[1] |
Wang L, Xu X, Zhang M, et al.Prevalence of chronic kidney disease in China:results from the sixth China chronic disease and risk factor surveillance [J].JAMA Intern Med,2023,183(4):298-310.
|
[2] |
Xie Z, Tong S, Chu X, et al.Chronic kidney disease and cognitive impairment: the kidney-brain axis [J].Kidney Dis(Basel),2022,8(4):275-285.
|
[3] |
李明帅, 王楠.不同肾脏替代治疗方式对终末期肾脏病患者认知功能障碍的影响 [J/OL].中华肾病研究电子杂志,2020,9(6):253-259.
|
[4] |
Tanaka S, Okusa MD.Crosstalk between the nervous system and the kidney [J].Kidney Int,2020,97(3):466-476.
|
[5] |
Fukasawa N, Tsunoda J, Sunaga S, et al.The gut-organ axis:clinical aspects and immune mechanisms [J].Allergol Int,2025,74(2):197-209.
|
[6] |
Goyal D, Ali SA, Singh RK.Emerging role of gut microbiota in modulation of neuroinflammation and neurodegeneration with emphasisonAlzheimer′ sdisease [ J ].Prog Neuropsychopharmacol Biol Psychiatry,2021,106:110112.
|
[7] |
Ning J, Huang SY, Chen SD, et al.Investigating casual associations among gut microbiota, metabolites, and neurodegenerative diseases: a Mendelian randomization study[J].J Alzheimers Dis,2022,87(1):211-222.
|
[8] |
Graboski AL, Redinbo MR.Gut-derived protein-bound uremic toxins [J].Toxins (Basel),2020,12(9):590.
|
[9] |
Gao Q, Li D, Wang Y, et al.Analysis of intestinal flora and cognitive function in maintenance hemodialysis patients using combined 16S ribosome DNA and shotgun metagenome sequencing [J].Aging Clin Exp Res,2024,36(1):28.
|
[10] |
Laville SM, Couturier A, Lambert O, et al.Urea levels and cardiovascular disease in patients with chronic kidney disease[J].Nephrol Dial Transplant,2022,38(1):184-192.
|
[11] |
吴燕升, 张先闻, 王琳.慢性肾脏病患者肠道微生态与免疫的关系研究进展[J/OL].中华肾病研究电子杂志, 2024, 13(2):101-105.
|
[12] |
Solanki R, Karande A, Ranganathan P.Emerging role of gut microbiota dysbiosis in neuroinflammation and neurodegeneration[J].Front Neurol,2023,14:1149618.
|
[13] |
Aronov PA, Luo FJ, Plummer NS, et al.Colonic contribution to uremic solutes [J].J Am Soc Nephrol, 2011, 22(9): 1769-1776.
|
[14] |
Liabeuf S, Pepin M, Franssen CFM, et al.Chronic kidney disease and neurological disorders:are uraemic toxins the missing piece of the puzzle? [J].Nephrol Dial Transplant, 2021, 37(Suppl 2): ii33-ii44.
|
[15] |
Amini Khiabani S, Asgharzadeh M, Samadi Kafil H.Chronic kidney disease and gut microbiota [J].Heliyon, 2023, 9(8):e18991.
|
[16] |
Gao Q, Wang Y, Wang X, et al.Decreased levels of circulatingtrimethylamine N-oxide alleviate cognitive and pathological deterioration in transgenic mice: a potential therapeutic approach for Alzheimer′ s disease [ J].Aging(Albany NY),2019,11(19):8642-8663.
|
[17] |
Wehedy E, Shatat IF, Al Khodor S.The human microbiome in chronic kidney disease: a double-edged sword [J].Front Med(Lausanne),2022,8:790783.
|
[18] |
Zhang J, Dong X, Pang Q, et al.Irisin alleviates cognitive impairment byinhibitingAhR/NF-κB-NLRP3-mediated pyroptosis of hippocampal neurons in chronic kidney disease[J].Mediators Inflamm,2024,2024:2662362.
|
[19] |
Sun CY, Li JR, Wang YY, et al.Indoxyl sulfate caused behavioral abnormality and neurodegeneration in mice with unilateral nephrectomy [J].Aging (Albany NY), 2021, 13(5):6681-6701.
|
[20] |
Yeh YC, Huang MF, Liang SS, et al.Indoxyl sulfate, not pcresyl sulfate, is associated with cognitive impairment in earlystage chronic kidney disease [J].Neurotoxicology, 2016, 53:148-152.
|
[21] |
Lin YT, Wu PH, Liang SS, et al.Protein-bound uremic toxins are associated with cognitive function among patients undergoing maintenance hemodialysis [J].Sci Rep,2019,9(1):20388.
|
[22] |
Lazarevic V, Teta D, Pruijm M, et al.Gut microbiota associations with chronic kidney disease: insights into nutritional and inflammatory parameters [J].Front Microbiol, 2024, 15:1298432.
|
[23] |
Ntranos A, Park HJ, Wentling M, et al.Bacterial neurotoxic metabolites in multiple sclerosis cerebrospinal fluid and plasma[J].Brain,2022,145(2):569-583.
|
[24] |
Tan X,Zou J,Xiang F,et al.p-Cresyl sulfate predicts ischemic stroke among patients on hemodialysis: a prospective cohort study[J].Dis Markers,2022,2022:1358419.
|
[25] |
Pan S, Zhao D, Duan S, et al.The role of gut-dependent molecule trimethylamine N-oxide as a novel target for the treatment of chronic kidney disease [J].Int Urol Nephrol,2023,55(7):1747-1756.
|
[26] |
Xie S, Deng N, Fang L, et al.TMAO is involved in kidneyyang deficiency syndrome diarrhea by mediating the “gut-kidney axis” [J].Heliyon,2024,10(15): e35461.
|
[27] |
Vallianou NG, Kounatidis D, Psallida S, et al.The interplay between dietary choline and cardiometabolic disorders: a review of current evidence [J].Curr Nutr Rep, 2024, 13(2): 152-165.
|
[28] |
Chen X,Gu M,Hong Y,et al.Association of trimethylamine Noxide with normal aging and neurocognitive disorders: a narrative review [J].Brain Sci,2022,12(9):1203.
|
[29] |
Xie Y, Hu X, Li S,et al.Pharmacological targeting macrophage phenotype via gut-kidney axis ameliorates renal fibrosis in mice[J].Pharmacol Res,2022,178:106161.
|
[30] |
Hoyles L, Pontifex MG, Rodriguez-Ramiro I, et al.Regulation of blood-brain barrier integrity by microbiome-associated methylamines and cognition by trimethylamine N-oxide [J].Microbiome,2021,9(1):235.
|
[31] |
Connell E, Le Gall G, Pontifex MG, et al.Microbial-derived metabolites as a risk factor of age-related cognitive decline and dementia [J].Mol Neurodegener,2022,17(1):43.
|
[32] |
Huang M, Wei R, Wang Y, et al.The uremic toxin hippurate promotes endothelial dysfunction via the activation of Drp1-mediated mitochondrial fission[J].Redox Biol,2018,16:303-313.
|
[33] |
Quick S, Moss J, Rajani RM, et al.A vessel for change:endothelial dysfunction in cerebral small vessel disease [J].Trends Neurosci,2021,44(4):289-305.
|
[34] |
Fernandes MMR, Abramovicz CC, da Silva ADCF, et al.Specific attention deficits in patients with end stage kidney disease [J].J Nephrol,2023,36(2):275-279.
|
[35] |
Singh H, Agrawal DK.Therapeutic potential of targeting the receptor for advanced glycation end products (RAGE) by small molecule inhibitors [J].Drug Dev Res, 2022, 83(6): 1257-1269.
|
[36] |
Tabara Y,Yamanaka M,Setoh K,et al.Advanced glycation end product accumulation is associated with lower cognitive performance in an older general population: the nagahama study[J].J Alzheimers Dis,2020,74(3):741-746.
|
[37] |
Ryan A, Twomey PJ.Homocystinuria: a commentary [J].J Clin Pathol,2023,76(3):153-155.
|
[38] |
Maesato K, Ohtake T, Mochida Y, et al.Correlation of hippocampal atrophy with hyperhomocysteinemia in hemodialysis patients: an exploratory pilot study [J].PLoS One, 2017, 12(4): e0175102.
|
[39] |
Yeh YC, Huang MF, Hwang SJ, et al.Association of homocysteine level and vascular burden and cognitive function in middle-aged and older adults with chronic kidney disease [J].Int J Geriatr Psychiatry,2016,31(7):723-730.
|
[40] |
Ondrussek-Sekac M, Navas-Carrillo D, Orenes-Piñero E.Intestinal microbiota alterations in chronic kidney disease and the influence of dietary components [J].Crit Rev Food Sci Nutr,2021,61(9):1490-1502.
|
[41] |
Mansouri F, Shateri Z, Jahromi SE, et al.Association between pro-vegetarian dietary pattern and the risk of protein-energy wasting and sarcopenia in patients with chronic kidney disease[J].J Health Popul Nutr,2024,43(1):110.
|
[42] |
Narasaki Y, Kalantar-Zadeh K, Rhee CM, et al.Vegetarian nutrition in chronic kidney disease [J].Nutrients, 2023, 16(1):66.
|
[43] |
Perez L, You Z, Kendrick J.Association of plant-based protein intake with cognitive function in adults with CKD [ J].Kidney360,2023,4(11):1554-1561.
|
[44] |
Su PY, Lee YH, Kuo LN, et al.Efficacy of AST-120 for patients with chronic kidney disease: a network meta-analysis of randomized controlled trials [J].Front Pharmacol, 2021, 12:676345.
|
[45] |
Li LC, Chen WY, Chen JB, et al.The AST-120 recovers uremic toxin-induced cognitive deficit via NLRP3 inflammasome pathway in astrocytes and microglia [J].Biomedicines,2021,9(9):1252.
|
[46] |
施雯, 张晓良.糖尿病肾脏疾病治疗现状及进展[J].肾脏病与透析肾移植杂志,2020,29(4):375-380.
|
[47] |
Chen C, Wang J, Li J, et al.Probiotics, prebiotics, and synbiotics for patients on dialysis: a systematic review and metaanalysis of randomized controlled trials [J].J Ren Nutr, 2023,33(1):126-139.
|
[48] |
Młynarska E, Budny E, Saar M, et al.Does the composition of gut microbiota affect chronic kidney disease? Molecular mechanisms contributed to decreasing glomerular filtration rate[J].Int J Mol Sci,2024,25(19):10429.
|
[49] |
Eidi F, Poor-Reza Gholi F, Ostadrahimi A, et al.Effect of Lactobacillus Rhamnosus on serum uremic toxins (phenol and pcresol) in hemodialysis patients: a double blind randomized clinical trial [J].Clin Nutr ESPEN,2018,28:158-164.
|
[50] |
Romo-Araiza A, Ibarra A.Prebiotics and probiotics as potential therapy for cognitive impairment [J].Med Hypotheses, 2020,134:109410.
|
[51] |
Pieniazek A, Bernasinska-Slomczewska J, Gwozdzinski L.Uremic toxins and their relation with oxidative stress induced in patients with CKD [J].Int J Mol Sci,2021,22(12):6196.
|
[52] |
Lima JD, Guedes M, Rodrigues SD, et al.High-volume hemodiafiltration decreases the pre-dialysis concentrations of indoxyl sulfate and p-cresyl sulfate compared to hemodialysis: a post-hoc analysis from the HDFit randomized controlled trial[J].J Nephrol,2022,35(5):1449-1456.
|
[53] |
Madero M,Cano KB, Campos I, et al.Removal of protein-bound uremic toxins during hemodialysis using a binding competitor [J].Clin J Am Soc Nephrol,2019,14(3):394-402.
|