[1] |
Thurlow JS, Joshi M, Yan G, et al.Global epidemiology of endstage kidney disease and disparities in kidney replacement therapy [J].Am J Nephrol, 2021, 52(2): 98-107.
|
[2] |
Kobayashi T, Noguchi T, Saito K, et al.Global epidemiology of end-stage kidney disease and disparities in kidney replacement therapy [J].Contrib Nephrol, 2018, 196: 1-4.
|
[3] |
Zhou Q, Bajo MA, Del Peso G, et al.Preventing peritoneal membrane fibrosis in peritoneal dialysis patients [J].Kidney Int, 2016, 90(3): 515-524.
|
[4] |
李想, 王秀芬, 张涛, 等.腹膜透析的退出原因及其防治策略[J/OL].中华肾病研究电子杂志, 2023, 12(6): 329-333.
|
[5] |
Bao JF, Hao J, Liu J, et al.The abnormal expression level of microRNA in epithelial-mesenchymal transition of peritoneal mesothelial cells induced by high glucose [J].Eur Rev Med Pharmacol Sci, 2015, 19(2): 289-292.
|
[6] |
Si M, Wang Q, Li Y, et al.Inhibition of hyperglycolysis in mesothelial cells prevents peritoneal fibrosis [J].Sci Transl Med, 2019, 11(495): eaav5341.
|
[7] |
Zhang D, Tang Z, Huang H, et al.Metabolic regulation of gene expression by histone lactylation [J].Nature, 2019, 574(7779): 575-580.
|
[8] |
Wang N, Wang W, Wang X, et al.Histone lactylation boosts reparative gene activation post-myocardial infarction [J].Circ Res, 2022, 131(11): 893-908.
|
[9] |
Wu D, Spencer CB, Ortoga L, et al.Histone lactylationregulated METTL3 promotes ferroptosis via m6A-modification on ACSL4 in sepsis-associated lung injury [J].Redox Biol, 2024,74: 103194.
|
[10] |
Trujillo MN,Jennings EQ,Hoffman EA,et al.Lactoylglutathione promotes inflammatory signaling in macrophages through histone lactoylation [J].Mol Metab,2024, 81: 101888.
|
[11] |
Da Silva Santos R, Galdino G.Endogenous systems involved in exercise-induced analgesia [J].J Physiol Pharmacol, 2018, 69(1): 3-13.
|
[12] |
陈客宏.干细胞外泌体防治腹膜透析腹膜纤维化新技术研究[J/OL].中华肾病研究电子杂志, 2023, 12(3): 180.
|
[13] |
Higashi Y, Abe K, Kuzumoto T, et al.Characterization of peritoneal dialysis effluent-derived cells: diagnosis of peritoneal integrity [J].J Artif Organs, 2013, 16(1): 74-82.
|
[14] |
Krediet RT.Acquired decline in ultrafiltration in peritoneal dialysis: the role of glucose [J].J Am Soc Nephrol, 2021, 32(10): 2408-2415.
|
[15] |
Krediet RT, Parikova A.Relative contributions of pseudohypoxia and inflammation to peritoneal alterations with long-term peritoneal dialysis patients [J].Clin J Am Soc Nephrol, 2022,17(8): 1259-1266.
|
[16] |
Shirai Y, Miura K, Ike T, et al.Cumulative dialytic glucose exposure is a risk factor for peritoneal fibrosis and angiogenesis in pediatric patients undergoing peritoneal dialysis using neutral-pH fluids [J].Kidney Int Rep, 2022, 7(11): 2431-2445.
|
[17] |
Zhao H, Zhang HL, Jia L.High glucose dialysate-induced peritoneal fibrosis: pathophysiology, underlying mechanisms and potential therapeutic strategies [J].Biomed Pharmacother,2023, 165: 115246.
|
[18] |
Rosenberg ME.Peritoneal dialysis: diabetes of the peritoneal cavity [J].J Lab Clin Med, 1999, 134(2): 103-104.
|
[19] |
Su W, Hu Z, Zhong X, et al.Restoration of CPT1A-mediated fatty acid oxidation in mesothelial cells protects against peritoneal fibrosis [J].Theranostics, 2023, 13(13): 4482-4496.
|
[20] |
Büchel J, Bartosova M, Eich G, et al.Interference of peritoneal dialysis fluids with cell cycle mechanisms [J].Perit Dial Int,2015, 35(3): 259-274.
|
[21] |
Zhu N, Tang Y, Yuan W, et al.Role of reactive oxygen species in high concentration glucose-induced growth inhibition of human peritoneal mesothelial cells [J].Ann Transl Med, 2022, 10(19): 1065.
|
[22] |
Zhang J, Chen Y, Chen T, et al.Single-cell transcriptomics provides new insights into the role of fibroblasts during peritoneal fibrosis [J].Clin Transl Med, 2021, 11(3): e321.
|
[23] |
Certo M, Elkafrawy H, Pucino V, et al.Endothelial cell and Tcell crosstalk: targeting metabolism as a therapeutic approach in chronic inflammation [J].Br J Pharmacol, 2021, 178(10):2041-2059.
|
[24] |
Wenzel UO, Bode M, Kurts C, et al.Salt, inflammation, IL-17 and hypertension [J].Br J Pharmacol, 2019, 176(12): 1853-1863.
|
[25] |
Feng YL, Cao G, Chen DQ, et al.Microbiome-metabolomics reveals gut microbiota associated with glycine-conjugated metabolites and polyamine metabolism in chronic kidney disease[J].Cell Mol Life Sci, 2019, 76(24): 4961-4978.
|
[26] |
Chen DQ, Feng YL, Chen L, et al.Poricoic acid a enhances melatonin inhibition of AKI-to-CKD transition by regulating Gas6/AxlNFκB/Nrf2 axis [J].Free Radic Biol Med, 2019,134: 484-497.
|
[27] |
Chen L, Chen DQ, Liu JR, et al.Unilateral ureteral obstruction causes gut microbial dysbiosis and metabolome disorders contributing to tubulointerstitial fibrosis [J].Exp Mol Med,2019, 51(3): 1-18.
|
[28] |
Wang M, Hu HH, Chen YY, et al.Novel poricoic acids attenuate renal fibrosis through regulating redox signalling and aryl hydrocarbon receptor activation et al [J].Phytomedicine,2020, 79: 153323.
|
[29] |
Wang X, Antony V, Wang Y, et al.Pattern recognition receptor-mediated inflammation in diabetic vascular complications[J].Med Res Rev, 2020, 40(6): 2466-2484.
|
[30] |
Sousa LP, Pinho V, Teixeira MM.Harnessing inflammation resolving-based therapeutic agents to treat pulmonary viral infections: what can the future offer to COVID-19? [J].Br J Pharmacol, 2020, 177(17): 3898-3904.
|
[31] |
Cui H, Xie N, Banerjee S, et al.Lung myofibroblasts promote macrophage profibrotic activity through lactate-induced histone lactylation [J].Am J Respir Cell Mol Biol, 2021, 64(1): 115-125.
|
[32] |
De Leo A, Ugolini A, Yu X, et al.Glucose-driven histone lactylation promotes the immunosuppressive activity of monocytederived macrophages in glioblastoma [J].Immunity, 2024, 57(5): 1105-1123.
|
[33] |
Irizarry-Caro RA, McDaniel MM, Overcast GR, et al.TLR signaling adapter BCAP regulates inflammatory to reparatory macrophage transition by promoting histone lactylation [J].Proc Natl Acad Sci USA, 2020, 117(48): 30628-30638.
|