切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2023, Vol. 12 ›› Issue (02) : 74 -80. doi: 10.3877/cma.j.issn.2095-3216.2023.02.003

论著

钩藤-牛膝药对治疗肾血管性高血压的潜在分子机制
于芳宁1, 刘武2, 高艺玮2, 张宁2,(), 李心怡2, 王薇2, 沈潜3   
  1. 1. 100102 北京,中国中医科学院望京医院;100029 北京中医药大学
    2. 100102 北京,中国中医科学院望京医院
    3. 100078 北京中医药大学东方医院
  • 收稿日期:2022-04-11 出版日期:2023-04-28
  • 通信作者: 张宁
  • 基金资助:
    国家自然科学基金面上项目(81973801)

Potential mechanisms of RUCU-ABR drug pair in the treatment of renovascular hypertension

Fangning Yu1, Wu Liu2, Yiwei Gao2, Ning Zhang2,(), Xinyi Li2, Wei Wang2, Qian Shen3   

  1. 1. Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, 100102; Beijing University of Chinese Medicine, Beijing 100029
    2. Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, 100102
    3. Dongfang Hospital of Beijing University of Chinese Medicine, Beijing 100078; China
  • Received:2022-04-11 Published:2023-04-28
  • Corresponding author: Ning Zhang
引用本文:

于芳宁, 刘武, 高艺玮, 张宁, 李心怡, 王薇, 沈潜. 钩藤-牛膝药对治疗肾血管性高血压的潜在分子机制[J]. 中华肾病研究电子杂志, 2023, 12(02): 74-80.

Fangning Yu, Wu Liu, Yiwei Gao, Ning Zhang, Xinyi Li, Wei Wang, Qian Shen. Potential mechanisms of RUCU-ABR drug pair in the treatment of renovascular hypertension[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2023, 12(02): 74-80.

目的

应用网络药理学及分子对接技术探讨钩藤-牛膝药对活性成分治疗肾血管性高血压的潜在机制。

方法

通过检索中药系统药理学数据库(TCMSP),获取钩藤、牛膝的化学成分和潜在靶标。检索人类孟德尔遗传数据库(OMIM)、人类基因蛋白质组数据库(GeneCards)、药物信息数据库(DrugBank)以及人类疾病基因数据库(DisGeNET),获取肾血管性高血压相关靶点。使用Cytoscape3.8.2软件构建"成分-靶标-疾病"网络。利用STRING平台绘制关键靶点蛋白互作网络。针对关键靶标,开展基因本体(GO)数据库基因蛋白富集分析、京都基因与基因组百科全书(KEGG)信号通路富集分析。使用AutoDock4.2.3软件对钩藤-牛膝药对的8个活性成分和6个核心靶点进行分子对接验证。

结果

检索得到钩藤-牛膝药对中有效成分54个、潜在靶标199个,其中涉及肾血管性高血压的关键靶标38个。蛋白质相互作用(PPI)网络图分析发现,IL-6、血管内皮生长因子A(VEGFA)、基质金属蛋白酶9(MMP9)、一氧化氮合酶3(NOS3)、前列腺素内过氧化物合酶2(PTGS2)、FOS、血红素加氧酶1(HMOX1)可能是钩藤-牛膝药对治疗肾血管性高血压的核心靶点。GO富集分析结果:涉及内质网腔、含胶原细胞外基质等细胞组分,血红素结合、细胞因子受体结合等分子功能,以及氧化应激、炎症反应调节等生物过程。KEGG富集分析结果:主要涉及糖基化终末产物、肿瘤坏死因子、低氧诱导因子等信号通路。分子对接显示:黄连碱、钩藤碱等活性成分与NOS3的结合能绝对值较高。

结论

在钩藤-牛膝药对治疗肾血管性高血压的活性成分中,黄连碱、钩藤碱均与NOS3结合较好,NOS3可能是钩藤-牛膝药对治疗肾血管性高血压的潜在靶标。

Objective

To explore the potential mechanism of a drug pair of Ramulus Uncariae Cum Uncis (RUCU)-Achyranthis Bidentatae Radix (ABR) in the treatment of renovascular hypertension through the network pharmacology and molecular docking technology.

Methods

The chemical components and potential targets of RUCU and ABR were obtained by searching the database of Traditional Chinese Medicine Systems Pharmacology (TCMSP). By retrieving the Online Mendelian Inheritance in Man (OMIM) database, human gene proteome database (GeneCards), drug information database (DrugBank), and human disease gene database (DisGeNET), renovascular hypertension-related targets were obtained. By means of the Cytoscape 3.8.2 software, a "component-target-disease" network was established. The STRING platform was used to draw the interaction network of the key target proteins. For the key targets, the gene ontology (GO) database was used for gene protein enrichment analysis, while the Kyoto Encyclopedia of Genes and Genomes (KEGG) was used for signal pathway enrichment analysis. The AutoDock 4.2.3 software was used to verify the molecular docking of 8 active components and 6 core targets of the RUCU-ABR drug pair.

Results

Through the retrieving, 54 active ingredients and 199 potential targets were obtained from the RUCU-ABR drug pair, among which 38 key targets were related to renovascular hypertension. Analysis of the protein-protein interaction network (PPI) showed that IL-6, vascular endothelial growth factor A (VEGFA), matrix metalloproteinase 9 (MMP9), nitric-oxide synthase 3 (NOS3), prostaglandin-endoperoxide synthase 2 (PTGS2), FOS, and heme oxygenase 1 (HMOX1) might be core targets for treatment of renal vascular hypertension with RUCU-ABR drug pair. GO enrichment analysis disclosed cell components (such as endoplasmic reticulum cavity and collagen containing extracellular matrix), molecular functions (such as heme binding and cytokine receptor binding), and biological processes (such as oxidative stress and inflammatory response regulation). KEGG enrichment analysis showed signaling pathways (such as advanced glycation end products, tumor necrosis factor, and hypoxia-inducible factor). Molecular docking found that the absolute value of binding energy of active ingredients such as coptisine and uncarine with NOS3 was relatively high.

Conclusion

Among the active ingredients of RUCU-ABR drug pair for treatment of renal vascular hypertension, coptisine and uncarine could all combine well with NOS3. NOS3 may be the potential target of RUCU-ABR drug pair in treating renal vascular hypertension.

表1 钩藤-牛膝药对的有效活性成分
表2 钩藤-牛膝药对的潜在靶点
图1 钩藤-牛膝靶点与疾病靶点交集韦恩图
图2 蛋白相互作用网络图核心靶点
图3 钩藤-牛膝药对与肾血管性高血压交集基因的GO分析注:A:细胞成分(CC); B:分子功能(MF); C:生物过程(BP); P值小的结果用红色表示;富集程度越高,颜色越红,表明该过程与RVH关联程度越大
图4 交集蛋白KEGG通路富集注:富集结果较多的前10位通路为:糖基化终产物(AGEs)信号通路,流体剪切应力与动脉粥样硬化,肿瘤坏死因子信号通路,松弛素信号通路,利什曼病,癌症转录失调,卡波西肉瘤,IL-17信号通路,C型凝集素受体信号通路,HIF信号通路
图5 钩藤-牛膝药对主要活性成分与核心靶点对接的最低结合能热图(单位:kcal/mol)
图6 黄连素和黄连碱与NOS3分子对接图示注:A:黄连素与NOS3分子对接模式图及细节图;B:黄连碱(9B)与NOS3分子对接模式图及细节图
[1]
Herrmann SM, Textor SC. Current concepts in the treatment of renovascular hypertension [J]. Am J Hypertens, 2018, 31(2): 139-149.
[2]
Hansen KJ, Edwards MS, Craven TE, et al. Prevalence of renovascular disease in the elderly: a population-based study [J]. Vase Surg, 2002, 36(3): 443-451.
[3]
Weber BR, Dieter RS. Renal artery stenosis: epidemiology and treatment [J]. Int J Nephrol Renovasc Dis, 2014, 7: 169-181.
[4]
王清海,陶军. 中西医结合临床研究新进展大系:中西医结合高血压研究新进展[M]. 北京:人民卫生出版社,2017: 151-165.
[5]
吕景山. 施今墨对药(第4版)[M]. 北京:人民军医出版社,2010: 60-61.
[6]
王永军,闫保环,陈彦强,等. 天麻钩藤饮结合缬沙坦治疗肾性高血压临床研究[J]. 国际中医中药杂志2016, 38(3): 228-231.
[7]
张成慰. 天麻钩藤饮联合氯沙坦治疗肾性高血压60例[J]. 西部中医药2013, 26(9):76-77.
[8]
Ru J, Li P, Wang J, et al. TCMSP A database of systems pharmacology for drug discovery from herbal medicines [J]. J Cheminform, 2014, 6: 13-17.
[9]
Xu X, Zhang W, Huang C, et al. A novel chemometric method for the prediction of human oral bioavailability [J]. Mol Sci, 2012, 13(6): 6964-6982.
[10]
UniProt Consortium. UniProt: a worldwide hub of protein knowledge [J]. Nucleic Acids Res, 2019, 47(D1): D506-D515.
[11]
von Mering C, Jensen LJ, Snel B, et al. STRING: known and predicted protein-protein associations, integrated and transferred across organisms [J]. Nucleic Acids Res, 2005, 33(D): D433-D437.
[12]
于芳宁,张宁,杜华,等. 基于数据挖掘和网络药理学对张宁教授治疗早期糖尿病肾脏疾病用药规律和潜在机制研究[J]. 世界中西医结合杂志2022, 17(5): 903-911, 916.
[13]
金美玲,李典耕,张伟光,等. 基于网络药理学和分子对接研究益肾健脾利水方治疗肾小球肾炎的作用机制[J/CD].中华肾病研究电子杂志2021, 10(4): 189-197.
[14]
方祝元. 中医药治疗高血压病临床述评[J]. 江苏中医药2019, 51(8): 1-6.
[15]
范春炜. 自发性高血压大鼠主动脉重构与自噬的关系——黄连素干预的研究[D]. 福州:福建医科大学,2016.
[16]
韦晟,刘金春,葛卫红. 黄连碱对过氧化氢损伤的血管内皮细胞保护作用[J]. 中国医药导报2019, 16(3): 4-7, 21, 182.
[17]
王丽君,朱焰,廖矛川. 牛膝总皂苷对卒中型自发性高血压大鼠的影响[J]. 中国中药杂志2011, 36(9): 1239-1241.
[18]
李超,蔺琳,张蕾,等. 钩藤碱增强自噬改善TNF-α介导的血管内皮细胞血栓前状态的研究[J]. 中草药2017, 48(24): 5224-5229.
[19]
孙敬昌,周洪雷,齐冬梅,等. 钩藤提取物对自发性高血压大鼠动脉形态学及血管紧张素Ⅱ的影响[J]. 山东中医药大学学报2011, 35(4): 351-353.
[20]
韦贵云,许崇摇. 钩藤碱和异钩藤碱抗高血压作用的研究进展[J]. 中国医药科学2020, 10(15): 32-36.
[21]
刘雪玲. 钩藤的有效成分及降压作用的特点[J]. 菏泽医专学报1996, 8(4): 20-21.
[22]
Arend WP, Michel BA, Bloch DA, et al. The American College of Rheumatology 1990 criteria for the classification of Takayasu arteritis [J]. Arthritis Rheum, 1990, 33(8): 1129-1134.
[23]
Hallett JW, Mills JL, Earnshaw JJ, et al. Comprehensive vascular and endovascular surgery [M]. New York: Edinburgh Mosby, 2009.
[24]
刘景超,杨新年,肖华云,等. 降压调脂胶囊对高血压大鼠血压及血清NO的影响[J]. 山东中医杂志2001(4): 235-236.
[25]
郭经奇,李莹,任雯庆,等. 基于网络药理学探讨人参-钩藤药对治疗原发性高血压的作用机制[J]. 中西医结合心脑血管病杂志2021, 19(2): 209-216.
[26]
Touyz RM. Reactive oxygen species in vascular biology: role in arterial hypertension [J]. Expert Rev Cardiovasc Ther, 2003, 1(1): 91-106.
[27]
Azimi-nezhad M, Stathopoulou MG, Bonnefond A, et al. Associations of vascular endothelial growth factor (VEGF) with adhesion and inflammation molecules in a healthy population [J]. Cytokine, 2013, 61(2): 602-607.
[28]
Kütscher C, Lampert FM, Kunze M, et al. Overexpression of hypoxia-inducible factor-1 alpha improves vasculogenesis-related functions of endothelial progenitor cells [J]. Microvasc Res, 2016, 105: 85-92.
[29]
Mirhafez SR, Mohebati M, Feiz Disfani M, et al. An imbalance in serum concentrations of inflammatory and anti-inflammatory cytokines in hypertension [J]. J Am Soc Hypertens, 2014, 8(9): 614-623.
[30]
Lim K, Jackson KL, Sata Y, et al. Factors responsible for obesity-related hypertension [J]. Curr Hypertens Rep, 2017, 19(7): 53.
[31]
黄娟娟. 有氧运动联合白芷、怀牛膝提取物干预对2型糖尿病大鼠糖脂代谢及氧化应激的影响[D]. 郑州:河南大学,2016.
[1] 金美玲, 李典耕, 张伟光, 尹智炜, 杨洪娟. 基于网络药理学和分子对接研究益肾健脾利水方治疗肾小球肾炎的作用机制[J]. 中华肾病研究电子杂志, 2021, 10(04): 189-197.
[2] 胡天祥, 黄贵锐, 毛炜, 黎创, 徐鹏, 田瑞敏, 谢晨. 基于网络药理学探讨益肾化湿颗粒治疗慢性肾小球肾炎的机制[J]. 中华肾病研究电子杂志, 2021, 10(04): 181-188.
[3] 郭文秀, 吴胜男, 王小芸, 张敏. 基于网络药理学的百部联合川贝母治疗肺结核的作用机制研究[J]. 中华临床医师杂志(电子版), 2023, 17(03): 335-342.
[4] 陈弦, 孔俊虹, 沙晨曦, 龚楚桥. 基于网络药理学探讨脉通饮治疗冠心病的作用机制研究[J]. 中华临床医师杂志(电子版), 2021, 15(11): 882-889.
[5] 黄楠, 肖天池, 曾成粤, 莫乔惠, 张丽嬴, 徐淼源, 邓小燕, 梁晓丽. 基于网络药理学和分子对接探究桑菊感冒颗粒抗甲型H1N1流感的活性成分及作用机制[J]. 中华临床实验室管理电子杂志, 2023, 11(04): 221-229.
阅读次数
全文


摘要