切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2022, Vol. 11 ›› Issue (03) : 161 -166. doi: 10.3877/cma.j.issn.2095-3216.2022.03.009

综述

狼疮性肾炎的生物标志物研究进展
张梦琴1, 何燕2, 张璐3, 石桂秀2,()   
  1. 1. 361005 厦门大学医学院;361003 厦门大学附属第一医院风湿免疫科
    2. 361003 厦门大学附属第一医院风湿免疫科
    3. 361003 厦门大学附属第一医院肾内科
  • 收稿日期:2021-12-28 出版日期:2022-06-28
  • 通信作者: 石桂秀
  • 基金资助:
    国家自然科学基金(81971536); 国家自然科学基金(81900657)

Research progress in biomarkers of lupus nephritis

Mengqin Zhang1, Yan He2, Lu Zhang3, Guixiu Shi2,()   

  1. 1. Xiamen University School of Medicine, Xiamen 361005; Department of Rheumatology and Immunology; First Hospital Affiliated to Xiamen University, Xiamen 361003
    2. Department of Rheumatology and Immunology; First Hospital Affiliated to Xiamen University, Xiamen 361003
    3. Department of Nephrology, First Hospital Affiliated to Xiamen University, Xiamen 361003; Fujian Province, China
  • Received:2021-12-28 Published:2022-06-28
  • Corresponding author: Guixiu Shi
引用本文:

张梦琴, 何燕, 张璐, 石桂秀. 狼疮性肾炎的生物标志物研究进展[J/OL]. 中华肾病研究电子杂志, 2022, 11(03): 161-166.

Mengqin Zhang, Yan He, Lu Zhang, Guixiu Shi. Research progress in biomarkers of lupus nephritis[J/OL]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2022, 11(03): 161-166.

狼疮性肾炎(LN)是系统性红斑狼疮(SLE)最常见和最严重的表现之一,20%~60%的SLE患者会出现肾脏损伤。抗双链DNA抗体、补体成分C3和C4、尿蛋白肌酐比值等作为LN诊断传统生物标志物,在监测疾病活动和早期肾脏病理损害方面缺乏特异性和敏感性。LN诊断的金标准是肾组织病理活检,这是一种有创检查,不利于早期诊断和反复监测。寻找能替代肾组织病理活检的新型生物标志物,对早期诊断、疾病活动监测、改善预后具有重要意义。本文总结了血液和尿液中新型生物标志物的研究进展,并对其临床应用前景提出展望,为临床诊断工作提供理论支持。

Lupus nephritis (LN) is one of the most common and serious manifestations of systemic lupus erythematosus (SLE). Kidney damage occurs in 20% to 60% of patients with SLE. As traditional biomarkers for LN diagnosis, anti-double-stranded DNA antibodies, complement components C3 and C4, and urine protein-creatinine ratio, etc., lack specificity and sensitivity in monitoring disease activity and early renal pathological damage. The gold standard for LN diagnosis is pathological biopsy of renal tissue, which is an invasive examination that is not suitable for early diagnosis and repeated monitoring. Finding novel biomarkers that can replace renal biopsy is of great significance for early diagnosis, monitoring of disease activity, and improving prognosis. This paper summarized the research progress for novel biomarkers in blood and urine, and put forward the prospect of their clinical application, providing theoretical support for clinical diagnosis.

表1 狼疮性肾炎的生物标志物
[1]
董雅倩,卢宪媛,唐斓,等. 狼疮性肾炎发病机制、生物标志物及治疗现状研究进展[J]. 实用医学杂志2018, 34(10): 1605-1609.
[2]
张凯聪,张丽,梁馨苓. 狼疮性肾炎生物标志物[J]. 肾脏病与透析肾移植杂志2018, 27(5): 463-467.
[3]
Chen YE, Korbet SM, Katz RS, et al. Value of a complete or partial remission in severe lupus nephritis [J]. Clin J Am Soc Nephrol, 2008, 3(1): 46-53.
[4]
中国狼疮肾炎诊断和治疗指南编写组. 中国狼疮肾炎诊断和治疗指南[J]. 中华医学杂志2019(44): 3441-3455.
[5]
Su B, Chen B, Lu G. Relationship of complement activation pathway to clinical and pathological characteristics and renal outcome in patients with lupus nephritis [J]. Z Rheumatol, 2021, Epub ahead of print.
[6]
Durcan L, Petri M. The clinical and serological associations of hypocomplementemia in a longitudinal sle cohort [J]. Semin Arthritis Rheum, 2020, 50(5): 1081-1086.
[7]
Shen F, Liu M, Pei F, et al. Role of uromodulin and complement activation in the progression of kidney disease [J]. Oncol Lett, 2021, 22(6): 829.
[8]
Wang X, Xia Y. Anti-double stranded DNA antibodies: origin, pathogenicity, and targeted therapies [J]. Front Immunol, 2019, 10: 1667.
[9]
Andrianova IA, Ponomareva AA, Mordakhanova ER, et al. In systemic lupus erythematosus anti-dsDNA antibodies can promote thrombosis through direct platelet activation [J]. J Autoimmun, 2020, 107: 102355.
[10]
Jia Y, Zhao L, Wang C, et al. Anti-double-stranded DNA isotypes and anti-C1q antibody improve the diagnostic specificity of systemic lupus erythematosus [J]. Dis Markers, 2018, 2018: 4528547.
[11]
Soliman S, Mohan C. Lupus nephritis biomarkers [J]. Clin Immunol, 2017, 185: 10-20.
[12]
Rodriguez-Jimenez NA, Perez-Guerrero EE, Gamez-Nava JI, et al. Anti-nucleosome antibodies increase the risk of renal relapse in a prospective cohort of patients with clinically inactive systemic lupus erythematosus [J]. Sci Rep, 2020, 10(1): 12698.
[13]
Shang X, Ren L, Sun G, et al. Anti-dsDNA, anti-nucleosome, anti-C1q, and anti-histone antibodies as markers of active lupus nephritis and systemic lupus erythematosus disease activity [J]. Immun Inflamm Dis, 2021, 9(2): 407-418.
[14]
Migliorini P, Baldini C, Rocchi V, et al. Anti-Sm and anti-RNP antibodies [J]. Autoimmunity, 2005, 38(1): 47-54.
[15]
Dumestre-Pérard C, Clavarino G, Colliard S, et al. Antibodies targeting circulating protective molecules in lupus nephritis: interest as serological biomarkers [J]. Autoimmun Rev, 2018, 17(9): 890-899.
[16]
Bastian HM, Roseman JM, Mcgwin G, et al. Systemic lupus erythematosus in three ethnic groups. XII. Risk factors for lupus nephritis after diagnosis [J]. Lupus, 2002, 11(3): 152-60.
[17]
Moroni G, Ventura D, Riva P, et al. Antiphospholipid antibodies are associated with an increased risk for chronic renal insufficiency in patients with lupus nephritis [J]. Am J Kidney Dis, 2004, 43(1): 28-36.
[18]
Ding X, Chen C, Zhang J, et al. Antiphospholipid antibodies in patients with proliferative and membranous lupus nephritis [J]. Clin Rheumatol, 2020, 39(5): 1531-1535.
[19]
Salesi M, Karimifar M, Farajzadegan Z, et al. The protein-creatinine ratio in spot morning urine samples and 24-h urinary protein excretion in patients with systemic lupus erythematosus [J]. Rheumatol Int, 2009, 29(5): 503-507.
[20]
Medina-Rosas J, Yap KS, Anderson M, et al. Utility of urinary protein-creatinine ratio and protein content in a 24-hour urine collection in systemic lupus erythematosus: a systematic review and meta-analysis [J]. Arthritis Care Res (Hoboken), 2016, 68(9): 1310-1319.
[21]
Kong DH, Kim YK, Kim MR, et al. Emerging roles of vascular cell adhesion molecule-1 (VCAM-1) in immunological disorders and cancer [J]. Int J Mol Sci, 2018, 19(4): 1057.
[22]
王鹏,张吉才. 尿液蛋白标志物联合检测在狼疮性肾炎中的诊断价值[J]. 川北医学院学报2018, 33(5): 688-692.
[23]
吴春益,杨满球,周展眉,等. 尿液粘附分子:活动性狼疮肾炎的标志物[J]. 南方医科大学学报2015, 35(9): 1272-1276, 1282.
[24]
Bui TM, Wiesolek HL, Sumagin R. ICAM-1: a master regulator of cellular responses in inflammation, injury resolution, and tumorigenesis [J]. J Leukoc Biol, 2020, 108(3): 787-799.
[25]
Guo Liu RN, Cheng QY, Zhou HY, et al. Elevated blood and urinary ICAM-1 is a biomarker for systemic lupus erythematosus: a systematic review and meta-analysis [J]. Immunol Invest, 2020, 49(1-2): 15-31.
[26]
Vanarsa K, Soomro S, Zhang T, et al. Quantitative planar array screen of 1000 proteins uncovers novel urinary protein biomarkers of lupus nephritis [J]. Ann Rheum Dis, 2020, 79(10): 1349-1361.
[27]
Xing Q, Su H, Cui J, et al. Role of Treg cells and TGF-β1 in patients with systemic lupus erythematosus: a possible relation with lupus nephritis [J]. Immunol Invest, 2012, 41(1): 15-27.
[28]
Paradowska-Gorycka A, Roszak M, Stypinska B, et al. IL-6 and TGF-β gene polymorphisms, their serum levels, as well as HLA profile, in patients with systemic lupus erythematosus [J]. Clin Exp Rheumatol, 2019, 37(6): 963-975.
[29]
Bona N, Pezzarini E, Balbi B, et al. Oxidative stress, inflammation and disease activity biomarkers in lupus nephropathy [J]. Lupus, 2020, 29(3): 311-323.
[30]
Gómez-Puerta JA, Ortiz-Reyes B, Urrego T, et al. Urinary neutrophil gelatinase-associated lipocalin and monocyte chemoattractant protein 1 as biomarkers for lupus nephritis in colombian SLE patients [J]. Lupus, 2018, 27(4): 637-646.
[31]
Correia de Sousa M, Gjorgjieva M, Dolicka D, et al. Deciphering miRNAs′ action through miRNA editing [J]. Int J Mol Sci, 2019, 20(24): 6249.
[32]
Cardenas-Gonzalez M, Srivastava A, Pavkovic M, et al. Identification, confirmation, and replication of novel urinary microRNA biomarkers inlupus nephritis and diabetic nephropathy [J]. Clin Chem, 2017, 63(9): 1515-1526.
[33]
Khoshmirsafa M, Kianmehr N, Falak R, et al. Elevated expression of miR-21 and miR-155 in peripheral blood mononuclear cells as potential biomarkers for lupus nephritis [J]. Int J Rheum Dis, 2019, 22(3): 458-467.
[34]
Tu Y, Guo R, Li J, et al. MiRNA regulation of MIF in SLE and attenuation of murine lupus nephritis with miR-654 [J]. Front Immunol, 2019, 10: 2229.
[35]
Cost NG, Noh PH, Devarajan P, et al. Urinary NGAL levels correlate with differential renal function in patients with ureteropelvic junction obstruction undergoing pyeloplasty [J]. J Urol, 2013, 190(4 Suppl): 1462-1467.
[36]
Aggarwal A, Gupta R, Negi VS, et al. Urinary haptoglobin, alpha-1 anti-chymotrypsin and retinol binding protein identified by proteomics as potential biomarkers for lupus nephritis [J]. Clin Exp Immunol, 2017, 188(2): 254-262.
[37]
Qin L, Stanley S, Ding H, et al. Urinary pro-thrombotic, anti-thrombotic, and fibrinolytic molecules as biomarkers of lupus nephritis [J]. Arthritis Res Ther, 2019, 21(1): 176.
[38]
Kanno Y, Miyashita M, Seishima M, et al. α2AP is associated with the development of lupus nephritis through the regulation of plasmin inhibition and inflammatory responses [J]. Immun Inflamm Dis, 2020, 8(3): 267-278.
[39]
Tokunaga Y, Imaoka H, Kaku Y, et al. The significance of CD163-expressing macrophages in asthma [J]. Ann Allergy Asthma Immunol, 2019, 123(3): 263-270.
[40]
Li J, Yu YF, Liu CH, et al. Significance of M2 macrophages in glomerulonephritis with crescents [J]. Pathol Res Pract, 2017, 213(9): 1215-1220.
[41]
Allam M, Fathy H, Allah DA, et al. Lupus nephritis: correlation of immunohistochemical expression of C4d, CD163-positive M2c-like macrophages and Foxp3-expressing regulatory T cells with disease activity and chronicity [J]. Lupus, 2020, 29(8): 943-953.
[42]
Gupta R, Yadav A, Aggarwal A. Urinary soluble CD163 is a good biomarker for renal disease activity in lupus nephritis [J]. Clin Rheumatol, 2021, 40(3): 941-948.
[43]
Mejia-Vilet JM, Zhang XL, Cruz C, et al. Urinary soluble CD163: a novel noninvasive biomarker of activity for lupus nephritis [J]. J Am Soc Nephrol, 2020, 31(6): 1335-1347.
[44]
Selvaraja M, Abdullah M, Arip M, et al. Elevated interleukin-25 and its association to Th2 cytokines in systemic lupus erythematosus with lupus nephritis [J]. PLoS One, 2019, 14(11): e0224707.
[45]
Li Y, Wang R, Liu S, et al. Interleukin-25 is upregulated in patients with systemic lupus erythematosus and ameliorates murine lupus by inhibiting inflammatory cytokine production [J]. Int Immunopharmacol, 2019, 74: 105680.
[46]
Chyuan IT, Tzeng HT, Chen JY. Signaling pathways of type I and type III Interferons and targeted therapies in systemic lupus erythematosus [J]. Cells, 2019, 8(9): 963.
[47]
Elkon KB, Wiedeman A. Type I IFN system in the development and manifestations of SLE [J]. Curr Opin Rheumatol, 2012, 24(5): 499-505.
[48]
Ding X, Ren Y, He X. IFN-I mediates lupus nephritis from the beginning to renal fibrosis [J]. Front Immunol, 2021, 12: 676082.
[49]
Devarapu SK, Kumar VS, Rupanagudi KV, et al. Reprint of " dual blockade of the pro-inflammatory chemokine CCL2 and the homeostatic chemokine CXCL12 is as effective as high dose cyclophosphamide in murine proliferative lupus nephritis" [J]. Clin Immunol, 2017, 185: 119-127.
[50]
Jakiela B, Kosaka J, Plutecka H, et al. Urinary cytokines and mRNA expression as biomarkers of disease activity in lupus nephritis [J]. Lupus, 2018, 27(8): 1259-1270.
[51]
Diaz-Rizo V, Bonilla-Lara D, Gonzalez-Lopez L, et al. Serum levels of adiponectin and leptin as biomarkers of proteinuria in lupus nephritis [J]. PLoS One, 2017, 12(9): e0184056.
[52]
Gamez-Nava JI, Diaz-Rizo V, Perez-Guerrero EE, et al. Assessment of serum macrophage migration inhibitory factor (MIF), adiponectin, and other adipokines as potential markers of proteinuria and renal dysfunction in lupus nephritis: a cross-sectional study [J]. Biomark Res, 2020, 8: 55.
[53]
Emad G, Al-Barshomy SM. Anti-C1q antibodies in lupus nephritis and their correlation with the disease activity [J]. Saudi J Kidney Dis Transpl, 2020, 31(2): 342-352.
[54]
程根阳,张娜,胡晓舟,等.多种抗体联合检测在狼疮性肾炎诊断中意义[J].中华实用诊断与治疗杂志201024(3):295-296.
[1] 刘子洋, 崔俭俭, 赵茵. 产科弥散性血管内凝血及其评分系统的研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 511-518.
[2] 黄鸿初, 黄美容, 温丽红. 血液系统恶性肿瘤患者化疗后粒细胞缺乏感染的危险因素和风险预测模型[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(05): 285-292.
[3] 刘中文, 刘畅, 高洋, 刘东, 林世庆, 杨建华, 赵福义. 尿液microRNA-326与腹腔镜根治性膀胱切除术治疗膀胱癌患者预后的相关性研究[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 386-391.
[4] 邓楠, 刘平. 广东省医学会泌尿外科疑难病例多学科会诊(第14期)——左肾盂恶性肿瘤并左肾巨大积液[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(03): 296-299.
[5] 罗霞, 王宝梅, 李淑景, 杨英. 特发性肺动脉高压血清PCSK9表达及预后意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 585-589.
[6] 徐嘉愉, 张复华, 牛国敏, 梁家宝, 潘焕玉, 麦秀蕖, 杨国雷, 徐嘉良, 黄佑勇. Th1/Th2细胞因子谱在恶性血液肿瘤患者化疗后中性粒细胞缺乏伴感染的应用价值[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 143-150.
[7] 杜军霞, 赵小淋, 王浩然, 高志远, 王曼茜, 万楠熙, 张冬, 丁潇楠, 任琴琴, 段颖洁, 汤力, 朱晗玉. 2 型糖尿病的血液透析患者肠道微生物组学高通量测序分析[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 313-320.
[8] 张少青, 吕玉风, 董海霞. 中性粒细胞百分比/白蛋白比值对维持性血液透析患者全因死亡的预测作用[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 321-326.
[9] 苏朝江, 刘佳丽, 姜燕, 许厅, 刘俪婷, 陈彦, 刘宗旸. 血透患者小直径动脉经皮腔内血管成形术后行动静脉内瘘术的疗效[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 249-255.
[10] 周敏, 徐阳, 胡莹, 黄先凤. 维持性血液透析患者血清β-CTX、N-MID 和PICP 与冠状动脉钙化的关系及其诊断价值[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 256-260.
[11] 张晓青, 唐雯. 基于临床化验指标重新计算的生物标记物在预测腹膜透析患者预后中的作用研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(04): 213-218.
[12] 马丽洁, 赵素梅, 孙芳, 孙倩美. 平均血小板体积和平均血小板体积/血小板计数比值对血液透析患者血管通路失功的潜在预测价值[J/OL]. 中华肾病研究电子杂志, 2024, 13(02): 61-67.
[13] 姚庆春, 魏光晨, 孟玫. 关注ICU 患者接受的非必要血液检测[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 329-333.
[14] 王江波, 尹一鸣, 张冠群. 外周血生物标志物在阿尔茨海默病早期诊断中的价值[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 244-249.
[15] 陈念, 张连阳. 严重创伤救治中全血输注进展[J/OL]. 中华诊断学电子杂志, 2024, 12(03): 145-148.
阅读次数
全文


摘要