切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2025, Vol. 14 ›› Issue (05) : 276 -287. doi: 10.3877/cma.j.issn.2095-3216.2025.05.006

综述

线粒体稳态在慢性肾脏病发病机制中的作用研究进展
李鑫睿, 江明珠, 时萍, 牟洪宾()   
  1. 225001 扬州,江苏省苏北人民医院肾脏内科
  • 收稿日期:2025-01-14 出版日期:2025-10-28
  • 通信作者: 牟洪宾
  • 基金资助:
    国家自然科学基金(82200816)

Progress in the study of the role of mitochondrial homeostasis in the pathogenesis of chronic kidney disease

Xinrui Li, Mingzhu Jiang, Ping Shi, Hongbin Mou()   

  1. Department of Nephrology, Northern Jiangsu People′s Hospital, Yangzhou 225001, Jiangsu Province, China
  • Received:2025-01-14 Published:2025-10-28
  • Corresponding author: Hongbin Mou
引用本文:

李鑫睿, 江明珠, 时萍, 牟洪宾. 线粒体稳态在慢性肾脏病发病机制中的作用研究进展[J/OL]. 中华肾病研究电子杂志, 2025, 14(05): 276-287.

Xinrui Li, Mingzhu Jiang, Ping Shi, Hongbin Mou. Progress in the study of the role of mitochondrial homeostasis in the pathogenesis of chronic kidney disease[J/OL]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2025, 14(05): 276-287.

线粒体稳态对维持肾脏正常功能至关重要。本文对线粒体生物发生、生物能学、动力学和自噬等线粒体稳态调节因素在慢性肾脏病发病机制中的作用研究进展进行综述,并探讨通过恢复线粒体稳态治疗慢性肾脏病的药物开发现状及其前景。

Mitochondrial homeostasis is crucial for maintaining normal kidney function. This article reviewed the research progress on the role of mitochondrial biogenesis, bioenergetics, kinetics, autophagy, and other mitochondrial homeostasis regulatory factors in the pathogenesis of chronic kidney disease, and elaborated on the current status and prospects of drug development for treating chronic kidney disease by restoring mitochondrial homeostasis.

图1 线粒体生物发生注:Ac:乙酰化;AMPK:adenosine monophosphate activated protein kinase,单磷酸腺苷激活的蛋白激酶;mitochondrion:线粒体;mtDNA:mitochondrial deoxyribonucleic acid,线粒体脱氧核糖核酸;NRF1/2:nuclear respiratory factors 1 and 2,核呼吸因子1/2;nucleus:细胞核;P:磷酸化;PGC-1α:PPARγ coactivator 1α,PPARγ共激活因子1α;PPARγ:peroxisome proliferator-activated receptor γ,过氧化物酶体增殖物激活受体γ;replication:复制;SIRT1:silent information regulator 1,沉默信息调节因子1;TFAM:mitochondrial transcription factor A,线粒体转录因子A;transcription:转录
表1 调节线粒体生物合成以治疗慢性肾脏病的药物
药物名称 成分/机制 慢性肾脏病模型 肾脏疗效 反映线粒体生物合成的指标 参考文献
APX115 Nox抑制剂 STZ诱导DKD小鼠 1.减少蛋白尿
2.改善肾小球肥大、肾小管和足细胞损伤以及肾纤维化
3.减少肾脏脂质沉积、炎症、氧化应激
1. PGC-1α
2. NRF1、TFAM
[9]
葡萄籽原花青素提取物 多酚 STZ诱导DKD大鼠 1.改善系膜扩张、改善足突融合和基底膜增厚
2.减轻凋亡
SIRT1、PGC-1α、NRF1、TFAM [10]
荔枝多酚 多酚 db/db小鼠(DKD) 改善系膜扩张、肾小球肥大 1. SIRT1、PGC-1α、NRF1、TFAM
2.呼吸链复合物亚基表达量
[11]
红景天苷 2-(4-羟基苯基)乙基β-D-吡喃葡萄糖苷 STZ诱导DKD小鼠 1.减少白蛋白尿;降低血清肌酐、血尿素氮
2.改善肾小球肥大、足突融合以及肾纤维化;减少纤维化蛋白表达(Col-Ⅰ、FN、α-SMA)
1. SIRT1、PGC-1α
2.呼吸链复合物亚基表达量
3. mtDNA含量
[12]
脂联素 血浆激素蛋白 STZ诱导DKD大鼠+高糖刺激NRK-52E细胞 1.减少蛋白尿;降低血清肌酐、血尿素氮
2.改善系膜扩张、基底膜增厚
1. PGC-1α、TFAM
2.呼吸链复合物亚基表达量
3. mtDNA含量
[13]
萝卜硫素 异硫氰酸酯 UUO大鼠 减缓小管损伤、坏死;减少纤维化蛋白表达(α-SMA) 1.呼吸链复合物亚基表达量
2.线粒体数量的标志物VDAC和ANT密度分析
[14]
蒿甲醚   阿霉素肾病小鼠 1.降低尿蛋白/肌酐比
2.改善肾小管损伤、肾小管表型转变
NRF1、TFAM [15]
绿茶多酚 有效活性成分包括表没食子儿茶素没食子酸酯(占比47.2%)等 环孢素肾病大鼠 1.降低血清肌酐
2.改善肾小管损伤、肾纤维化
1. PGC-1 α、TFAM
2.呼吸链复合物亚基表达量
3. mtDNA含量
[16]
水飞蓟素 至少6种主要的同分异构体黄酮类化合物和少量黄酮类化合物 高脂喂养小鼠+HK细胞(棕榈酸刺激) 1.改善肾小球系膜扩张、胶原沉积
2.减少肾脏脂质沉积和活性氧自由基生成
1. PGC-1α、NRF2、TFAM
2.线粒体DNA含量
[17]
一系列异黄酮 大豆黄酮和刺芒柄花素诱导肾小管上皮细胞中SIRT1的表达增加,并激活重组SIRT1;而3-(2,4-二氯苯)-7-羟色酮和7-羟色酮仅诱导重组SIRT1激活;相反,染料木素、鹰嘴豆芽素、4,7-二甲氧基异黄酮和5,7,4-三甲氧基异黄酮仅增加肾小管上皮细胞中SIRT1的表达 1.提高PGC-1α的表达
2. ATP合酶β和泛醌氧化还原酶核心亚基6的表达增加
3.肾小管上皮细胞中基础呼吸增加至1.5倍和ATP合成量增加至1.9倍
[18]
图2 线粒体生物能学注:ADP:adenosine diphosphate,二磷酸腺苷;ATP:adenosine triphosphate,三磷酸腺苷;ATP Synthase:三磷酸腺苷合酶;C:cytochrome C,细胞色素C;e-:电子;FAD:flavin adenine dinucleotide,黄素腺嘌呤二核苷酸;FADH2:reduced flavine adenine dinucleotide,还原型黄素腺嘌呤二核苷酸;FFA:free fatty acid,游离脂肪酸;Glu:glucose,葡萄糖;H+:氢离子;H2O:水;Ⅰ:complex Ⅰ,(呼吸链)复合物Ⅰ;Ⅱ:complex Ⅱ,(呼吸链)复合物Ⅱ;Ⅲ:complex Ⅲ,(呼吸链)复合物Ⅲ;IMM:inner mitochondrial membrane,线粒体内膜;Ⅳ:complex Ⅳ,(呼吸链)复合物Ⅳ;Matrix:基质;NAD+:nicotinamide adenine dinucleotide,烟酰胺腺嘌呤二核苷酸;NADH:reduced nicotinamide adenine dinucleotide,还原型烟酰胺腺嘌呤二核苷酸;O2:氧气;OMM:outer mitochondrial membrane,线粒体外膜;Q:coenzyme Q,辅酶Q;TCA:tricarboxylic acid,三羧酸(循环)
表2 调节线粒体生物能学以治疗慢性肾脏病的药物
图3 线粒体动力学注:cardiolipin:心磷脂;Drp1:dynamin-related protein 1,动力蛋白相关蛋白1;Fis1:mitochondrial fission protein 1,线粒体分裂蛋白;IMM:inner mitochondrial membrane,线粒体内膜;MFF:mitochondrial fission factor,线粒体分裂因子;MFN:mitofusin,线粒体融合蛋白;MiD49/51:mitochondrial dynamics proteins of 49/51 kDa,线粒体动力学蛋白49/51;OMM:outer mitochondrial membrane,线粒体外膜;OPA1:optic atrophy 1,视神经萎缩蛋白1
表3 调节线粒体动力学以治疗慢性肾脏病的药物
药物名称 成分/机制 慢性肾脏病模型 肾脏疗效 反映线粒体动力学的指标 参考文献
SS31 线粒体靶向抗氧化剂 STZ诱导DKD小鼠+高糖刺激HK-2细胞 1.减少蛋白尿
2.改善系膜扩张、肾小球损伤、小管间质纤维化
1. Drp1
2. Mfn1
3.线粒体形态
[41]
乙酰半胱氨酸 抗氧化剂 STZ诱导DKD比格犬 1.减少白蛋白尿
2.改善肾小球与肾小管损伤以及纤维化
1. Mfn2
2. Drp1、MFF
3. OPA1、Mfn1、Fis1
[42]
鳄鱼油 脂肪酸 自发糖尿病大鼠 1.升高血清肌酐、血尿素氮、蛋白尿
2.加重系膜扩张,间质炎症
1. Mfn2、p-Drp1
2.线粒体形态
[43]
利莫那班 大麻素受体1拮抗剂 慢性间歇性缺氧大鼠 减轻小管损伤 1. Fis1、Mfn1
2.线粒体形态
[44]
肾衰二号   5/6肾切除大鼠+低氧刺激NRK-52E细胞 减少纤维化蛋白表达(FN、Col-Ⅰ、结缔组织生长因子、α-SMA) p-Drp1、Mfn1、Mfn2 [45]
淫羊藿甙   5/6肾切除大鼠+TGF-β刺激NRK-52E细胞 减少纤维化蛋白表达(Col-Ⅰ、Col-Ⅲ、α-SMA) 1. p-Drp1、Mfn1、Mfn2
2.线粒体形态
[46]
健脾益肾方   腺嘌呤喂养大鼠 1.降低血清肌酐、血尿素氮
2.改善小管损伤、肾纤维化;减少纤维化蛋白表达(FN、Col-Ⅳ)
1. Drp1、OPA1
2.线粒体形态
[47]
黄芪丹参汤   腺嘌呤喂养大鼠 1.降低血清肌酐、血尿素氮
2.改善小管损伤、肾纤维化;减少纤维化蛋白表达(FN、Col Ⅳ、α-SMA)
Drp1、Mid51、Mid49、Mfn2、OPA1 [48,49]
JQ1 BET蛋白抑制剂 UUO小鼠+ TGF-β1刺激HK2细胞   Drp1、OPA1 [50]
图4 线粒体自噬注:autolysosome:自噬溶酶体;autophagosome:自噬体;BNIP3:BCL2/adenovirus E1B 19kDa interacting protein 3,BCL2/腺病毒E1B19kDa相互作用蛋白3;cardiolipin:心磷脂;damaged stimuli:损伤信号;lysosome:溶酶体;NIX:Nip3-like protein X,Nip3样蛋白X;PHB2: prohibitin 2,阻抑素2;Phosphorylation:磷酸化;Receptor pathway:受体途径;Recruiment:招募;Ub:ubiquitylation,泛素化;VDAC1:voltage-dependent anion channel-1,电压依赖阴离子通道1
表4 调节线粒体自噬以治疗慢性肾脏病的药物
药物名称 成分/机制 慢性肾脏病模型 肾脏疗效 反映线粒体自噬的指标 参考文献
二甲双胍 AMPK激动剂 高脂喂养+STZ诱导小鼠;高糖刺激HK-2细胞 1.降低血清肌酐、血尿素氮
2.系膜扩张、基底膜增厚、改善足突融合;减少纤维化蛋白表达(Col-Ⅰ、FN)
1. PINK1、Parkin、LC3Ⅰ、LC3Ⅱ
2.电镜下观察线粒体自噬体
3.免疫荧光
[63]
恩格列净 SGLT2抑制剂 5/6肾切除大鼠 1.减少白蛋白尿;降低血清肌酐、血尿素氮
2.改善肾小球、肾小管损伤以及小管间质纤维化
单细胞测序分析 [64]
清热消癥益气方 HPLC分析27种成分 STZ诱导大鼠+高糖刺激足细胞 改善肾小球肥大、小管间质纤维化、足突融合、基底膜增厚;减少纤维化蛋白表达(Col-Ⅳ、TGF-β1) 1. PINK1、Parkin、LC3Ⅰ、LC3Ⅱ
2.电镜下观察线粒体自噬体
3.免疫荧光
[65]
UMI-77 Mcl-1抑制剂 UUO小鼠+ TGF-β1刺激HK2细胞 改善肾纤维化;减少纤维化蛋白表达(FN、α-SMA) 1. PINK1、Parkin
2.电镜下观察线粒体自噬体
[66]
通络益肾汤 HPLC分析37种成分 UUO大鼠 改善肾小管损伤、纤维化;减少纤维化蛋白表达(α-SMA、TGF-β1) PINK1、Parkin [67]
槲皮素 黄酮类 UUO大鼠+ AngⅡ刺激NRK-52E细胞 1.延缓肾小管细胞衰老
2.降低血清肌酐、血尿素氮
3.改善肾小管损伤、纤维化;减少纤维化蛋白表达(Col-Ⅰ、α-SMA、TGF-β1)
1. PINK1、Parkin、BNIP3
2.免疫荧光
[68]
真武汤 HPLC分析6种成分 阳离子化牛血清白蛋白诱导慢性肾小球肾炎大鼠+ TNF-α刺激小鼠足细胞 1.降低血清肌酐、血尿素氮
2.改善系膜扩张、足突融合以及基底膜增厚
1、LC3Ⅰ、LC3Ⅱ
2、电镜下观察线粒体自噬体
3、免疫荧光(LC3、呼吸链复合物Ⅳ)
[69]
mitoTEMPO 线粒体靶向抗氧化剂 阳离子化牛血清白蛋白诱导慢性肾小球肾炎大鼠+TNF-α刺激人足细胞 1.减少蛋白尿;降低血清肌酐、血尿素氮
2.改善系膜扩张、足突融合以及基底膜增厚
1. LC3Ⅰ、LC3Ⅱ(WB)
2.免疫荧光(LC3、呼吸链复合物Ⅳ)
[70]
尿石素A 鞣花单宁代谢产物 果糖诱导高尿酸小鼠+尿酸刺激HK2细胞 1.降低血清肌酐、血尿素氮
2.改善肾小球、肾小管损伤以及肾纤维化
1. PINK1、Parkin、LC3Ⅰ、LC3Ⅱ(WB)
2.电镜下观察线粒体自噬体
3.免疫荧光
[71]
褪黑素 胺类 腺嘌呤诱导小鼠+p-Cresol刺激TH1细胞 改善肾纤维化 1. PINK1
2.电镜下观察线粒体自噬体
3.免疫荧光
[72]
杜鹃素 黄酮类 顺铂诱导(38 d)小鼠 1.降低血清肌酐、血尿素氮
2.缓解肾纤维化;减少纤维化蛋白表达(Col-Ⅰ、α-SMA、TGF-β1)
1. PINK1、Parkin、LC3
2.电镜下观察线粒体自噬体
[73]
和厚朴酚 多酚类 腺嘌呤诱导大鼠 1.降低血清肌酐、血尿素氮
2.改善小管间质纤维化;减少纤维化蛋白表达(Col-Ⅳ、α-SMA)
BNIP3、NIX [74]
[1]
Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2024 clinical practice guideline for the evaluation and management of chronic kidney disease [J]. Kidney Int, 2024, 105(4S): S117-S314.
[2]
Popov LD. Mitochondrial biogenesis: an update [J]. J Cell Mol Med, 2020, 24(9): 4892-4899.
[3]
Sharma K, Karl B, Mathew AV, et al. Metabolomics reveals signature of mitochondrial dysfunction in diabetic kidney disease [J]. J Am Soc Nephrol, 2013, 24(11): 1901-1912.
[4]
Li SY, Park J, Qiu C, et al. Increasing the level of peroxisome proliferator-activated receptor γ coactivator-1α in podocytes results in collapsing glomerulopathy [J]. JCI Insight, 2017, 2(14): e92930.
[5]
Han SH, Wu MY, Nam BY, et al. PGC-1α protects from notch-induced kidney fibrosis development [J]. J Am Soc Nephrol, 2017, 28(11): 3312-3322.
[6]
Hsieh PF, Liu SF, Hung TJ, et al. Elucidation of the therapeutic role of mitochondrial biogenesis transducers NRF-1 in the regulation of renal fibrosis [J]. Exp Cell Res, 2016, 349(1): 23-31.
[7]
Wang JL, Chen CW, Tsai MR, et al. Antifibrotic role of PGC-1α-siRNA against TGF-β1-induced renal interstitial fibrosis [J]. Exp Cell Res, 2018, 370(1): 160-167.
[8]
Chung KW, Dhillon P, Huang S, et al. Mitochondrial damage and activation of the STING pathway lead to renal inflammation and fibrosis [J]. Cell Metab, 2019, 30(4): 784-799.e5.
[9]
Kwon G, Uddin MJ, Lee G, et al. A novel pan-Nox inhibitor, APX-115, protects kidney injury in streptozotocin-induced diabetic mice: possible role of peroxisomal and mitochondrial biogenesis [J]. Oncotarget, 2017, 8(43): 74217-74232.
[10]
Song Y, Yu H, Sun Q, et al. Grape seed proanthocyanidin extract targets p66Shc to regulate mitochondrial biogenesis and dynamics in diabetic kidney disease [J]. Front Pharmacol, 2022, 13: 1035755.
[11]
Liu HW, Wei CC, Chang SJ. Low-molecular-weight polyphenols protect kidney damage through suppressing NF-κB and modulating mitochondrial biogenesis in diabetic db/db mice [J]. Food Funct, 2016, 7(4): 1941-1949.
[12]
Xue H, Li P, Luo Y, et al. Salidroside stimulates the Sirt1/PGC-1α axis and ameliorates diabetic nephropathy in mice [J]. Phytomedicine, 2019, 54: 240-247.
[13]
Chen Y, Yang Y, Liu Z, et al. Adiponectin promotes repair of renal tubular epithelial cells by regulating mitochondrial biogenesis and function [J]. Metabolism, 2022, 128: 154959.
[14]
Aranda-Rivera AK, Cruz-Gregorio A, Aparicio-Trejo OE, et al. Sulforaphane protects against unilateral ureteral obstruction-induced renal damage in rats by alleviating mitochondrial and lipid metabolism impairment [J]. Antioxidants (Basel), 2022, 11(10): 1854.
[15]
Cheng X, Zhou P, Weng W, et al. Artemether attenuates renal tubular injury by targeting mitochondria in adriamycin nephropathy mice [J]. Am J Transl Res, 2022, 14(3): 2002-2012.
[16]
Rehman H, Krishnasamy Y, Haque K, et al. Green tea polyphenols stimulate mitochondrial biogenesis and improve renal function after chronic cyclosporin a treatment in rats [J]. PLoS One, 2014, 8(6): e65029.
[17]
Bin F, Meng R, Bin H, et al. Silymarin protects against renal injury through normalization of lipid metabolism and mitochondrial biogenesis in high fat-fed mice [J]. Free Radic Biol Med, 2017, 110: 240-249.
[18]
Rasbach KA, Schnellmann RG. Isoflavones promote mitochondrial biogenesis [J]. J Pharmacol Exp Ther, 2008, 325(2): 536-543.
[19]
Vercellino I, Sazanov LA. The assembly, regulation and function of the mitochondrial respiratory chain [J]. Nat Rev Mol Cell Biol, 2022, 23(2): 141-161.
[20]
Ho HJ, Shirakawa H. Oxidative stress and mitochondrial dysfunction in chronic kidney disease [J]. Cells, 2022, 12(1): 88.
[21]
Jiménez-Uribe AP, Bellido B, Aparicio-Trejo OE, et al. Temporal characterization of mitochondrial impairment in the unilateral ureteral obstruction model in rats [J]. Free Radic Biol Med, 2021, 172: 358-371.
[22]
Ruggiero C, Ehrenshaft M, Cleland E, et al. High-fat diet induces an initial adaptation of mitochondrial bioenergetics in the kidney despite evident oxidative stress and mitochondrial ROS production [J]. Am J Physiol Endocrinol Metab, 2011, 300(6): E1047-E1058.
[23]
Bai M, Chen H, Ding D, et al. MicroRNA-214 promotes chronic kidney disease by disrupting mitochondrial oxidative phosphorylation [J]. Kidney Int, 2019, 95(6): 1389-1404.
[24]
Zhao J, Lupino K, Wilkins BJ, et al. Genomic integration of ERRγ-HNF1β regulates renal bioenergetics and prevents chronic kidney disease [J]. Proc Natl Acad Sci USA, 2018, 115(21): E4910-E4919.
[25]
Miguel V, Ramos R, García-Bermejo L, et al. The program of renal fibrogenesis is controlled by microRNAs regulating oxidative metabolism [J]. Redox Biol, 2021, 40: 101851.
[26]
Heidari R, Mandegani L, Ghanbarinejad V, et al. Mitochondrial dysfunction as a mechanism involved in the pathogenesis of cirrhosis-associated cholemic nephropathy [J]. Biomed Pharmacother, 2019, 109: 271-280.
[27]
Wang M, Zeng F, Ning F, et al. Ceria nanoparticles ameliorate renal fibrosis by modulating the balance between oxidative phosphorylation and aerobic glycolysis [J]. J Nanobiotechnology, 2022, 20(1): 3.
[28]
Yu JH, Lim SW, Luo K, et al. Coenzyme Q10 alleviates tacrolimus-induced mitochondrial dysfunction in kidney [J]. FASEB J, 2019, 33(11): 12288-12298.
[29]
Hoel A, Osman T, Hoel F, et al. Axl-inhibitor bemcentinib alleviates mitochondrial dysfunction in the unilateral ureter obstruction murine model [J]. J Cell Mol Med, 2021, 25(15): 7407-7417.
[30]
Liao X, Lv X, Zhang Y, et al. Fluorofenidone inhibits UUO/IRI-induced renal fibrosis by reducing mitochondrial damage [J]. Oxid Med Cell Longev, 2022, 2022: 2453617.
[31]
Li X, Ma L, Fu P. The mitochondrion-targeted antioxidants in kidney disease [J]. Curr Med Chem, 2021, 28(21): 4190-4206.
[32]
Chen W, Zhao H, Li Y. Mitochondrial dynamics in health and disease: mechanisms and potential targets [J]. Signal Transduct Target Ther, 2023, 8(1): 333.
[33]
Liu BH, Xu CZ, Liu Y, et al. Mitochondrial quality control in human health and disease [J]. Mil Med Res, 2024, 11(1): 32.
[34]
Ayanga BA, Badal SS, Wang Y, et al. Dynamin-related protein 1 deficiency improves mitochondrial fitness and protects against progression of piabetic nephropathy [J]. J Am Soc Nephrol, 2016, 27(9): 2733-2747.
[35]
Galvan DL, Long J, Green N, et al. Drp1S600 phosphorylation regulates mitochondrial fission and progression of nephropathy in diabetic mice [J]. J Clin Invest, 2019, 129(7): 2807-2823.
[36]
Qin X, Zhao Y, Gong J, et al. Berberine protects glomerular podocytes via inhibiting Drp1-mediated mitochondrial fission and dysfunction [J]. Theranostics, 2019, 9(6): 1698-1713.
[37]
Wang Y, Lu M, Xiong L, et al. Drp1-mediated mitochondrial fission promotes renal fibroblast activation and fibrogenesis [J]. Cell Death Dis, 2020, 11(1): 29.
[38]
Bhatia D, Capili A, Nakahira K, et al. Conditional deletion of myeloid-specific mitofusin 2 but not mitofusin 1 promotes kidney fibrosis [J]. Kidney Int, 2022, 101(5): 963-986.
[39]
Sun CY, Cheng ML, Pan HC, et al. Protein-bound uremic toxins impaired mitochondrial dynamics and functions [J]. Oncotarget, 2017, 8(44): 77722-77733.
[40]
Huang M, Wei R, Wang Y, et al. The uremic toxin hippurate promotes endothelial dysfunction via the activation of Drp1-mediated mitochondrial fission [J]. Redox Biol, 2018, 16: 303-313.
[41]
Yang SK, Li AM, Han YC, et al. Mitochondria-targeted peptide SS31 attenuates renal tubulointerstitial injury via inhibiting mitochondrial fission in diabetic mice [J]. Oxid Med Cell Longev, 2019, 2019: 2346580.
[42]
Ma F, Li H, Huo H, et al. N-acetyl-L-cysteine alleviates FUNDC1-mediated mitophagy by regulating mitochondrial dynamics in type 1 diabetic nephropathy canine [J]. Life Sci, 2023, 313: 121278.
[43]
Wai Linn T, Kobroob A, Ngernjan M, et al. Crocodile oil disrupts mitochondrial homeostasis and exacerbates diabetic kidney injury in spontaneously diabetic torii rats [J]. Biomolecules, 2022, 12(8): 1068.
[44]
Zhao L, Liu T, Dou ZJ, et al. CB1 receptor antagonist rimonabant protects against chronic intermittent hypoxia-induced renal injury in rats [J]. BMC Nephrol, 2021, 22(1): 153.
[45]
Wang L, Feng X, Ye C, et al. Shen Shuai II Recipe inhibits hypoxia-induced glycolysis by preserving mitochondrial dynamics to attenuate kidney fibrosis [J]. J Ethnopharmacol, 2023, 308: 116271.
[46]
王蒙,王凌晨,冯晓轩,等. 淫羊藿苷调控线粒体动力学改善慢性肾衰竭模型大鼠肾间质纤维化[J]. 中国中药杂志2022, 47(8): 2170-2177.
[47]
Liu X, Deng R, Wei X, et al. Jian-Pi-Yi-Shen formula enhances perindopril inhibition of chronic kidney disease progression by activation of SIRT3, modulation of mitochondrial dynamics, and antioxidant effects [J]. Biosci Rep, 2021, 41(10): BSR20211598.
[48]
Liu X, Huang S, Wang F, et al. Huangqi-Danshen decoction ameliorates adenine-induced chronic kidney disease by modulating mitochondrial dynamics [J]. Evid Based Complement Alternat Med, 2019, 2019: 9574045.
[49]
Wei X, Wang Y, Weng J, et al. Combination of perindopril erbumine and huangqi-danshen decoction protects against chronic kidney disease via sirtuin3/mitochondrial dynamics pathway [J]. Evid Based Complement Alternat Med, 2022, 2022: 5812105.
[50]
Rayego-Mateos S, Basantes P, Morgado-Pascual JL, et al. BET protein inhibitor JQ1 modulates mitochondrial dysfunction and oxidative stress induced by chronic kidney disease [J]. Antioxidants (Basel), 2023, 12(5): 1130.
[51]
Belousov DM, Mikhaylenko EV, Somasundaram SG, et al. The dawn of mitophagy: what do we know by now? [J]. Curr Neuropharmacol, 2021, 19(2): 170-192.
[52]
Zhan M, Usman IM, Sun L, et al. Disruption of renal tubular mitochondrial quality control by Myo-inositol oxygenase in diabetic kidney disease [J]. J Am Soc Nephrol, 2015, 26(6): 1304-1321.
[53]
Wang X, Song M, Li X, et al. CERS6-derived ceramides aggravate kidney fibrosis by inhibiting PINK1-mediated mitophagy in diabetic kidney disease [J]. Am J Physiol Cell Physiol, 2023, 325(2): C538-C549.
[54]
Chen K, Dai H, Yuan J, et al. Optineurin-mediated mitophagy protects renal tubular epithelial cells against accelerated senescence in diabetic nephropathy [J]. Cell Death Dis, 2018, 9(2): 105.
[55]
Chen K, Feng L, Hu W, et al. Optineurin inhibits NLRP3 inflammasome activation by enhancing mitophagy of renal tubular cells in diabetic nephropathy [J]. FASEB J, 2019, 33(3): 4571-4585.
[56]
Liu L, Bai F, Song H, et al. Upregulation of TIPE1 in tubular epithelial cell aggravates diabetic nephropathy by disrupting PHB2 mediated mitophagy [J]. Redox Biol, 2022, 50: 102260.
[57]
Li W, Du M, Wang Q, et al. FoxO1 promotes mitophagy in the podocytes of diabetic male mice via the PINK1/parkin pathway [J]. Endocrinology, 2017, 158(7): 2155-2167.
[58]
Tan J, Xie Q, Song S, et al. Albumin overload and PINK1/parkin signaling-related mitophagy in renal tubular epithelial cells [J]. Med Sci Monit, 2018, 24: 1258-1267.
[59]
Duan P, Tan J, Miao Y, et al. PINK1/parkin-mediated mitophagy plays a protective role in albumin overload-induced renal tubular cell injury [J]. Front Biosci (Landmark Ed), 2022, 27(6): 184.
[60]
Li J, Lin Q, Shao X, et al. HIF1α-BNIP3-mediated mitophagy protects against renal fibrosis by decreasing ROS and inhibiting activation of the NLRP3 inflammasome [J]. Cell Death Dis, 2023, 14(3): 200.
[61]
Li S, Lin Q, Shao X, et al. Drp1-regulated PARK2-dependent mitophagy protects against renal fibrosis in unilateral ureteral obstruction [J]. Free Radic Biol Med, 2020, 152: 632-649.
[62]
Bhatia D, Chung KP, Nakahira K, et al. Mitophagy-dependent macrophage reprogramming protects against kidney fibrosis [J]. JCI Insight, 2019, 4(23): e132826.
[63]
Han YC, Tang SQ, Liu YT, et al. AMPK agonist alleviate renal tubulointerstitial fibrosis via activating mitophagy in high fat and streptozotocin induced diabetic mice [J]. Cell Death Dis, 2021, 12(10): 925.
[64]
Lu YP, Wu HW, Zhu T, et al. Empagliflozin reduces kidney fibrosis and improves kidney function by alternative macrophage activation in rats with 5/6-nephrectomy [J]. Biomed Pharmacother, 2022, 156: 113947.
[65]
Wu Q, Yan R, Yang H, et al. Qing-Re-Xiao-Zheng-Yi-Qi formula relieves kidney damage and activates mitophagy in diabetic kidney disease [J]. Front Pharmacol, 2022, 13: 992597.
[66]
Jin L, Yu B, Liu G, et al. Mitophagy induced by UMI-77 preserves mitochondrial fitness in renal tubular epithelial cells and alleviates renal fibrosis [J]. FASEB J, 2022, 36(6): e22342.
[67]
Jia Q, Han L, Zhang X, et al. Tongluo Yishen Decoction ameliorates renal fibrosis via regulating mitochondrial dysfunction induced by oxidative stress in unilateral ureteral obstruction rats [J]. Front Pharmacol, 2021, 12: 762756.
[68]
Liu T, Yang Q, Zhang X, et al. Quercetin alleviates kidney fibrosis by reducing renal tubular epithelial cell senescence through the SIRT1/PINK1/mitophagy axis [J]. Life Sci, 2020, 257: 118116.
[69]
Liu B, Cao Y, Wang D, et al. Zhen-Wu-Tang induced mitophagy to protect mitochondrial function in chronic glomerulonephritis via PI3K/AKT/mTOR and AMPK pathways [J]. Front Pharmacol, 2021, 12: 777670.
[70]
Liu B, Wang D, Cao Y, et al. MitoTEMPO protects against podocyte injury by inhibiting NLRP3 inflammasome via PINK1/Parkin pathway-mediated mitophagy [J]. Eur J Pharmacol, 2022, 929: 175136.
[71]
Zhang C, Song Y, Chen L, et al. Urolithin a attenuates hyperuricemic nephropathy in fructose-fed mice by impairing STING-NLRP3 axis-mediated inflammatory response via restoration of parkin-dependent mitophagy [J]. Front Pharmacol, 2022, 13: 907209.
[72]
Yoon YM, Go G, Yoon S, et al. Melatonin treatment improves renal fibrosis via miR-4516/SIAH3/PINK1 axis [J]. Cells, 2021, 10(7): 1682.
[73]
Ma N, Wei Z, Hu J, et al. Farrerol ameliorated cisplatin-induced chronic kidney disease through mitophagy induction via Nrf2/PINK1 pathway [J]. Front Pharmacol, 2021, 12: 768700.
[74]
Wei X, Wang Y, Lao Y, et al. Effects of honokiol protects against chronic kidney disease via BNIP3/NIX and FUNDC1-mediated mitophagy and AMPK pathways [J]. Mol Biol Rep, 2023, 50(8): 6557-6568.
[1] 姜明霞, 李俏, 徐兵河. 局部晚期HER-2阳性乳腺癌的新辅助治疗[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(03): 129-138.
[2] 周润楷, 蔡锦锋, 王法芝, 于洋, 温玉刚. 磷脂酰肌醇-3-激酶/蛋白激酶B通路在结直肠癌细胞程序性死亡中的作用机制及靶向治疗研究进展[J/OL]. 中华普通外科学文献(电子版), 2025, 19(04): 280-288.
[3] 廖志成, 朱黎, 曾志宇. 广东省医学会泌尿外科疑难病例多学科会诊(第27期)——晚期肾癌[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(05): 669-676.
[4] 李博, 翟炜, 郑军华. CD70在肾细胞癌精准诊疗中的价值[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 399-403.
[5] 陈琼, 吴卓龙, 黄吉炜. 免疫治疗在局部进展期肾癌围手术期治疗中的应用进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 418-422.
[6] 薛国强, 赵立明, 刘学军, 任玉林, 晏发隆, 杨晨, 杨嘉祺, 王永翔, 康印东. 甘草酸对尿源性脓毒症相关急性肾损伤的作用机制研究[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 498-507.
[7] 张辉, 林金铭, 郭高伟, 李鑫基, 张伟, 黄沛东, 郑长征, 陈晓生, 卢勇. 广东省医学会泌尿外科疑难病例多学科会诊(第17期)——右肾巨大肿瘤并腔静脉癌栓和髂血管血栓[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 532-538.
[8] 刘丽辉, 白玉新, 张进, 冯巍, 黄琰琰, 邹梦斯, 刘彩红. 血清生物标志物联合检测对支气管哮喘患儿生物靶向治疗效果的预测意义[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(05): 796-801.
[9] 胡铭语, 李敬东, 肖雨竹, 黄杰. 初始不可切除肝癌患者转化治疗序贯手术的临床疗效分析[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 754-760.
[10] 曾锐. 抑制急性肾损伤向慢性肾脏病转化:靶向致病性肾脏巨噬细胞纳米药物的应用[J/OL]. 中华肾病研究电子杂志, 2025, 14(05): 241-247.
[11] 覃宛冰, 刘庆华. 利用靶向纳米药物治疗急性肾损伤研究进展[J/OL]. 中华肾病研究电子杂志, 2025, 14(03): 121-125.
[12] 刘姗姗, 赵晓娇, 乔玉峰. 通过干预转化生长因子-β/哺乳动物母体抗十五肢体瘫痪蛋白经典信号通路防治肾脏纤维化的研究进展[J/OL]. 中华肾病研究电子杂志, 2025, 14(03): 158-163.
[13] 刘诗彤, 王楠. 肠源性尿毒症毒素在慢性肾脏病患者认知功能障碍发生机制中的作用研究进展[J/OL]. 中华肾病研究电子杂志, 2025, 14(03): 164-170.
[14] 奚培培, 周加军. 慢性肾脏病相关性瘙痒症的研究进展[J/OL]. 中华临床医师杂志(电子版), 2025, 19(03): 216-220.
[15] 宋陈晨, 梁天赐, 赵悦, 张超贻, 王辉, 问婷芝, 戎彪学. X 型胶原α1 在恶性肿瘤中的研究进展[J/OL]. 中华临床医师杂志(电子版), 2025, 19(03): 221-228.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?