1 |
Zhang L, Wang F, Wang L, et al. Prevalence of chronic kidney disease in China: a cross-sectional survey. Lancet, 2012,379(9818): 815-822.
|
2 |
Reinhart BJ, Bartel DP. Small RNAs correspond to centromere heterochromatic repeats [J]. Science, 2002, 297(5588): 1831.
|
3 |
Wang Y, Stricker HM, Gou D, et al. MicroRNA: past and present[J]. Front Biosci, 2007, 12: 2316-2329.
|
4 |
Shi S, Yu L, Chiu C, et al. Podocyte-selective deletion of dicer induces proteinuria and glomerulosclerosis [J]. J Am Soc Nephrol,2008, 19(11): 2159-2169.
|
5 |
Harvey SJ, Jarad G, Cunningham J, et al. Podocyte-specific deletion of dicer alters cytoskeletal dynamics and causes glomerular disease [J]. J Am Soc Nephrol, 2008, 19(11): 2150-2158.
|
6 |
Ho J, Ng KH, Rosen S, et al. Podocyte-specific loss of functional microRNAs leads to rapid glomerular and tubular injury [J]. J Am Soc Nephrol, 2008, 19(11): 2069-2075.
|
7 |
Chandrasekaran K, Karolina DS, Sepramaniam S, et al. Role of microRNAs in kidney homeostasis and disease [J]. Kidney Int,2012, 81(7): 617-627.
|
8 |
Wei Q, Bhatt K, He HZ, et al. Targeted deletion of Dicer from proximal tubules protects against renal ischemia-reperfusion injury [J]. J Am Soc Nephrol, 2010, 21(5): 756-761.
|
9 |
Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition [J]. J Clin Invest, 2009, 119(6): 1420-1428.
|
10 |
Kriz W, Kaissling B, Le Hir M. Epithelial-mesenchymal transition(EMT) in kidney fibrosis: fact or fantasy [J]. J Clin Invest, 2011,121(2): 468-474.
|
11 |
Liu Y. New insights into epithelial-mesenchymal transition in kidney fibrosis [J]. J Am Soc Nephrol, 2010, 21(2): 212-222.
|
12 |
Greenburg G, Hay ED. Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells [J]. J Cell Biol, 1982, 95(1): 333-339.
|
13 |
Liu Y. Epithelial to mesenchymal transition in renal fibrogenesis:pathologic significance, molecular mechanism, and therapeutic intervention [J]. J Am Soc Nephrol, 2004, 15(1): 1-12.
|
14 |
Thiery JP, Acloque H, Huang RY, et al. Epithelial-mesenchymal transitions in development and disease [J]. Cell, 2009, 139(5):871-890.
|
15 |
Lopez-Novoa JM, Nieto MA. Inflammation and EMT: an alliance towards organ fibrosis and cancer progression [J]. EMBO Mol Med, 2009, 1(6/7): 303-314.
|
16 |
Yang J, Liu Y. Dissection of key events in tubular epithelial to myofibroblast transition and its implications in renal interstitial fibrosis [J]. Am J Pathol, 2001, 159(4): 1465-1475.
|
17 |
Kalluri R, Neilson EG. Epithelial-mesenchymal transition and its implications for fibrosis [J]. J Clin Invest, 2003, 112(12): 1776-1784.
|
18 |
Kalluri R. EMT: when epithelial cells decide to become mesenchymal-like cells [J]. J Clin Invest, 2009, 119(6): 1417-b1419.
|
19 |
Comijn J, Berx G, Vermassen P, et al. The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion [J]. Mol Cell, 2001, 7(6): 1267-1278.
|
20 |
Gregory PA, Bert AG, Paterson EL, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1 [J]. Nat Cell Biol, 2008, 10(5): 593-601.
|
21 |
Kato M, Zhang J, Wang M, et al. MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors [J]. Proc Natl Acad Sci U S A, 2007, 104(9): 3432-3437.
|
22 |
Chung AC, Huang XR, Meng X, et al. miR-192 mediates TGFbeta/Smad3-driven renal fibrosis [J]. J Am Soc Nephrol, 2010,21(8): 1317-1325.
|
23 |
Du R, Sun W, Xia L, et al. Hypoxia-induced down-regulation of microRNA-34a promotes EMT by targeting the Notch signaling pathway in tubular epithelial cells [J]. PLoS One, 2012, 7(2):e30771.
|
24 |
Kong W, Yang H, He L, et al. MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA [J]. Mol Cell Biol,2008, 28(22): 6773-6784.
|
25 |
Humphreys BD, Lin SL, Kobayashi A, et al. Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis [J]. Am J Pathol, 2010, 176(1): 85-97.
|
26 |
Tian Z, Greene AS, Pietrusz JL, et al. MicroRNA-target pairs in the rat kidney identified by microRNA microarray, proteomic, and bioinformatic analysis [J]. Genome Res, 2008, 18(3): 404-411.
|
27 |
Krupa A, Jenkins R, Luo DD, et al. Loss of MicroRNA-192 promotes fibrogenesis in diabetic nephropathy [J]. J Am Soc Nephrol, 2010, 21(3): 438-447.
|
28 |
Wang B, Herman-Edelstein M, Koh P, et al. E-cadherin expression is regulated by miR-192/215 by a mechanism that is independent of the profibrotic effects of transforming growth factor-beta [J].Diabetes, 2010, 59(7): 1794-1802.
|
29 |
Oba S, Kumano S, Suzuki E, et al. miR-200b precursor can ameliorate renal tubulointerstitial fibrosis [J]. PLoS One, 2010,5(10): e13614.
|
30 |
Wang B, Koh P, Winbanks C, et al. miR-200a Prevents renal fibrogenesis through repression of TGF-beta2 expression [J].Diabetes, 2011, 60(1): 280-287.
|
31 |
Liu Y, Taylor NE, Lu L, et al. Renal medullary microRNAs in Dahl salt-sensitive rats: miR-29b regulates several collagens and related genes [J]. Hypertension, 2010, 55(4): 974-982.
|
32 |
Qin W, Chung AC, Huang XR, et al. TGF-beta/Smad3 signaling promotes renal fibrosis by inhibiting miR-29 [J]. J Am Soc Nephrol, 2011, 22(8): 1462-1474.
|
33 |
Kantharidis P, Wang B, Carew RM, et al. Diabetes complications:the microRNA perspective [J]. Diabetes, 2011, 60(7): 1832-1837.
|
34 |
Kato M, Wang L, Putta S, et al. Post-transcriptional up-regulation of Tsc-22 by Ybx1, a target of miR-216a, mediates TGF-{beta}-induced collagen expression in kidney cells [J]. J Biol Chem,2010, 285(44): 34004-34015.
|
35 |
Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stable blood-based markers for cancer detection [J]. Proc Natl Acad Sci U S A, 2008, 105(30): 10513-10518.
|
36 |
Hanke M, Hoefig K, Merz H, et al. A robust methodology to study urine microRNA as tumor marker: microRNA-126 and microRNA-182 are related to urinary bladder cancer [J]. Urol Oncol, 2010, 28(6): 655-661.
|
37 |
Casalini P, Iorio MV. MicroRNAs and future therapeutic applications in cancer [J]. J BUON, 2009, 14 Suppl 1: S17-22.
|
38 |
Anglicheau D, Sharma VK, Ding R, et al. MicroRNA expression profiles predictive of human renal allograft status [J]. Proc Natl Acad Sci U S A, 2009, 106(13): 5330-5335.
|
39 |
Dai Y, Sui W, Lan H, et al. Microarray analysis of microribonucleic acid expression in primary immunoglobulin A nephropathy [J]. Saudi Med J, 2008, 29(10): 1388-1393.
|
40 |
van Rooij E, Sutherland LB, Thatcher JE, et al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis [J]. Proc Natl Acad Sci U S A, 2008, 105(35):13027-13032.
|
41 |
Thum T, Gross C, Fiedler J, et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts [J]. Nature, 2008, 456(7224): 980-984.
|