[1] |
Bou Chebl R, Tamim H, Abou Dagher G, et al. Sepsis in end-stage renal disease patients: are they at an increased risk of mortality? [J]. Ann Med, 2021, 53(1): 1737-1743.
|
[2] |
Wang L, Xu X, Zhang M, et al. Prevalence of chronic kidney disease in China: results from the sixth China chronic disease and risk factor surveillance [J]. JAMA Intern Med, 2023, 183(4): 298-310.
|
[3] |
Lowe KM, Heffner AC, Karvetski CH. Clinical factors and outcomes of dialysis-dependent end-stage renal disease patients with emergency department septic shock [J]. J Emerg Med, 2018, 54(1): 16-24.
|
[4] |
Powe NR, Jaar B, Furth SL, et al. Septicemia in dialysis patients: incidence, risk factors, and prognosis [J]. Kidney Int, 1999, 55(3): 1081-1090.
|
[5] |
Gaieski DF, Edwards JM, Kallan MJ, et al. Benchmarking the incidence and mortality of severe sepsis in the United States [J]. Crit Care Med, 2013, 41(5): 1167-1174.
|
[6] |
Ye Z, An S, Gao Y, et al. The prediction of in-hospital mortality in chronic kidney disease patients with coronary artery disease using machine learning models [J]. Eur J Med Res, 2023, 28(1): 33.
|
[7] |
Inker LA, Eneanya ND, Coresh J, et al. New creatinine- and cystatin C-based equations to estimate GFR without race [J]. N Engl J Med, 2021, 385(19): 1737-1749.
|
[8] |
陈亚磊,卢年芳,刘安琪,等. 慢性充血性心力衰竭患者ICU住院期间预后因素分析:基于MIMIC-Ⅲ数据库的回顾性研究 [J]. 中国循证心血管医学杂志,2023, 15(4): 420-423.
|
[9] |
Abou Dagher G, Harmouche E, Jabbour E, et al. Sepsis in hemodialysis patients [J]. BMC Emerg Med, 2015, 15: 30.
|
[10] |
Wu H, Liao B, Cao T, et al. Diagnostic value of RDW for the prediction of mortality in adult sepsis patients: a systematic review and meta-analysis [J]. Front Immunol, 2022, 13: 997853.
|
[11] |
Zhang L, Huang T, Xu F, et al. Prediction of prognosis in elderly patients with sepsis based on machine learning (random survival forest) [J]. BMC Emerg Med, 2022, 22(1): 26.
|
[12] |
Kim DW, Lee M, Lee KJ, et al. The combined clinical impact of red blood cell distribution width and vascular calcification on cardiovascular events and mortality in patients with end-stage kidney disease [J]. Kidney Res Clin Pract, 2022, 41(3): 351-362.
|
[13] |
Salvagno GL, Sanchis-Gomar F, Picanza A, et al. Red blood cell distribution width: a simple parameter with multiple clinical applications [J]. Crit Rev Clin Lab Sci, 2015, 52(2): 86-105.
|
[14] |
He L, Yang D, Ding Q, et al. Association between lactate and 28-day mortality in elderly patients with sepsis: results from MIMIC-IV database [J]. Infect Dis Ther, 2023, 12(2): 459-472.
|
[15] |
Zhang M, Zhang Q, Yu Y, et al. Effects of early hemodynamics, oxygen metabolism, and lactate dynamics on prognosis of post-cardiac arrest syndrome [J]. Chin Med J (Engl), 2021, 135(3): 344-346.
|
[16] |
Hernandez G, Bellomo R, Bakker J. The ten pitfalls of lactate clearance in sepsis [J]. Intensive Care Med, 2019, 45(1): 82-85.
|
[17] |
Locham S, Naazie I, Canner J, et al. Incidence and risk factors of sepsis in hemodialysis patients in the United States [J]. J Vasc Surg, 2021, 73(3): 1016-1021.e3.
|
[18] |
de Grooth HJ, Geenen IL, Girbes AR, et al. SOFA and mortality endpoints in randomized controlled trials: a systematic review and meta-regression analysis [J]. Crit Care, 2017, 21(1): 38.
|