切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2025, Vol. 14 ›› Issue (03) : 164 -170. doi: 10.3877/cma.j.issn.2095-3216.2025.03.008

综述

肠源性尿毒症毒素在慢性肾脏病患者认知功能障碍发生机制中的作用研究进展
刘诗彤1, 王楠2,()   
  1. 1. 116000 大连医科大学研究生院
    2. 116011 大连医科大学附属第一医院肾内科
  • 收稿日期:2024-12-24 出版日期:2025-06-28
  • 通信作者: 王楠

Research progress on the role of gut-derived uremic toxins in the pathogenesis of cognitive impairment in patients with chronic kidney disease

Shitong Liu1, Nan Wang2,()   

  1. 1. Graduate School of Dalian Medical University,Dalian 116000
    2. Department of Nephrology,First Hospital Affiliated to Dalian Medical University,Dalian 116011; Liaoning Province,China
  • Received:2024-12-24 Published:2025-06-28
  • Corresponding author: Nan Wang
引用本文:

刘诗彤, 王楠. 肠源性尿毒症毒素在慢性肾脏病患者认知功能障碍发生机制中的作用研究进展[J/OL]. 中华肾病研究电子杂志, 2025, 14(03): 164-170.

Shitong Liu, Nan Wang. Research progress on the role of gut-derived uremic toxins in the pathogenesis of cognitive impairment in patients with chronic kidney disease[J/OL]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2025, 14(03): 164-170.

慢性肾脏病患者的认知功能障碍患病率高且易被忽视,严重影响其生活质量与生存时间。 尿毒症毒素在慢性肾脏病患者认知功能障碍的发生发展中起重要作用。 肠道菌群紊乱及其分解代谢产生的肠源性尿毒症毒素加速了患者的认知功能障碍进展。 本文着重探讨了关键肠源性尿毒症毒素在慢性肾脏病患者认知功能障碍发生机制中的潜在作用,并阐述其相关防治手段,为慢性肾脏病患者认知功能障碍的临床诊治提供参考。

Patients with chronic kidney disease (CKD) have a high prevalence of cognitive impairment, which is often overlooked and severely impacts their quality of life and survival time.Uremic toxins play an important role in the occurrence and development of cognitive impairment in CKD patients.Gut microbiota dysbiosis and the gut-derived uremic toxins (GUTs) produced due to their catabolism accelerate the progression of cognitive impairment in the patients.This article focused on discussing the potential role of key GUTs in the pathogenesis of cognitive impairment in CKD patients, and elaborated on relevant prevention and treatment measures, providing a reference for the clinical diagnosis and treatment of cognitive impairment in CKD patients.

图1 肠源性尿毒症毒素在慢性肾脏病患者认知功能障碍的发生机制 注:GUTs: 肠源性尿毒症毒素;ROS:reactive oxygen species,活性氧;NF-κB:nuclear factor-κB,核因子κB;RAAS:renin-angiotensinaldosterone system,肾素-血管紧张素-醛固酮系统
[1]
Wang L, Xu X, Zhang M, et al.Prevalence of chronic kidney disease in China:results from the sixth China chronic disease and risk factor surveillance [J].JAMA Intern Med,2023,183(4):298-310.
[2]
Xie Z, Tong S, Chu X, et al.Chronic kidney disease and cognitive impairment: the kidney-brain axis [J].Kidney Dis(Basel),2022,8(4):275-285.
[3]
李明帅, 王楠.不同肾脏替代治疗方式对终末期肾脏病患者认知功能障碍的影响 [J/OL].中华肾病研究电子杂志,2020,9(6):253-259.
[4]
Tanaka S, Okusa MD.Crosstalk between the nervous system and the kidney [J].Kidney Int,2020,97(3):466-476.
[5]
Fukasawa N, Tsunoda J, Sunaga S, et al.The gut-organ axis:clinical aspects and immune mechanisms [J].Allergol Int,2025,74(2):197-209.
[6]
Goyal D, Ali SA, Singh RK.Emerging role of gut microbiota in modulation of neuroinflammation and neurodegeneration with emphasisonAlzheimer′ sdisease [ J ].Prog Neuropsychopharmacol Biol Psychiatry,2021,106:110112.
[7]
Ning J, Huang SY, Chen SD, et al.Investigating casual associations among gut microbiota, metabolites, and neurodegenerative diseases: a Mendelian randomization study[J].J Alzheimers Dis,2022,87(1):211-222.
[8]
Graboski AL, Redinbo MR.Gut-derived protein-bound uremic toxins [J].Toxins (Basel),2020,12(9):590.
[9]
Gao Q, Li D, Wang Y, et al.Analysis of intestinal flora and cognitive function in maintenance hemodialysis patients using combined 16S ribosome DNA and shotgun metagenome sequencing [J].Aging Clin Exp Res,2024,36(1):28.
[10]
Laville SM, Couturier A, Lambert O, et al.Urea levels and cardiovascular disease in patients with chronic kidney disease[J].Nephrol Dial Transplant,2022,38(1):184-192.
[11]
吴燕升, 张先闻, 王琳.慢性肾脏病患者肠道微生态与免疫的关系研究进展[J/OL].中华肾病研究电子杂志, 2024, 13(2):101-105.
[12]
Solanki R, Karande A, Ranganathan P.Emerging role of gut microbiota dysbiosis in neuroinflammation and neurodegeneration[J].Front Neurol,2023,14:1149618.
[13]
Aronov PA, Luo FJ, Plummer NS, et al.Colonic contribution to uremic solutes [J].J Am Soc Nephrol, 2011, 22(9): 1769-1776.
[14]
Liabeuf S, Pepin M, Franssen CFM, et al.Chronic kidney disease and neurological disorders:are uraemic toxins the missing piece of the puzzle? [J].Nephrol Dial Transplant, 2021, 37(Suppl 2): ii33-ii44.
[15]
Amini Khiabani S, Asgharzadeh M, Samadi Kafil H.Chronic kidney disease and gut microbiota [J].Heliyon, 2023, 9(8):e18991.
[16]
Gao Q, Wang Y, Wang X, et al.Decreased levels of circulatingtrimethylamine N-oxide alleviate cognitive and pathological deterioration in transgenic mice: a potential therapeutic approach for Alzheimer′ s disease [ J].Aging(Albany NY),2019,11(19):8642-8663.
[17]
Wehedy E, Shatat IF, Al Khodor S.The human microbiome in chronic kidney disease: a double-edged sword [J].Front Med(Lausanne),2022,8:790783.
[18]
Zhang J, Dong X, Pang Q, et al.Irisin alleviates cognitive impairment byinhibitingAhR/NF-κB-NLRP3-mediated pyroptosis of hippocampal neurons in chronic kidney disease[J].Mediators Inflamm,2024,2024:2662362.
[19]
Sun CY, Li JR, Wang YY, et al.Indoxyl sulfate caused behavioral abnormality and neurodegeneration in mice with unilateral nephrectomy [J].Aging (Albany NY), 2021, 13(5):6681-6701.
[20]
Yeh YC, Huang MF, Liang SS, et al.Indoxyl sulfate, not pcresyl sulfate, is associated with cognitive impairment in earlystage chronic kidney disease [J].Neurotoxicology, 2016, 53:148-152.
[21]
Lin YT, Wu PH, Liang SS, et al.Protein-bound uremic toxins are associated with cognitive function among patients undergoing maintenance hemodialysis [J].Sci Rep,2019,9(1):20388.
[22]
Lazarevic V, Teta D, Pruijm M, et al.Gut microbiota associations with chronic kidney disease: insights into nutritional and inflammatory parameters [J].Front Microbiol, 2024, 15:1298432.
[23]
Ntranos A, Park HJ, Wentling M, et al.Bacterial neurotoxic metabolites in multiple sclerosis cerebrospinal fluid and plasma[J].Brain,2022,145(2):569-583.
[24]
Tan X,Zou J,Xiang F,et al.p-Cresyl sulfate predicts ischemic stroke among patients on hemodialysis: a prospective cohort study[J].Dis Markers,2022,2022:1358419.
[25]
Pan S, Zhao D, Duan S, et al.The role of gut-dependent molecule trimethylamine N-oxide as a novel target for the treatment of chronic kidney disease [J].Int Urol Nephrol,2023,55(7):1747-1756.
[26]
Xie S, Deng N, Fang L, et al.TMAO is involved in kidneyyang deficiency syndrome diarrhea by mediating the “gut-kidney axis” [J].Heliyon,2024,10(15): e35461.
[27]
Vallianou NG, Kounatidis D, Psallida S, et al.The interplay between dietary choline and cardiometabolic disorders: a review of current evidence [J].Curr Nutr Rep, 2024, 13(2): 152-165.
[28]
Chen X,Gu M,Hong Y,et al.Association of trimethylamine Noxide with normal aging and neurocognitive disorders: a narrative review [J].Brain Sci,2022,12(9):1203.
[29]
Xie Y, Hu X, Li S,et al.Pharmacological targeting macrophage phenotype via gut-kidney axis ameliorates renal fibrosis in mice[J].Pharmacol Res,2022,178:106161.
[30]
Hoyles L, Pontifex MG, Rodriguez-Ramiro I, et al.Regulation of blood-brain barrier integrity by microbiome-associated methylamines and cognition by trimethylamine N-oxide [J].Microbiome,2021,9(1):235.
[31]
Connell E, Le Gall G, Pontifex MG, et al.Microbial-derived metabolites as a risk factor of age-related cognitive decline and dementia [J].Mol Neurodegener,2022,17(1):43.
[32]
Huang M, Wei R, Wang Y, et al.The uremic toxin hippurate promotes endothelial dysfunction via the activation of Drp1-mediated mitochondrial fission[J].Redox Biol,2018,16:303-313.
[33]
Quick S, Moss J, Rajani RM, et al.A vessel for change:endothelial dysfunction in cerebral small vessel disease [J].Trends Neurosci,2021,44(4):289-305.
[34]
Fernandes MMR, Abramovicz CC, da Silva ADCF, et al.Specific attention deficits in patients with end stage kidney disease [J].J Nephrol,2023,36(2):275-279.
[35]
Singh H, Agrawal DK.Therapeutic potential of targeting the receptor for advanced glycation end products (RAGE) by small molecule inhibitors [J].Drug Dev Res, 2022, 83(6): 1257-1269.
[36]
Tabara Y,Yamanaka M,Setoh K,et al.Advanced glycation end product accumulation is associated with lower cognitive performance in an older general population: the nagahama study[J].J Alzheimers Dis,2020,74(3):741-746.
[37]
Ryan A, Twomey PJ.Homocystinuria: a commentary [J].J Clin Pathol,2023,76(3):153-155.
[38]
Maesato K, Ohtake T, Mochida Y, et al.Correlation of hippocampal atrophy with hyperhomocysteinemia in hemodialysis patients: an exploratory pilot study [J].PLoS One, 2017, 12(4): e0175102.
[39]
Yeh YC, Huang MF, Hwang SJ, et al.Association of homocysteine level and vascular burden and cognitive function in middle-aged and older adults with chronic kidney disease [J].Int J Geriatr Psychiatry,2016,31(7):723-730.
[40]
Ondrussek-Sekac M, Navas-Carrillo D, Orenes-Piñero E.Intestinal microbiota alterations in chronic kidney disease and the influence of dietary components [J].Crit Rev Food Sci Nutr,2021,61(9):1490-1502.
[41]
Mansouri F, Shateri Z, Jahromi SE, et al.Association between pro-vegetarian dietary pattern and the risk of protein-energy wasting and sarcopenia in patients with chronic kidney disease[J].J Health Popul Nutr,2024,43(1):110.
[42]
Narasaki Y, Kalantar-Zadeh K, Rhee CM, et al.Vegetarian nutrition in chronic kidney disease [J].Nutrients, 2023, 16(1):66.
[43]
Perez L, You Z, Kendrick J.Association of plant-based protein intake with cognitive function in adults with CKD [ J].Kidney360,2023,4(11):1554-1561.
[44]
Su PY, Lee YH, Kuo LN, et al.Efficacy of AST-120 for patients with chronic kidney disease: a network meta-analysis of randomized controlled trials [J].Front Pharmacol, 2021, 12:676345.
[45]
Li LC, Chen WY, Chen JB, et al.The AST-120 recovers uremic toxin-induced cognitive deficit via NLRP3 inflammasome pathway in astrocytes and microglia [J].Biomedicines,2021,9(9):1252.
[46]
施雯, 张晓良.糖尿病肾脏疾病治疗现状及进展[J].肾脏病与透析肾移植杂志,2020,29(4):375-380.
[47]
Chen C, Wang J, Li J, et al.Probiotics, prebiotics, and synbiotics for patients on dialysis: a systematic review and metaanalysis of randomized controlled trials [J].J Ren Nutr, 2023,33(1):126-139.
[48]
Młynarska E, Budny E, Saar M, et al.Does the composition of gut microbiota affect chronic kidney disease? Molecular mechanisms contributed to decreasing glomerular filtration rate[J].Int J Mol Sci,2024,25(19):10429.
[49]
Eidi F, Poor-Reza Gholi F, Ostadrahimi A, et al.Effect of Lactobacillus Rhamnosus on serum uremic toxins (phenol and pcresol) in hemodialysis patients: a double blind randomized clinical trial [J].Clin Nutr ESPEN,2018,28:158-164.
[50]
Romo-Araiza A, Ibarra A.Prebiotics and probiotics as potential therapy for cognitive impairment [J].Med Hypotheses, 2020,134:109410.
[51]
Pieniazek A, Bernasinska-Slomczewska J, Gwozdzinski L.Uremic toxins and their relation with oxidative stress induced in patients with CKD [J].Int J Mol Sci,2021,22(12):6196.
[52]
Lima JD, Guedes M, Rodrigues SD, et al.High-volume hemodiafiltration decreases the pre-dialysis concentrations of indoxyl sulfate and p-cresyl sulfate compared to hemodialysis: a post-hoc analysis from the HDFit randomized controlled trial[J].J Nephrol,2022,35(5):1449-1456.
[53]
Madero M,Cano KB, Campos I, et al.Removal of protein-bound uremic toxins during hemodialysis using a binding competitor [J].Clin J Am Soc Nephrol,2019,14(3):394-402.
[1] 兰永, 刘晶, 杨志琦, 吴浪, 沙小春, 李明皓. 肠道菌群在胰腺炎发生发展中的研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(03): 481-486.
[2] 陈俊夫, 吴纪霞, 田宏亮, 马静. 肠道菌群移植对菌-肠-脑轴疾病的治疗研究进展[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(02): 136-141.
[3] 朱万涌, 王乐, 徐越, 王新军, 叶晨, 李宁, 陈启仪, 李龙. 肠道菌群失衡与功能性肠病:从机制探讨到肠菌移植疗法[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(02): 142-147.
[4] 邓玮, 周筛兰, 杨波, 林志亮. 肠道菌群移植治疗便秘患者出院准备度现状及影响因素分析[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(02): 148-154.
[5] 刘昀坤, 孟彩祥, 王乐, 徐越, 叶晨, 李龙, 李宁, 陈启仪. 肠道菌群与慢传输型便秘机制相关研究进展[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(02): 161-165.
[6] 余昌佳, 张怡婷, 张高乐, 李晨光. 慢性便秘肠道菌群与植物源性多糖的研究进展[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(02): 166-173.
[7] 刘姗姗, 赵晓娇, 乔玉峰. 通过干预转化生长因子-β/哺乳动物母体抗十五肢体瘫痪蛋白经典信号通路防治肾脏纤维化的研究进展[J/OL]. 中华肾病研究电子杂志, 2025, 14(03): 158-163.
[8] 章敏. 利用多组学技术筛选慢性肾脏病早期预警和预后标志物[J/OL]. 中华肾病研究电子杂志, 2025, 14(02): 120-120.
[9] 李好, 赵诺, 阮冰玉, 程晓巍, 牛敬雪, 孙鼎, 罗晴, 张杰, 金昕晔, 陈意志. 以案例为基础的整合式教学模式在冠心病合并慢性肾脏病教学中的应用[J/OL]. 中华肾病研究电子杂志, 2025, 14(02): 110-114.
[10] 陈志, 李猛, 万修华. 肠道菌群与干眼的研究进展[J/OL]. 中华眼科医学杂志(电子版), 2025, 15(01): 55-59.
[11] 尹艳娟, 张宇, 张颖, 李晓珊, 郭全伟. 慢性咳嗽为表现的胃食管反流病患儿的胃超声造影及肠道菌群特征分析[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(03): 240-244.
[12] 谷肖明, 沈敏, 王瑀, 边燕. 肝癌术后感染患者肠道菌群特征与机体炎症、免疫功能及肠道功能的相关性研究[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(03): 224-228.
[13] 王玉琳, 王中华, 刘子文, 吕梦鑫, 于源滋, 李涛, 胡锦华, 张小茜. 肝硬化消化道出血患者经颈静脉肝内门体分流术前后肠道微生态的宏基因组学分析[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(02): 135-143.
[14] 奚培培, 周加军. 慢性肾脏病相关性瘙痒症的研究进展[J/OL]. 中华临床医师杂志(电子版), 2025, 19(03): 216-220.
[15] 吕豪, 钱福凯, 徐瑞. 肠道菌群及其代谢产物与高血压的关系研究进展[J/OL]. 中华诊断学电子杂志, 2025, 13(02): 126-132.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?