切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2025, Vol. 14 ›› Issue (05) : 288 -293. doi: 10.3877/cma.j.issn.2095-3216.2025.05.007

综述

利用纳米药物治疗急性肾损伤研究进展
张英杰1,2, 刘彦宏1, 樊玥芸1, 全正扬1, 刘娇娜2, 沈婉君2, 吕强2, 黄梦杰2, 张金凤1,()   
  1. 1100081 北京理工大学生命学院分子医学与生物诊疗工业和信息化部重点实验室、药物递送及纳米医学诊疗实验室
    2100853 北京,解放军总医院第一医学中心肾脏病医学部,肾脏疾病全国重点实验室,国家慢性肾病临床医学研究中心,重症肾脏疾病器械与中西医药物研发北京市重点实验室、数智中医泛血管疾病防治北京市重点实验室、国家中医药管理局高水平中医药重点学科(zyyzdxk-2023310)
  • 收稿日期:2025-07-31 出版日期:2025-10-28
  • 通信作者: 张金凤
  • 基金资助:
    国家自然科学基金(32371442); 北京市自然科学基金(7252289,L222133)

Research progress on the treatment of acute kidney injury with nanomedicine

Yingjie Zhang1,2, Yanhong Liu1, Yueyun Fan1, Zhengyang Quan1, Jiaona Liu2, Wanjun Shen2, Qiang Lü2, Mengjie Huang2, Jinfeng Zhang1,()   

  1. 1Key Laboratory of Molecular Medicine and Biotherapy (Ministry of Industry and Information Technology), Laboratory of Drug Delivery and Nanomedical Therapeutics, School of Life Science of Beijing Institute of Technology, Beijing 100081
    2Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Medical Devices and Integrated Traditional Chinese and Western Drug Development for Severe Kidney Diseases, Beijing Key Laboratory of Digital Intelligent TCM for Prevention and Treatment of Pan-vascular Diseases, Key Disciplines of National Administration of Traditional Chinese Medicine (zyyzdxk-2023310), Beijing 100853; China
  • Received:2025-07-31 Published:2025-10-28
  • Corresponding author: Jinfeng Zhang
引用本文:

张英杰, 刘彦宏, 樊玥芸, 全正扬, 刘娇娜, 沈婉君, 吕强, 黄梦杰, 张金凤. 利用纳米药物治疗急性肾损伤研究进展[J/OL]. 中华肾病研究电子杂志, 2025, 14(05): 288-293.

Yingjie Zhang, Yanhong Liu, Yueyun Fan, Zhengyang Quan, Jiaona Liu, Wanjun Shen, Qiang Lü, Mengjie Huang, Jinfeng Zhang. Research progress on the treatment of acute kidney injury with nanomedicine[J/OL]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2025, 14(05): 288-293.

急性肾损伤(acute kidney injury,AKI)是一种常见的临床并发症,与慢性肾脏病密切相关。纳米药物的独特理化性质,使其具有延长循环时间、增强递送效率、跨越肾小球滤过屏障、以及提升药物的肾脏累积量等优势,为AKI治疗带来了新的契机。本文针对AKI的病理生理过程、制备仿生纳米药物、通过纳米载体表面修饰提高药物靶向性、开发与AKI微环境刺激相应的纳米递送系统、延长纳米药物肾脏潴留时间、以及增强纳米药物协同疗效等方面进行了概述,为开发治疗AKI的有效纳米药物提供依据和新思路。

Acute kidney injury (AKI) is a common clinical complication closely related to chronic kidney disease. The unique physicochemical properties of nanomedicines provide advantages such as prolonging circulation time, enhancing delivery efficiency, bypassing the glomerular filtration barrier, and increasing renal accumulation of drugs, presenting new opportunities for the treatment of AKI. This article provided an overview of the pathophysiological processes of AKI, the preparation of biomimetic nanomedicines, the enhancement of drug targeting through surface modification of nanocarriers, the development of nanocarrier delivery systems responsive to AKI microenvironment stimuli, the prolongation of nanomedicine retention time in the kidney, and the enhancement of synergistic therapeutic effects of nanomedicines, offering a basis and new ideas for the development of effective nanomedicines for the treatment of AKI.

图1 增强纳米药物治疗急性肾损伤疗效的4大策略注:KIM-1:kidney injury molecule-1,肾损伤分子-1;TP:triptolide,雷公藤内酯醇;BIBF:nintedanib,尼达尼布①:策略一:通过构建仿生纳米系统或对纳米载体表面修饰以增强纳米药物靶向性;②:策略二:设计开发响应性纳米递送系统;③:策略3:利用纳米材料自身特性提高其治疗效率;④策略4:纳米药物协同传统药物、物理疗法治疗策略
[1]
Ba X, Ye T, Shang H, et al. Recent advances in nanomaterials for the treatment of acute kidney injury [J]. ACS Appl Mater Interfaces, 2024, 16(10): 12117-12148.
[2]
Hoste EA, Bagshaw SM, Bellomo R, et al. Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study [J]. Intensive Care Med, 2015, 41(8): 1411-1423.
[3]
Sato Y, Takahashi M, Yanagita M. Pathophysiology of AKI to CKD progression [J]. Semin Nephrol, 2020, 40(2), 206-215.
[4]
Qin W, Huang J, Zhang M, et al. Nanotechnology-based drug delivery systems for treating acute kidney injury [J]. ACS Biomater Sci Eng, 2024, 10(10): 6078-6096.
[5]
Roointan A, Xu R, Corrie S, et al. Nanotherapeutics in kidney disease: innovations, challenges, and future directions [J]. J Am Soc Nephrol, 2025, 36(3): 500-518.
[6]
Gholizadeh Z, Aliannezhadi M, Ghominejad M, et al. High specific surface area γ-Al2O3 nanoparticles synthesized by facile and low-cost co-precipitation method [J]. Sci Rep, 2023, 13(1): 6131.
[7]
Tomsa AM, Alexa AL, Junie ML, et al. Oxidative stress as a potential target in acute kidney injury [J]. PeerJ, 2019, 7: e8046.
[8]
Ostermann M, Liu K. Pathophysiology of AKI [J]. Best Pract Res Clin Anaesthesiol, 2017, 31(3): 305-314.
[9]
McCullough PA, Choi JP, Feghali GA, et al. Contrast-induced acute kidney injury [J]. J Am Coll Cardiol, 2016, 68(13): 1465-1473.
[10]
Quan Z, Wang S, Xie H, et al. ROS regulation in CNS disorder therapy: unveiling the dual roles of nanomedicine [J]. Small, 2025, 21(5): e2410031.
[11]
Ostermann M, Lumlertgul N, Jeong R, et al. Acute kidney injury [J]. Lancet, 2025, 405(10474): 241-256.
[12]
Li L, Shen Y, Tang Z, et al. Engineered nanodrug targeting oxidative stress for treatment of acute kidney injury [J]. Exploration (Beijing), 2023, 3(6): 20220148.
[13]
Ahmad A, Dempsey SK, Daneva Z, et al. Role of nitric oxide in the cardiovascular and renal systems [J]. Int J Mol Sci, 2018, 19(9): 2605.
[14]
Zhang X, Liang L, Wang F, et al. Irisin-encapsulated mitochondria-targeted biomimetic nanotherapeutics for alleviating acute kidney injury [J]. Adv Sci (Weinh), 2024, 11(38): e2402805.
[15]
Xiong J, Zhao J. Pyroptosis: the determinator of cell death and fate in acute kidney injury [J]. Kidney Dis (Basel), 2023, 10(2): 118-131.
[16]
Li N, Wang Y, Wang X, et al. Pathway network of pyroptosis and its potential inhibitors in acute kidney injury [J]. Pharmacol Res, 2022, 175: 106033.
[17]
Chen Z, Chen P, Zhu Y, et al. Cobalt oxyhydroxide nanozymes inhibit inflammation by targeting the NLRP3 inflammasome [J]. Adv Funct Mater, 2023, 33: 2370163.
[18]
Qin S, Liu C, Chen Y, et al. Cobaltosic oxide-polyethylene glycol-triphenylphosphine nanoparticles ameliorate the acute-to-chronic kidney disease transition by inducing BNIP3-mediated mitophagy [J]. Kidney Int, 2023, 103(5): 903-916.
[19]
Bai X, Kang J, Wei S, et al. A pH responsive nanocomposite for combination sonodynamic-immunotherapy with ferroptosis and calcium ion overload via SLC7A11/ACSL4/LPCAT3 pathway [J]. Exploration (Beijing), 2025, 5(1): 20240002.
[20]
Yu Y, Zhang L, Zhang D, et al. The role of ferroptosis in acute kidney injury: mechanisms and potential therapeutic targets [J]. Mol Cell Biochem, 2025, 480(2): 759-784.
[21]
Cao Y, Liu X, Guo C, et al. Biomimetic reactive oxygen/nitrogen nanoscavengers inhibit "ferroptosis storm" and modulate immune targeting for acute kidney injury [J]. J Control Release, 2025, 379: 59-76.
[22]
Li Y, Wang G, Wang T, et al. PEGylated gambogic acid nanoparticles enable efficient renal-targeted treatment of acute kidney injury [J]. Nano Lett, 2023, 23(12): 5641-5647.
[23]
Xu M, Qi Y, Liu G, et al. Size-dependent in vivo transport of nanoparticles: implications for delivery, targeting, and clearance [J]. ACS Nano, 2023, 17(21): 20825-20849.
[24]
Song J, Yu J, Prayogo GW, et al. Understanding kidney injury molecule 1: a novel immune factor in kidney pathophysiology [J]. Am J Transl Res, 2019, 11(3): 1219-1229.
[25]
Wajda J, Dumnicka P, Kolber W, et al. The marker of tubular injury, kidney injury molecule-1 (KIM-1), in acute kidney injury complicating acute pancreatitis: a preliminary study [J]. J Clin Med, 2020, 9(5): 1463.
[26]
Yu H. HDL and scavenger receptor class B type I (SRBI) [J]. Adv Exp Med Biol, 2022, 1377: 79-93.
[27]
He S, Li X, He Y, et al. High-density lipoprotein nanoparticles spontaneously target to damaged renal tubules and alleviate renal fibrosis by remodeling the fibrotic niches [J]. Nat Commun, 2025, 16(1): 1061.
[28]
Huang Z, Chun C, Li X. Kidney targeting peptide-modified biomimetic nanoplatforms for treatment of acute kidney injury [J]. J Control Release, 2023, 358: 368-381.
[29]
Sun M, Yang J, Fan Y, et al. Beyond extracellular vesicles: hybrid membrane nanovesicles as emerging advanced tools for biomedical applications [J]. Adv Sci (Weinh), 2023, 10(32): e2303617.
[30]
Li M, Fang F, Sun M, et al. Extracellular vesicles as bioactive nanotherapeutics: an emerging paradigm for regenerative medicine [J]. Theranostics, 2022, 12(11): 4879-4903.
[31]
Sun M, Li M, Hu M, et al. Fully bioactive nanodrugs: stem cell-derived exosomes engineered with biomacromolecules to treat CCl4- and extreme hepatectomy-induced acute liver failure [J]. ACS Nano, 2024, 18(50): 33907-33921.
[32]
Tang TT, Lv LL, Wang B, et al. Employing macrophage-derived microvesicle for kidney-targeted delivery of dexamethasone: an efficient therapeutic strategy against renal inflammation and fibrosis [J]. Theranostics, 2019, 9(16): 4740-4755.
[33]
Chen Q, Ding F, Zhang S, et al. Sequential therapy of acute kidney injury with a DNA nanodevice [J]. Nano Lett, 2021, 21(10): 4394-4402.
[34]
覃宛冰,刘庆华. 利用靶向纳米药物治疗急性肾损伤研究进展[J/OL]. 中华肾病研究电子杂志2025, 14(3): 121-125.
[35]
Wang L, Zhou W, Chen H, et al. Barcoded screening identifies nanocarriers for protein delivery to kidney [J]. Nat Commun, 2025, 16(1): 899.
[36]
Gu XR, Tai YF, Liu Z, et al. Layer-by-layer assembly of renal-targeted polymeric nanoparticles for robust arginase-2 knockdown and contrast-induced acute kidney injury prevention [J]. Adv Healthc Mater, 2024, 13(20): e2304675.
[37]
Huang ZW, Shi Y, Zhai YY, et al. Hyaluronic acid coated bilirubin nanoparticles attenuate ischemia reperfusion-induced acute kidney injury [J]. J Control Release, 2021, 334: 275-289.
[38]
Liu D, Jin F, Shu G, et al. Enhanced efficiency of mitochondria-targeted peptide SS-31 for acute kidney injury by pH-responsive and AKI-kidney targeted nanopolyplexes [J]. Biomaterials, 2019, 211: 57-67.
[39]
Yu H, Jin F, Liu D, et al. ROS-responsive nano-drug delivery system combining mitochondria-targeting ceria nanoparticles with atorvastatin for acute kidney injury [J]. Theranostics, 2020, 10(5): 2342-2357.
[40]
Yang L, Dong S, Gai S, et al. Deep insight of design, mechanism, and cancer theranostic strategy of nanozymes [J]. Nanomicro Lett, 2023, 16(1): 28.
[41]
Lu Y, Cao C, Pan X, et al. Structure design mechanisms and inflammatory disease applications of nanozymes [J]. Nanoscale, 2022, 15(1): 14-40.
[42]
Singh S. Antioxidant nanozymes as next-generation therapeutics to free radical-mediated inflammatory diseases: a comprehensive review [J]. Int J Biol Macromol, 2024, 260(Pt 1): 129374.
[43]
Zhang F, Gao P, Qi M, et al. An artificial peroxynitrite-resistant superoxide dismutase for acute kidney injury alleviation [J]. Small, 2025, 26: e2503033.
[44]
Rezaei B, Yari P, Sanders SM, et al. Magnetic nanoparticles: a review on synthesis, characterization, functionalization, and biomedical applications [J]. Small, 2024, 20(5): e2304848.
[45]
Wu K, Su D, Liu J, et al. Magnetic nanoparticles in nanomedicine: a review of recent advances [J]. Nanotechnology, 2019, 30(50): 502003.
[46]
Wang J, Zha M, Zhao H, et al. Detection of kidney dysfunction through in vivo magnetic resonance imaging with renal-clearable gadolinium nanoprobes [J]. Anal Chem, 2022, 94(9): 4005-4011.
[47]
Zhou T, Dong Y, Wang X, et al. Highly sensitive early diagnosis of kidney damage using renal clearable zwitterion-coated ferrite nanoprobe via magnetic resonance imaging in vivo [J]. Adv Healthc Mater, 2024, 13(12): e2304577.
[48]
Sharma I, Sharaf MG, Pawar A, et al. Hemocompatibility of albumin-modified magnetic nanoparticles [J]. Int J Mol Sci, 2024, 25(22): 11975.
[49]
Liu L, Xu Q, Zhang L, et al. Fe3O4 magnetic nanoparticles ameliorate albumin-induced tubulointerstitial fibrosis by autophagy related to Rab7 [J]. Colloids Surf B Biointerfaces, 2021, 198: 111470.
[50]
Li J, Duan Q, Wei X, et al. Kidney-targeted nanoparticles loaded with the natural antioxidant rosmarinic acid for acute kidney injury treatment [J]. Small, 2022, 18(48): e2204388.
[51]
Lei Y, Wu Y, Zhuang WR, et al. NAD biosynthesis and mitochondrial repair in acute kidney injury via ultrasound-responsive thylakoid-integrating liposomes [J]. Nat Biomed Eng, 2025, 9(10): 1740-1757.
[52]
Ding L, Liang X, Ma J, et al. Sono-triggered biomimetically nanoantibiotics mediate precise sequential therapy of MRSA-induced lung infection [J]. Adv Mater, 2024, 36(46): e2403612.
[53]
Xu Y, Zhang Q, Chen R, et al. NIR-II photoacoustic-active DNA origami nanoantenna for early diagnosis and smart therapy of acute kidney injury [J]. J Am Chem Soc, 2022, 144(51): 23522-23533.
[54]
Zeng F, Nijiati S, Liu Y, et al. Ferroptosis MRI for early detection of anticancer drug-induced acute cardiac/kidney injuries [J]. Sci Adv, 2023, 9(10): eadd8539.
[55]
Sun J, Han Y, Dong J, et al. Melanin/melanin-like nanoparticles: as a naturally active platform for imaging-guided disease therapy [J]. Mater Today Bio, 2023, 23: 100894.
[56]
Zhao X, Sun J, Dong J, et al. An auto-photoacoustic melanin-based drug delivery nano-platform for self-monitoring of acute kidney injury therapy via a triple-collaborative strategy [J]. Acta Biomater, 2022, 147: 327-341.
[57]
Fang F, Wang S, Song Y, et al. Continuous spatiotemporal therapy of a full-API nanodrug via multi-step tandem endogenous biosynthesis [J]. Nat Commun, 2023, 14(1): 1660.
[58]
Zhang C, Zhao D, Fang F, et al. Quintuple free-radical therapy: an ultralong-retention FAND for NIR-involved multiple site-action hypoxic tumor therapy [J]. Adv Funct Mater, 2024, 34(37): 2401840.
[1] 张杰, 何年安, 叶显俊, 刘阳, 张行, 裴蓓. 安徽省腹部超声检查现状分析与质量提升策略[J/OL]. 中华医学超声杂志(电子版), 2025, 22(07): 637-642.
[2] 高加勒, 张忠涛. 结直肠癌外科领域最新进展与热点[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 595-599.
[3] 钱龙, 蔡大明, 王行舟, 艾世超, 胡琼源, 孙锋, 宋鹏, 王峰, 王萌, 陆晓峰, 朱欢欢, 沈晓菲, 管文贤. 局部不可切除胃癌转化治疗(联合免疫治疗)后淋巴结转移的相关危险因素分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 624-627.
[4] 王思竣, 王琼, 李珂雨, 袁新普, 张硕珉, 马睿, 谢天宇, 张朝军. 胃上部癌新辅助化疗联合免疫治疗后实施近端胃切除术的临床疗效分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 637-641.
[5] 林水荣, 宋子敏, 于玺, 李绍强, 华赟鹏, 沈顺利. 术前抗病毒治疗对HBV相关肝癌肝切除术后肝衰竭影响[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 700-706.
[6] 胡铭语, 李敬东, 肖雨竹, 黄杰. 初始不可切除肝癌患者转化治疗序贯手术的临床疗效分析[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 754-760.
[7] 张广权, 洪生杰, 陈显育, 王继才, 翟航, 吴芬芳, 史宪杰. 生物信息学分析内质网应激相关基因在非酒精性脂肪性肝炎发病中的作用[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 761-769.
[8] 杨金通, 付必莽, 马朝宇, 兰楮, 王朝, 李春满. 肝细胞癌伴淋巴结转移一例[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 770-774.
[9] 丁雪吟, 孙居仙, 石洁, 程树群. 肝癌肺转移的放射治疗研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 789-794.
[10] 黄超, 张佳茂, 孔艺洁, 刘玙寒, 苏彤, 方路, 梁博, 郑文娟. 组织病理分型在壶腹周围癌化疗方案制定中作用的文献综述[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 795-801.
[11] 周继升, 李丹, 米琳, 韩江莉. 急性冠脉综合征合并对比剂禁忌患者血管内超声指导零对比剂冠状动脉介入治疗的安全性和有效性[J/OL]. 中华临床医师杂志(电子版), 2025, 19(06): 408-413.
[12] 宁雯琪, 张永利. 脓毒症心肌病的研究进展:基础、临床与展望[J/OL]. 中华临床医师杂志(电子版), 2025, 19(06): 461-466.
[13] 樊子君, 王怡婷, 胡端敏, 任怡琳, 盛颖玥, 刘天浩, 吴铁龙, 戴圆圆, 薛育政. 内镜下胃壁注射A型肉毒毒素减重的研究现状[J/OL]. 中华临床医师杂志(电子版), 2025, 19(06): 467-470.
[14] 侯雨函, 姜福金, 王苏贵. 膀胱癌免疫治疗的研究进展[J/OL]. 中华临床医师杂志(电子版), 2025, 19(06): 471-475.
[15] 慕佳霖, 孙萌, 李育霖, 邹卉. 甲基丙二酸血症合并肾脏并发症的发生机制和治疗研究进展[J/OL]. 中华临床医师杂志(电子版), 2025, 19(05): 382-387.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?