切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2025, Vol. 14 ›› Issue (03) : 121 -125. doi: 10.3877/cma.j.issn.2095-3216.2025.03.001

述评

利用靶向纳米药物治疗急性肾损伤研究进展
覃宛冰1, 刘庆华2,()   
  1. 1. 522000 揭阳市人民医院
    2. 510080 广州,中山大学附属第一医院肾内科
  • 收稿日期:2024-11-29 出版日期:2025-06-28
  • 通信作者: 刘庆华
  • 基金资助:
    国家自然科学基金面上项目(82470811)广东省基础与应用基础研究基金自然科学基金项目(2023A1515012477,2025A1515010689)

Research progress on the use of targeted nanomedicine for the treatment of acute kidney injury

Wanbing Qin1, Qinghua Liu2,()   

  1. 1. Jieyang People′s Hospital,Jieyang 522000
    2. Department of Nephrology,First Hospital Affiliated to Sun Yat-sen University,Guangzhou 510080;Guangdong Province,China
  • Received:2024-11-29 Published:2025-06-28
  • Corresponding author: Qinghua Liu
引用本文:

覃宛冰, 刘庆华. 利用靶向纳米药物治疗急性肾损伤研究进展[J/OL]. 中华肾病研究电子杂志, 2025, 14(03): 121-125.

Wanbing Qin, Qinghua Liu. Research progress on the use of targeted nanomedicine for the treatment of acute kidney injury[J/OL]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2025, 14(03): 121-125.

当前急性肾损伤治疗以支持疗法为主,疗效有限。 高效的纳米递药系统可以靶向到达肾脏部位而精确释放药物,为急性肾损伤特异性治疗提供了新方向。 本文综述了靶向纳米药物治疗急性肾损伤研究进展,重点探讨了提高纳米药物肾脏靶向效率的策略。

Currently, the treatment for acute kidney injury (AKI) primarily relies on supportive therapy, which yields suboptimal outcomes.Efficient nano-drug delivery system can specifically reach the kidneys and release drugs with precision,providing a new direction for specific treatment of AKI.This article reviewed the research progress of targeted nanomedicine therapy for AKI, with a focus on exploring strategies to improve the renal targeting efficiency of nanomedicine.

图1 纳米药物在急性肾损伤治疗中的应用
[1]
Al-Jaghbeer M, Dealmeida D, Bilderback A, et al.Clinical decision support for in-hospital AKI [J].J Am Soc Nephrol,2018,29(2):654-660.
[2]
Yan J, Wang Y, Zhang J, et al.Rapidly blocking the calcium overload/ROS production feedback loop to alleviate acute kidney injury via microenvironment-responsive BAPTA-AM/BAC codelivery nanosystem [J].Small,2023,19(17): e2206936.
[3]
Perazella M, Rosner M.Drug-induced acute kidney injury [J].Clin J Am Soc Nephrol,2022,17(8):1220-1233.
[4]
Tanase D, Gosav E, Radu S, et al.The predictive role of the biomarker kidney molecule-1 (KIM-1) in acute kidney injury(AKI) cisplatin-induced nephrotoxicity [J].Int J Mol Sci,2019,20(20):5238.
[5]
Alem C, Mark B, Jurrien P, et al.Local delivery of liposomal prednisolone leads to an anti-inflammatory profile in renal ischaemia-reperfusion injury in the rat [J].Nephrology, 2018,33(1):44-53.
[6]
Tong F, Liu J, Luo L, et al.pH/ROS-responsive propelled nanomotors for the active treatment of renal injury [ J].Nanoscale,2023,15(14):6745-6758.
[7]
He X, Alves C, Oliveira N, et al.RGD peptide-modified multifunctional dendrimer platform for drug encapsulation and targeted inhibition of cancer cells [ J].Colloids Surf B Biointerfaces,2015,125:82-89.
[8]
Awad R, Avital A, Sosnik A.Polymeric nanocarriers for noseto-brain drug delivery in neurodegenerative diseases and neurodevelopmental disorders [J].Acta Pharm Sin B,2023,13(5):1866-1886.
[9]
Kong L, Fan D, Zhou L, et al.The influence of modified molecular ( D/L-serine) chirality on the theragnostics of PAMAM-based nanomedicine for acute kidney injury [J].J Mater Chem B,2021,9(43):9023-9030.
[10]
Yu S, Xu X, Feng J, et al.Chitosan and chitosan coating nanoparticles for the treatment of brain disease[J].Int J Pharm,2019,560:282-293.
[11]
Wang D, Li S, Tan X, et al.Engineering of stepwise-targeting chitosan oligosaccharide conjugate for the treatment of acute kidney injury [J].Carbohydr Polym,2021,256:117556.
[12]
Jiang D, Ge Z, Im H, et al.DNA origami nanostructures can exhibit preferential renal uptake and alleviate acute kidney injury[J].Nat Biomed Eng,2018,2(11):865-877.
[13]
Zhang D, Qi B, Li D, et al.Phillyrin relieves lipopolysaccharide-induced AKI by protecting against glycocalyx damage and inhibiting inflammatory responses [ J ].Inflammation,2020,43(2):540-551.
[14]
Chen Y, Lin L, Tao X, et al.The role of podocyte damage in the etiology of ischemia-reperfusion acute kidney injury and postinjury fibrosis [J].BMC Nephrol,2019,20(1):106.
[15]
Huang Y,Wang J,Jiang K,et al.Improving kidney targeting: the influence of nanoparticle physicochemical properties on kidney interactions [J].J Control Release,2021,334:127-137.
[16]
Williams R, Shah J, Ng B, et al.Mesoscale nanoparticles selectively target the renal proximal tubule epithelium [J].Nano Lett,2015,15(4):2358-2364.
[17]
Huang J, Guo J, Dong Y, et al.Self-assembled hyaluronic acidcoated nanocomplexes for targeted delivery of curcumin alleviate acute kidney injury [J].Int J Biol Macromol,2023,226:1192-1202.
[18]
Li J, Duan Q, Wei X, et al.Kidney-targeted nanoparticles loaded with the natural antioxidant rosmarinic acid for acute kidney injury treatment [J].Small,2022,18(48): e2204388.
[19]
Liu D, Jin F, Shu G, et al.Enhanced efficiency of mitochondria-targeted peptide SS-31 for acute kidney injury by pH-responsive and AKI-kidney targeted nanopolyplexes [J].Biomaterials,2019,211:57-67.
[20]
Yu H, Jin F, Liu D, et al.ROS-responsive nano-drug delivery system combining mitochondria-targeting ceria nanoparticles with atorvastatin for acute kidney injury [J].Theranostics,2020,10(5):2342-2357.
[21]
Holditch SJ, Brown CN, Lombardi AM, et al.Recent advances in models, mechanisms, biomarkers, and interventions in cisplatin-induced acute kidney injury [J].Int J Mol Sci,2019,20(12):3011.
[22]
Fan X, Zhang X, Liu L, et al.Hemopexin accumulates in kidneys and worsens acute kidney injury by causing hemoglobin deposition and exacerbation of iron toxicity in proximal tubules[J].Kidney Int,2022,102(6):1320-1330.
[23]
Deng L, Xiao M, Wu A, et al.Se/albumin nanoparticles for inhibition of ferroptosis in tubular epithelial cells during acute kidney injury [J].ACS Appl Nano Mater,2022,5(1):227-236.
[24]
Duan R, Li Y, Zhang R, et al.Reversing acute kidney injury through coordinated interplay of anti-inflammation and iron supplementation [ J].Adv Mater, 2023, 35 ( 28 ):e2301283.
[25]
Yang Y, Liu Y, Wang Y, et al.Regulation of SIRT1 and its roles in inflammation [J].Front Immunol,2022,13:831168.
[26]
Li X, Wang Q, Deng G, et al.Porous Se@ SiO2 nanospheres attenuate cisplatin-induced acute kidney injury via activation of Sirt1 [J].Toxicol Appl Pharmacol,2019,380:114704.
[1] 李金泽, 彭雅琪, 刘月平, 马力. 乳腺癌HER-2低表达及超低表达临床研究进展[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(02): 70-75.
[2] 陈瑞, 王丽, 徐海乐, 许彬, 陈超, 陆件. 早期监测白细胞介素35 联合肝素结合蛋白对脓毒症相关急性肾损伤的预测价值[J/OL]. 中华危重症医学杂志(电子版), 2025, 18(02): 122-127.
[3] 王丽敏, 周小建. LncRNA 及相关miRNA 在缺氧缺血性脑损伤中的表达[J/OL]. 中华妇幼临床医学杂志(电子版), 2025, 21(02): 145-150.
[4] 李培真, 刘海亮, 李大伟, 贾昊, 张泽瑾, 刘力维, 申传安. 重度烧伤患者发生早期急性肾损伤危险因素分析及预测模型建立[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(03): 199-205.
[5] 赵海涛. 进展期胆管癌治疗探索及展望[J/OL]. 中华普通外科学文献(电子版), 2025, 19(02): 110-110.
[6] 吴楚营, 叶凯. 不同部位胃肠道间质瘤的腹腔镜手术策略[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(02): 224-227.
[7] 陈博滔, 胡宽, 毛先海. 胆囊癌肿瘤微环境与系统治疗[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(02): 203-208.
[8] 吴春霖, 侯一夫, 陈凯, 赵冀, 唐世杰, 杨洪吉. 肝动脉灌注化疗联合PD-1/TKI 治疗不可切除性肝癌的安全性和疗效[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(02): 217-224.
[9] 绳春佳, 陈雨浩, 彭飞, 夏纪凯, 李晓帆, 陈健文, 张楚悦, 吴玲玲, 刘娇娜, 白雪源, 陈香美. 表没食子儿茶素没食子酸酯通过抑制细胞衰老改善小鼠急性肾损伤[J/OL]. 中华肾病研究电子杂志, 2025, 14(03): 133-139.
[10] 罗沙, 邱乐乐, 于祥, 冯哲, 蔡广研, 黄静. 无创容量评估新技术在急性肾损伤患者连续性肾脏替代治疗中的应用研究[J/OL]. 中华肾病研究电子杂志, 2025, 14(02): 61-67.
[11] 李菲, 郭晓夏, 郑悦, 郑爔, 李鑫成, 李文雄. 他汀类药物对甘油三酯葡萄糖指数增高的脓毒症相关急性肾损伤患者预后的影响[J/OL]. 中华肾病研究电子杂志, 2025, 14(02): 68-76.
[12] 张佳馨, 刘洋, 吴贞, 程庆砾, 敖强国. 高钠血症对老年院内急性肾损伤患者短期预后的影响[J/OL]. 中华肾病研究电子杂志, 2025, 14(02): 83-90.
[13] 宋然, 郑雅各. 仑伐替尼联合肝动脉插管化疗栓塞术治疗不可切除晚期肝癌的疗效及生存率影响因素分析[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(02): 120-124.
[14] 宋陈晨, 梁天赐, 赵悦, 张超贻, 王辉, 问婷芝, 戎彪学. X 型胶原α1 在恶性肿瘤中的研究进展[J/OL]. 中华临床医师杂志(电子版), 2025, 19(03): 221-228.
[15] 刘玉奇, 李健, 仲捷, 李群, 常帅, 于春鹏. 微波消融同步肝动脉插管化疗栓塞联合靶免治疗大肝癌的临床疗效及安全性分析[J/OL]. 中华介入放射学电子杂志, 2025, 13(02): 110-116.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?