切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2025, Vol. 14 ›› Issue (01) : 34 -43. doi: 10.3877/cma.j.issn.2095-3216.2025.01.006

论著

抑制组蛋白乳酸化修饰减轻高糖腹膜透析液诱导的腹膜炎症
蔡青利1,2, 汪晓月1,2, 陈客宏1,2, 喻芳1,2,()   
  1. 1. 400042 重庆,陆军军医大学大坪医院肾脏内科
    2. 400042 重庆市肾脏疾病精准诊治重点实验室
  • 收稿日期:2024-09-10 出版日期:2025-02-28
  • 通信作者: 喻芳
  • 基金资助:
    重庆市科技创新引导课题-院士专项(2022YSZX-JCX0007CSTB)重庆市自然科学基金重点项目(CSTB2023NSCQ-ZDX0008)国家自然科学基金青年项目(82200838)

Inhibition of histone lactylation attenuated peritoneal in flamm ation induced by high-glucose peritoneal dialysate

Qingli Cai1,2, Xiaoyue Wang1,2, Kehong Chen1,2, Fang Yu1,2,()   

  1. 1. Department of Nephrology, Daping Hospital, Army Military Medical University; Chongqing 400042, China
    2. Chongqing Key Laboratory of Precision Diagnosis and Treatment for Kidney Diseases; Chongqing 400042, China
  • Received:2024-09-10 Published:2025-02-28
  • Corresponding author: Fang Yu
引用本文:

蔡青利, 汪晓月, 陈客宏, 喻芳. 抑制组蛋白乳酸化修饰减轻高糖腹膜透析液诱导的腹膜炎症[J/OL]. 中华肾病研究电子杂志, 2025, 14(01): 34-43.

Qingli Cai, Xiaoyue Wang, Kehong Chen, Fang Yu. Inhibition of histone lactylation attenuated peritoneal in flamm ation induced by high-glucose peritoneal dialysate[J/OL]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2025, 14(01): 34-43.

目的

探讨组蛋白乳酸化修饰对高糖腹膜透析液诱导的腹膜炎症的作用。

方法

选取雄性8 周龄C57BL/6 小鼠32 只,体重 20~25 g,采用4.25%含糖腹透液和甲基乙二醛溶液(MGO)构建腹膜炎症小鼠模型,以乳酸化增强剂鱼藤酮(ROT)和乳酸化抑制剂草氨酸盐(OXA)作为干预因素。 将小鼠随机分成对照组、高糖腹透液组、高糖腹透液+ROT 组和高糖腹透液+OXA 组:对照组不做任何处理;高糖腹透液组、高糖腹透液+ROT 组和高糖腹透液+OXA 组腹腔注射4.25%含糖腹透液(0.1 ml/g)与MGO(50 μg/g),同时高糖腹透液+ROT 组腹腔注射ROT(1 mg/kg),高糖腹透液+OXA组腹腔注射OXA(750 mg/kg),均1 次/d。 2 周后结束实验,留取小鼠壁层腹膜组织,评估腹膜组织厚度,PAS 染色观察腹膜组织病理变化,免疫组化染色评估炎症反应。 细胞实验采用人腹膜间皮细胞系(HPMCs)细胞,分为对照组、高糖组(细胞培养基中加入高糖50%葡萄糖10.8 μl/ml)、高糖+ROT 组(培养基加入高糖和ROT 0.012 mg/m l)、高糖+OXA 组(培养基加入高糖和OXA 0.45 mg/ml)。 刺激48 h 后收集细胞样本,检测各组细胞糖酵解关键酶的mRNA 表达、糖酵解速率和三磷酸腺苷(ATP)浓度。 小鼠腹膜组织和HPMCs 细胞均采用免疫共沉淀法检测组蛋白乳酸化水平,酶联免疫吸附剂试验(ELISA)检测乳酸水平和炎症因子水平,实时荧光定量PCR 检测炎症因子mRNA 表达。

结果

动物实验结果显示,在小鼠腹膜厚度、乳酸水平和组蛋白H3 乳酸化水平方面,以及在腹膜组织炎细胞浸润(巨噬细胞和中性粒细胞)和炎症因子(IL-1β 和IL-6)表达水平方面,高糖腹透液组显著高于对照组、高糖腹透液+ROT 组显著高于高糖腹透液组,而高糖腹透液+OXA 组则低于高糖腹透液组(P 均<0.05)。 细胞实验显示,与对照组相比,高糖组的糖酵解关键酶、糖酵解速率、乳酸、组蛋白H3 乳酸化和炎症因子(IL-1β 和IL-6)水平显著增高,而ATP 产生则显著降低(P 均<0.05)。 进一步研究发现,高糖+ROT 组细胞的炎症因子(IL-1β 和IL-6)mRNA 和蛋白表达显著高于高糖组,而高糖+OXA组细胞的上述炎症因子表达则显著低于高糖组(P 均<0.05)。

结论

高糖腹膜透析液可能通过诱导组蛋白乳酸化修饰加重腹膜炎症反应,促进腹膜纤维化;抑制组蛋白乳酸化修饰,有可能减轻高糖腹膜透析液诱导的炎症反应,为临床防治腹膜纤维化提供了新思路。

Objective

To investigate the role of histone lactylation in peritoneal inflammation induced by high-glucose peritoneal dialysate.

Methods

Thirty-two male C57BL/6 mice, aged 8 weeks and weighing 20-25 grams, were used to develop a peritoneal inflammation model by employing 4.25% glucose peritoneal dialysate and methylglyoxal (MGO) as inflammatory agents, but rotenone (ROT) and oxalate(OXA) as lactylation enhancer and inhibitor, respectively.The mice were divided into four groups: the control group, high-glucose dialysate group, high-glucose dialysate with ROT group (ROT group), and high-glucose dialysate with OXA (OXA group).The control group received no treatment, while the other three groups received daily intraperitoneal injection of 4.25% glucose dialysate (0.1 ml/g) and MGO(50 μg/g).Additionally, the ROT group and OXA group also received 1 mg/kg ROT and 750 mg/kg OXA, respectively.The experimental period lasted for two weeks, after which the parietal peritoneal tissues were collected from the mice for evaluating the thickness of the peritoneal tissue, observing the pathological changes of the peritoneal tissue by PAS staining, and assessing the inflammatory response by immunohistochemical staining.For cell experiments, a cell line of human peritoneal mesothelial cells(HPMCs) was utilized.The cells were also divided into four groups: control culture group, high-glucose culture group, high-glucose culture plus ROT group, and high-glucose culture plus OXA group.Apart from the control culture group, the other three groups were treated with high-glucose of 50% glucose (10.8 μl/ml), high-glucose plus ROT (0.012 mg/ml), and high-glucose plus OXA (0.45 mg/ml), respectively.After 48 hours of treatment, the cell groups were analyzed for mRNA levels of glycolytic enzymes, glycolytic rate, and ATP concentration.Both mice peritoneal tissues and HPMCs underwent immunoprecipitation for detecting histone lactylation, ELISA for detecting lactate and proteins of inflammatory factors, and real-time PCR for detecting mRNAs of inflammatory factors.

Results

Animal experiments showed that the levels of mice peritoneal thickness, lactate level, and histone H3 lactylation level, as well as the infiltration of inflammatory cells (macrophages and neutrophils) in the peritoneal tissues and the expression of inflammatory factors (IL-1β and IL-6), were higher in the high-glucose dialysate group than in the control group, and even higher in the ROT group than in the high-glucose dialysate group, but lower in the OXA group than in the high-glucose dialysate group (all P<0.05).Cell experiments showed that compared with the control culture group, the high-glucose culture group had significantly higher levels of key glycolytic enzymes, glycolytic rate, lactate, histone H3 lactylation, and inflammatory factors (IL-1β and IL-6), but less ATP production (all P <0.05).Further studies found that the levels of the mRNA and protein expressions of the inflammatory factors (IL-1β and IL-6) were significantly higher in the high-glucose culture plus ROT group, but lower in the high-glucose culture plus OXA group, than in the high-glucose culture group (all P<0.05).

Conclusion

High-glucose peritoneal dialysate may promote peritoneal fibrosis by inducing histone lactylation modification and aggravating the peritoneal inflammatory response.Inhibiting the histone lactylation modification may attenuate the inflammatory response induced by high-glucose peritoneal dialysate, providing a new idea for the clinical prevention and treatment of peritoneal fibrosis.

表1 PCR 引物序列
图1 不同组蛋白乳酸化干预条件下各组小鼠腹膜结构变化情况 注:A:PAS 染色检测不同组蛋白乳酸化干预条件下各组小鼠腹膜结构变化(×400);B:不同组蛋白乳酸化干预条件下各组小鼠腹膜厚度的半定量分析;1:对照组;2:高糖腹透液组;3:高糖腹透液+ROT 组;4:高糖腹透液+OXA 组;与对照组相比,aP<0.01;与高糖腹透液组相比,bcP<0.01
图2 高糖腹透液诱导的小鼠腹膜的L-乳酸水平 注:1:对照组;2:高糖腹透液组;与正常对照组比较,aP<0.01
图3 免疫共沉淀检测小鼠腹膜组蛋白H3 的乳酸化水平变化 注:Pan-Kla:乳酸化修饰泛抗体;Input:阳性对照;IgG:阴性对照;H3:组蛋白H3;1:对照组;2:高糖腹透液组;与对照组比较,aP<0.05
图4 免疫组化染色检测不同组蛋白乳酸化干预条件下各组小鼠腹膜炎症细胞浸润及标志物表达 注:MPO:髓过氧化物酶;A:中性粒细胞标志MPO(免疫组化×400);B:巨噬细胞标志CD68(免疫组化×400);C:巨噬细胞标志F4/80(免疫组化×400);D:中性粒细胞标志MPO 阳性表达的半定量分析;E:巨噬细胞标志CD68 阳性表达的半定量分析;F:巨噬细胞标志F4/80 阳性表达的半定量分析;1:对照组;2:高糖腹透液组;3:高糖腹透液+ROT 组;4:高糖腹透液+OXA 组;与对照组比较,aP<0.05;与高糖腹透液组比较,bP<0.05
图5 不同组蛋白乳酸化干预条件下各组小鼠腹膜的炎症因子表达情况 注:A:实时荧光定量PCR 检测不同组蛋白乳酸化干预条件下各组小鼠腹膜组织炎症因子IL-6、IL-1β 相对于内参基因GAPDH 的mRNA 表达变化;B:ELISA 测定不同组蛋白乳酸化干预条件下,各组小鼠腹膜组织炎症因子IL-6、IL-1β 和TNF-α 的表达变化;1:对照组;2:高糖腹透液组;3:高糖腹透液+ROT 组;4:高糖腹透液+OXA 组;与对照组比较,aP<0.05;与高糖腹透液组比较,bP<0.05
图6 高糖刺激下人腹膜间皮细胞的糖酵解水平变化情况 注:HK-1:hexokinase-1, 己糖激酶-1;PFK:phosphofructokinase, 磷酸果糖激酶;PFKFB3:6-磷酸果糖激酶-2/果糖-2,6-二磷酸酶3;PER:proton efflux rate, 质子流出速率;Rot/AA:鱼藤酮和抗霉素A;2-DG:2-脱氧-D-葡萄糖ATP:三磷酸腺苷;A:实时荧光定量PCR 检测糖酵解关键酶相对于内参基因GAPDH 的mRNA 相对表达情况;B:Seahorse XF 糖酵解速率测定;C:测量基础糖酵解速率;D:测量线粒体被抑制后的补偿性糖酵解速率;E:ATP 试剂盒检测高糖刺激下人腹膜间皮细胞系细胞的ATP 水平变化情况;1:对照组;2: 高糖组;与对照组比较,aP<0.05
图7 高糖诱导的人腹膜间皮细胞系的乳酸水平随时间的变化情况 注:1:对照组;2:高糖刺激24 h 组;3:高糖刺激36 h 组;4:高糖刺激48 h 组;与对照组比较,aP<0.01
图8 免疫共沉淀检测人腹膜间皮细胞系细胞的组蛋白H3 的乳酸化水平变化 注:Pan-Kla:乳酸化修饰泛抗体;Input:阳性对照;IgG:阴性对照;H3:组蛋白H3;1:对照组;2:高糖组;与对照组比较,aP<0.05
图9 不同组蛋白乳酸化干预条件下各组人腹膜间皮细胞系(HPMCs)细胞模型的炎症因子表达情况 注:A:实时荧光定量PCR 检测不同组蛋白乳酸化干预条件下,各组HPMCs 细胞模型的细胞上清炎症因子IL-6、IL-1β 相对于内参基因GAPDH 的mRNA 表达变化。 B:ELISA 测定不同组蛋白乳酸化干预条件下,各组HPMCs 细胞模型的细胞上清炎症因子IL-6、IL-1β的表达变化;1:对照组;2:高糖组;3:高糖+ROT 组;4:高糖+OXA 组;与对照组比较,aP<0.05;与高糖组比较,bP<0.05
[1]
Thurlow JS, Joshi M, Yan G, et al.Global epidemiology of endstage kidney disease and disparities in kidney replacement therapy [J].Am J Nephrol, 2021, 52(2): 98-107.
[2]
Kobayashi T, Noguchi T, Saito K, et al.Global epidemiology of end-stage kidney disease and disparities in kidney replacement therapy [J].Contrib Nephrol, 2018, 196: 1-4.
[3]
Zhou Q, Bajo MA, Del Peso G, et al.Preventing peritoneal membrane fibrosis in peritoneal dialysis patients [J].Kidney Int, 2016, 90(3): 515-524.
[4]
李想, 王秀芬, 张涛, 等.腹膜透析的退出原因及其防治策略[J/OL].中华肾病研究电子杂志, 2023, 12(6): 329-333.
[5]
Bao JF, Hao J, Liu J, et al.The abnormal expression level of microRNA in epithelial-mesenchymal transition of peritoneal mesothelial cells induced by high glucose [J].Eur Rev Med Pharmacol Sci, 2015, 19(2): 289-292.
[6]
Si M, Wang Q, Li Y, et al.Inhibition of hyperglycolysis in mesothelial cells prevents peritoneal fibrosis [J].Sci Transl Med, 2019, 11(495): eaav5341.
[7]
Zhang D, Tang Z, Huang H, et al.Metabolic regulation of gene expression by histone lactylation [J].Nature, 2019, 574(7779): 575-580.
[8]
Wang N, Wang W, Wang X, et al.Histone lactylation boosts reparative gene activation post-myocardial infarction [J].Circ Res, 2022, 131(11): 893-908.
[9]
Wu D, Spencer CB, Ortoga L, et al.Histone lactylationregulated METTL3 promotes ferroptosis via m6A-modification on ACSL4 in sepsis-associated lung injury [J].Redox Biol, 2024,74: 103194.
[10]
Trujillo MN,Jennings EQ,Hoffman EA,et al.Lactoylglutathione promotes inflammatory signaling in macrophages through histone lactoylation [J].Mol Metab,2024, 81: 101888.
[11]
Da Silva Santos R, Galdino G.Endogenous systems involved in exercise-induced analgesia [J].J Physiol Pharmacol, 2018, 69(1): 3-13.
[12]
陈客宏.干细胞外泌体防治腹膜透析腹膜纤维化新技术研究[J/OL].中华肾病研究电子杂志, 2023, 12(3): 180.
[13]
Higashi Y, Abe K, Kuzumoto T, et al.Characterization of peritoneal dialysis effluent-derived cells: diagnosis of peritoneal integrity [J].J Artif Organs, 2013, 16(1): 74-82.
[14]
Krediet RT.Acquired decline in ultrafiltration in peritoneal dialysis: the role of glucose [J].J Am Soc Nephrol, 2021, 32(10): 2408-2415.
[15]
Krediet RT, Parikova A.Relative contributions of pseudohypoxia and inflammation to peritoneal alterations with long-term peritoneal dialysis patients [J].Clin J Am Soc Nephrol, 2022,17(8): 1259-1266.
[16]
Shirai Y, Miura K, Ike T, et al.Cumulative dialytic glucose exposure is a risk factor for peritoneal fibrosis and angiogenesis in pediatric patients undergoing peritoneal dialysis using neutral-pH fluids [J].Kidney Int Rep, 2022, 7(11): 2431-2445.
[17]
Zhao H, Zhang HL, Jia L.High glucose dialysate-induced peritoneal fibrosis: pathophysiology, underlying mechanisms and potential therapeutic strategies [J].Biomed Pharmacother,2023, 165: 115246.
[18]
Rosenberg ME.Peritoneal dialysis: diabetes of the peritoneal cavity [J].J Lab Clin Med, 1999, 134(2): 103-104.
[19]
Su W, Hu Z, Zhong X, et al.Restoration of CPT1A-mediated fatty acid oxidation in mesothelial cells protects against peritoneal fibrosis [J].Theranostics, 2023, 13(13): 4482-4496.
[20]
Büchel J, Bartosova M, Eich G, et al.Interference of peritoneal dialysis fluids with cell cycle mechanisms [J].Perit Dial Int,2015, 35(3): 259-274.
[21]
Zhu N, Tang Y, Yuan W, et al.Role of reactive oxygen species in high concentration glucose-induced growth inhibition of human peritoneal mesothelial cells [J].Ann Transl Med, 2022, 10(19): 1065.
[22]
Zhang J, Chen Y, Chen T, et al.Single-cell transcriptomics provides new insights into the role of fibroblasts during peritoneal fibrosis [J].Clin Transl Med, 2021, 11(3): e321.
[23]
Certo M, Elkafrawy H, Pucino V, et al.Endothelial cell and Tcell crosstalk: targeting metabolism as a therapeutic approach in chronic inflammation [J].Br J Pharmacol, 2021, 178(10):2041-2059.
[24]
Wenzel UO, Bode M, Kurts C, et al.Salt, inflammation, IL-17 and hypertension [J].Br J Pharmacol, 2019, 176(12): 1853-1863.
[25]
Feng YL, Cao G, Chen DQ, et al.Microbiome-metabolomics reveals gut microbiota associated with glycine-conjugated metabolites and polyamine metabolism in chronic kidney disease[J].Cell Mol Life Sci, 2019, 76(24): 4961-4978.
[26]
Chen DQ, Feng YL, Chen L, et al.Poricoic acid a enhances melatonin inhibition of AKI-to-CKD transition by regulating Gas6/AxlNFκB/Nrf2 axis [J].Free Radic Biol Med, 2019,134: 484-497.
[27]
Chen L, Chen DQ, Liu JR, et al.Unilateral ureteral obstruction causes gut microbial dysbiosis and metabolome disorders contributing to tubulointerstitial fibrosis [J].Exp Mol Med,2019, 51(3): 1-18.
[28]
Wang M, Hu HH, Chen YY, et al.Novel poricoic acids attenuate renal fibrosis through regulating redox signalling and aryl hydrocarbon receptor activation et al [J].Phytomedicine,2020, 79: 153323.
[29]
Wang X, Antony V, Wang Y, et al.Pattern recognition receptor-mediated inflammation in diabetic vascular complications[J].Med Res Rev, 2020, 40(6): 2466-2484.
[30]
Sousa LP, Pinho V, Teixeira MM.Harnessing inflammation resolving-based therapeutic agents to treat pulmonary viral infections: what can the future offer to COVID-19? [J].Br J Pharmacol, 2020, 177(17): 3898-3904.
[31]
Cui H, Xie N, Banerjee S, et al.Lung myofibroblasts promote macrophage profibrotic activity through lactate-induced histone lactylation [J].Am J Respir Cell Mol Biol, 2021, 64(1): 115-125.
[32]
De Leo A, Ugolini A, Yu X, et al.Glucose-driven histone lactylation promotes the immunosuppressive activity of monocytederived macrophages in glioblastoma [J].Immunity, 2024, 57(5): 1105-1123.
[33]
Irizarry-Caro RA, McDaniel MM, Overcast GR, et al.TLR signaling adapter BCAP regulates inflammatory to reparatory macrophage transition by promoting histone lactylation [J].Proc Natl Acad Sci USA, 2020, 117(48): 30628-30638.
[1] 王强, 俞国庆, 黄雅清, 傅云泉, 陈鑫, 庄永泽. Indoxyl Sulfate诱导腹膜间皮细胞转分化的实验研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2017, 07(03): 152-158.
[2] 蔡青利, 汪晓月, 蔡明玉, 王玲, 喻芳, 陈佳, 陈客宏, 何娅妮. 干细胞外泌体减轻高糖腹膜透析液诱导的腹膜炎症[J/OL]. 中华肾病研究电子杂志, 2021, 10(05): 252-258.
阅读次数
全文


摘要