[1] |
Shen P, Deng X, Li T, et al.Demethylzeylasteral protects against renal interstitial fibrosis by attenuating mitochondrial complex I-mediated oxidative stress [J].J Ethnopharmacol,2024,327:117986.
|
[2] |
Xu H, Wang M, Li Y, et al.Blocking connexin 43 and its promotion of ATP release from renal tubular epithelial cells ameliorates renal fibrosis [J].Cell Death Dis, 2022, 13(5):511.
|
[3] |
Aashaq S,Batool A,Mir SA,et al.TGF-β signaling:a recap of Smad-independent and Smad-dependent pathways [J].J Cell Physiol,2022,237(1):59-85.
|
[4] |
Tzavlaki K, Moustakas A.TGF-β signaling [J].Biomolecules,2020,10(3):487.
|
[5] |
Li J,Zou Y,Kantapan J,et al.TGF-β/Smad signaling in chronic kidney disease: exploring post-translational regulatory perspectives(Review) [J].Mol Med Rep,2024,30(2):143.
|
[6] |
Zhong J, Zou H.BMP signaling in axon regeneration [J].Curr Opin Neurobiol,2014,27:127-134.
|
[7] |
Meng XM, Nikolic-Paterson DJ, Lan HY.TGF-β: the master regulator of fibrosis [J].Nat Rev Nephrol,2016,12(6):325-338.
|
[8] |
Vega G, Alarcón S, San Martín R.The cellular and signalling alterations conducted by TGF-β contributing to renal fibrosis[J].Cytokine,2016,88:115-125.
|
[9] |
Gu YY, Liu XS, Huang XR, et al.TGF-β in renal fibrosis:triumphs and challenges[J].Future Med Chem,2020,12(9):853-866.
|
[10] |
Meng X, Jin J, Lan HY.Driving role of macrophages in transition from acute kidney injury to chronic kidney disease[J].Chin Med J (Engl),2022,135(7):757-766.
|
[11] |
Humphreys BD.Mechanisms of renal fibrosis [J].Annu Rev Physiol,2018,80:309-326.
|
[12] |
Qing Z, Yuan W, Wang J, et al.Verapamil inhibited the development of ureteral stricture by blocking CaMK II-mediated STAT3 and Smad3/JunD pathways [J].Int Urol Nephrol,2022,54(11):2855-2866.
|
[13] |
Antar SA, Ashour NA, Marawan ME, et al.Fibrosis: types,effects, markers, mechanisms for disease progression, and its relation with oxidative stress, immunity, and inflammation [J].Int J Mol Sci,2023,24(4):4004.
|
[14] |
Huang R, Fu P, Ma L.Kidney fibrosis: from mechanisms to therapeutic medicines [J].Signal Transduct Target Ther,2023,8(1):129.
|
[15] |
Luo H, Yao Y, Wang W, et al.Exploring the therapeutic potential of apabetalone in diabetic kidney disease: bridging preclinical findings with clinical translation [J].Pharmacol Res,2024,208:107362.
|
[16] |
Chen QQ, Liu K, Shi N, et al.Neuraminidase 1 promotes renal fibrosis development in male mice [J].Nat Commun,2023,14(1):1713.
|
[17] |
Qiu D, Song S,Chen N,et al.NQO1 alleviates renal fibrosis by inhibiting the TLR4/NF-κB and TGF-β/Smad signaling pathways in diabetic nephropathy [J].Cell Signal, 2023, 108:110712.
|
[18] |
Pellicena P,Schulman H.CaMKII inhibitors:from research tools to therapeutic agents [J].Front Pharmacol,2014,5:21.
|
[19] |
Feng X,Zhang J,Yang R, et al.The CaMKII inhibitory peptide AIP alleviates renal fibrosis through the TGF-β/Smad and RAF/ERK pathways [J].J Pharmacol Exp Ther, 2023, 386(3):310-322.
|
[20] |
Bezerra Rodrigues Dantas L, Silva ALM, da Silva Júnior CP, et al.Nootkatone inhibits acute and chronic inflammatory responses in mice [J].Molecules,2020,25(9):2181.
|
[21] |
Meeran MFN, Azimullah S, Adeghate E, et al.Nootkatone attenuates myocardial oxidative damage, inflammation, and apoptosis in isoproterenol-induced myocardial infarction in rats[J].Phytomedicine,2021,84:153405.
|
[22] |
Gairola S, Ram C, Syed AM, et al.Nootkatone confers antifibrotic effect by regulating the TGF-β/Smad signaling pathway in mouse model of unilateral ureteral obstruction [J].Eur J Pharmacol,2021,910:174479.
|
[23] |
Li K, Wu L, Chen Y, et al.Cytotoxic and antiproliferative effects of β-mangostin on rat C6 glioma cells depend on oxidative stress induction via PI3K/AKT/mTOR pathway inhibition [J].Drug Des Devel Ther,2020,14:5315-5324.
|
[24] |
Lin CS, Lin CL, Ying TH, et al.β-Mangostin inhibits the metastatic power of cervical cancer cells attributing to suppression of JNK2/AP-1/Snail cascade [J].J Cell Physiol, 2020, 235(11):8446-8460.
|
[25] |
Huang PY, Juan YH, Hung TW, et al.β-Mangostin alleviates renal tubulointerstitial fibrosis via the TGF-β1/JNK signaling pathway [J].Cells,2024,13(20):1701.
|
[26] |
Yang Y, Wang J, Zhang Y, et al.Exosomes derived from mesenchymal stem cells ameliorate renal fibrosis via delivery of miR-186-5p [J].Hum Cell,2022,35(1):83-97.
|
[27] |
Lu Y, Yang L, Chen X, et al.Bone marrow mesenchymal stem cell-derived exosomes improve renal fibrosis by reducing the polarisation of M1 and M2 macrophages through the activation of EP2 receptors [J].IET Nanobiotechnol,2022,16(1):14-24.
|
[28] |
Yin S, Zhou S, Ren D, et al.Mesenchymal stem cell-derived exosomes attenuate epithelial-mesenchymal transition of HK-2 Cells [J].Tissue Eng Part A,2022,28(13-14):651-659.
|
[29] |
Jin J,Qian F,Zheng D,et al.Mesenchymal stem cells attenuate renal fibrosis via exosomes-mediated delivery of microRNA let-7i-5p antagomir [J].Int J Nanomedicine,2021,16:3565-3578.
|
[30] |
Zeng AH, Ou YY, Guo MM, et al.Human embryonic lung fibroblasts treated with artesunate exhibit reduced rates of proliferation and human cytomegalovirus infection in vitro [J].J Thorac Dis,2015,7(7):1151-1157.
|
[31] |
Dolivo D, Weathers P, Dominko T.Artemisinin and artemisinin derivatives as anti-fibrotic therapeutics [J].Acta Pharm Sin B,2021,11(2):322-339.
|
[32] |
Zheng YJ, Li X, Sun L, et al.Therapeutic effect of dihydroartemisinin on pulmonary fibrosis in rats with dust [J].Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi, 2019, 37(2):96-103.
|
[33] |
Yang DX, Qiu J, Zhou HH, et al.Dihydroartemisinin alleviates oxidative stress in bleomycin-induced pulmonary fibrosis [J].Life Sci,2018,205:176-183.
|
[34] |
Li Y, Chen S, Tan J, et al.Combination therapy with DHA and BMSCs suppressed podocyte injury and attenuated renal fibrosis by modulating the TGF-β1/Smad pathway in MN mice [J].Ren Fail,2023,45(1):2120821.
|
[35] |
Tu Y,Yang Y,Li Y,et al.Naturally occurring coumestans from plants,their biological activities and therapeutic effects on human diseases [J].Pharmacol Res,2021,169:105615.
|
[36] |
Liang HJ, Suk FM, Wang CK, et al.Osthole, a potential antidiabetic agent, alleviates hyperglycemia in db/db mice [J].Chem Biol Interact,2009,181(3):309-315.
|
[37] |
Li Q, Wang Y, Yan J, et al.Osthole ameliorates early diabetic kidney damage by suppressing oxidative stress, inflammation and inhibiting TGF-β1/Smads signaling pathway [ J ].Int Immunopharmacol,2024,133:112131.
|
[38] |
Kundu S, Ghosh A, Yadav KS, et al.Imperatorin ameliorates kidney injury in diabetic mice by regulating the TGF-β/Smad2/3 signaling axis, epithelial-to-mesenchymal transition, and renal inflammation [J].Eur J Pharmacol,2024,963:176250.
|
[39] |
Yuniati L, Scheijen B, van der Meer LT, et al.Tumor suppressors BTG1 and BTG2: beyond growth control [J].Cell Physiol,2019,234(5):5379-5389.
|
[40] |
Hou CP, Tsui KH, Chang KS, et al.Caffeic acid phenethyl ester inhibits the growth of bladder carcinoma cells by upregulating growth differentiation factor 15 [J].Biomed J,2022,45(5):763-775.
|
[41] |
Coppola V,Musumeci M,Patrizii M,et al.BTG2 loss and miR-21 upregulation contribute to prostate cell transformation by inducing luminal markers expression and epithelial-mesenchymal transition [J].Oncogene,2013,32(14):1843-1853.
|
[42] |
Hoffman MJ, Takizawa A, Jensen ES, et al.Btg2 mutation induces renal injury and impairs blood pressure control in female rats [J].Physiol Genomics,2022,54(7):231-241.
|
[43] |
Hu QD, Wang HL, Liu J, et al.Btg2 promotes focal segmental glomerulosclerosis via Smad3-dependent podocyte-mesenchymal transition [J].Adv Sci (Weinh),2023,10(32): e2304360.
|
[44] |
李思佳, 苏晓乐,王利华.通过抑制Wnt/β-catenin 信号通路延缓肾间质纤维化研究进展[J/OL].中华肾病研究电子杂志,2023,12(4):224-228.
|