表达水平预测新辅助治疗疗效的真实世界研究[J]. 中华临床医师杂志(电子版), 2023, 17(07): 765-770.
[14] 周婷, 孙培培, 张二明, 安欣华, 向平超. 北京市石景山区40岁及以上居民慢性阻塞性肺疾病诊断现状调查[J]. 中华临床医师杂志(电子版), 2023, 17(07): 790-797.
[15] 符梅沙, 周玉华, 李慧, 薛春颜. 淋巴细胞免疫治疗对复发性流产患者外周血T淋巴细胞亚群分布与PD1/PD-L1表达的影响及意义[J]. 中华临床医师杂志(电子版), 2023, 17(06): 726-730.
阅读次数
全文


摘要