[1] |
Keskar V, Jamale TE, Kulkarni MJ, et al. Minimal-change disease in adolescents and adults: epidemiology and therapeutic response [J]. Clin Kidney J, 2013, 6(5): 469-472.
|
[2] |
Vivarellim M, Massella L, Ruggiero B, et al. Minimal change disease [J]. Clin J Am Soc Nephrol, 2017, 12(2): 332-345.
|
[3] |
Jefferson JA, Nelson PJ, Najafiam B, et al. Podocyte disorders: core curriculum 2011 [J]. Am J Kidney Dis, 2011, 58(4): 666-677.
|
[4] |
Noone DG, Iijima K, Parekh R. Idiopathic nephrotic syndrome in children [J]. Lancet, 2018, 392(10141): 61-74.
|
[5] |
Larkins N, Kim S, Craig J, et al. Steroid-sensitive nephrotic syndrome: an evidence-based update of immunosuppressive treatment in children [J]. Arch Dis Child, 2016, 101(4): 404-408.
|
[6] |
Eddy AA, Symons JM. Nephrotic syndrome in childhood [J]. Lancet, 2003, 362(9384): 629-639.
|
[7] |
Korbet SM, Whittier WL. Management of adult minimal change disease [J]. Clin J Am Soc Nephrol, 2019, 14(6): 911-913.
|
[8] |
Shimada M, Araya C, Rivard C, et al. Minimal change disease: a " two-hit" podocyte immune disorder? [J]. Pediatr Nephrol, 2011, 26(4): 645-649.
|
[9] |
郑春霞,刘志红. 足细胞与机体免疫系统[J]. 肾脏病与透析肾移植杂志,2012, 21(4): 358-362.
|
[10] |
Purohit S, Piani F, Ordo?ez FA, et al. Molecular mechanisms of proteinuria in minimal change disease [J]. Front Med (Lausanne), 2021, 8: 761600.
|
[11] |
Abdel-Hafze M, Shimada M, Lee PY, et al. Idiopathic nephrotic syndrome and atopy: is there a common link? [J]. Am J Kidney Dis, 2009, 54(5): 945-953.
|
[12] |
Kim AH, Chung JJ, Akilesh S, et al. B cell-derived IL-4 acts on podocytes to induce proteinuria and foot process effacement [J]. JCI Insight, 2017, 2(21): e81836.
|
[13] |
Mikami N, Sakaguchi S. Regulatory T cells in autoimmune kidney diseases and transplantation [J]. Nat Rev Nephrol, 2023, 19(9): 544-557.
|
[14] |
Le Berre L, Bruneau S, Naulet J, et al. Induction of T regulatory cells attenuates idiopathic nephrotic syndrome [J]. J Am Soc Nephrol, 2009, 20(1): 57-67.
|
[15] |
Wang YM, Zhang GY, Hu M, et al. CD8+ regulatory T cells induced by T cell vaccination protect against autoimmune nephritis [J]. J Am Soc Nephrol, 2012, 23(6): 1058-1067.
|
[16] |
Polhill T, Zhang GY, Hu M, et al. IL-2/IL-2Ab complexes induce regulatory T cell expansion and protect against proteinuric CKD [J]. J Am Soc Nephrol, 2012, 23(8): 1303-1308.
|
[17] |
Bertelli R, Di Donato A, Cioni M, et al. LPS nephropathy in mice is ameliorated by IL-2 independently of regulatory T cells activity [J]. PLoS One, 2014, 9(10): e111285.
|
[18] |
Liu LL, Qin Y, Cai JF, et al. Th17/Treg imbalance in adult patients with minimal change nephrotic syndrome [J]. Clin Immunol, 2011, 139(3): 314-320.
|
[19] |
Webendörfer M, Reinhard L, Stahl RAK, et al. Rituximab induces complete remission of proteinuria in a patient with minimal change disease and no detectable B cells [J]. Front Immunol, 2020, 11: 586012.
|
[20] |
Colucci M, Oniszczuk J, Vivarelli M, et al. B-cell dysregulation in idiopathic nephrotic syndrome: what we know and what we need to discover [J]. Front Immunol, 2022, 13: 823204.
|
[21] |
Li X, He JC. An update: the role of nephrin inside and outside the kidney [J]. Sci China Life Sci, 2015, 58(7): 649-657.
|
[22] |
Wattis AJB, Keller KH, Lerner G, et al. Discovery of autoantibodies targeting nephrin in minimal change disease supports a novel autoimmune etiology [J]. J Am Soc Nephrol, 2022, 33(1): 238-252.
|
[23] |
Oniszxzuk J, Beldl-ferchiou A, Audureau E, et al. Circulating plasmablasts and high level of BAFF are hallmarks of minimal change nephrotic syndrome in adults [J]. Nephrol Dial Transplant, 2021, 36(4): 609-617.
|
[24] |
Colucci M, Carsetti R, Rosado MM, et al. Atypical IgM on T cells predict relapse and steroid dependence in idiopathic nephrotic syndrome [J]. Kidney Int, 2019, 96(4): 971-982.
|
[25] |
Srivastava T, Joshi T, Heruth DP, et al. A mouse model of prenatal exposure to Interleukin-6 to study the developmental origin of health and disease [J]. Sci Rep, 2021, 11(1): 13260.
|
[26] |
Kim AH, Chung JJ, Akilesh S, et al. B cell-derived IL-4 acts on podocytes to induce proteinuria and foot process effacement [J]. JCI Insight, 2017, 2(21): e81836.
|
[27] |
Colucci M, Carsetti R, Cascioli S, et al. B cell phenotype in pediatric idiopathic nephrotic syndrome [J]. Pediatr Nephrol, 2019, 34(1): 177-181.
|
[28] |
Yang X, Tang X, Li T, et al. Circulating follicular T helper cells are possibly associated with low levels of serum immunoglobulin G due to impaired immunoglobulin class-switch recombination of B cells in children with primary nephrotic syndrome [J]. Mol Immunol, 2019, 114: 162-170.
|
[29] |
Garg P. A review of podocyte biology [J]. Am J Nephrol, 2018, 47(Suppl 1): 3-13.
|
[30] |
Shen X, Zhang Y, Lin C, et al. Calcineurin inhibitors ameliorate PAN-induced podocyte injury through the NFAT-Angptl4 pathway [J]. J Pathol, 2020, 252(3): 227-238.
|
[31] |
Cara-fuentes G, Clapp WL, Johnson RJ, et al. Pathogenesis of proteinuria in idiopathic minimal change disease: molecular mechanisms [J]. Pediatr Nephrol, 2016, 31(12): 2179-2189.
|
[32] |
Kidney Disease: Improving Global Outcomes (KDIGO) Glomerular Diseases Work Group. KDIGO 2021 clinical practice guideline for the management of glomerular diseases [J]. Kidney Int, 2021, 100(4S): S1-S276.
|
[33] |
Wada T, Ishimoto T, Nakaya I, et al. A digest of the evidence-based clinical practice guideline for nephrotic syndrome 2020 [J]. Clin Exp Nephrol, 2021, 25(12): 1277-1285.
|
[34] |
Ozeki T, Katsuno T, Hayashi H, et al. Short-term steroid regimen for adult steroid-sensitive minimal change disease [J]. Am J Nephrol, 2019, 49(1): 54-63.
|
[35] |
Malpica L, Moll S. Practical approach to monitoring and prevention of infectious complications associated with systemic corticosteroids, antimetabolites, cyclosporine, and cyclophosphamide in nonmalignant hematologic diseases [J]. Hematology Am Soc Hematol Educ Program, 2020, 2020(1): 319-327.
|
[36] |
Larkins NG, Liu ID, Willis NS, et al. Non-corticosteroid immunosuppressive medications for steroid-sensitive nephrotic syndrome in children [J]. Cochrane Database Syst Rev, 2020, 4(4): CD002290.
|
[37] |
Shen X, Jiang H, Ying M, et al. Calcineurin inhibitors cyclosporin A and tacrolimus protect against podocyte injury induced by puromycin aminonucleoside in rodent models [J]. Sci Rep, 2016, 6: 32087.
|
[38] |
Shen X, Zhang Y, Lin C, et al. Calcineurin inhibitors ameliorate PAN-induced podocyte injury through the NFAT-Angptl4 pathway [J]. J Pathol, 2020, 252(3): 227-238.
|
[39] |
Xu D, Gao X, Bian R, et al. Tacrolimus improves proteinuria remission in adults with cyclosporine A-resistant or -dependent minimal change disease [J]. Nephrology (Carlton), 2017, 22(3): 251-256.
|
[40] |
Lu J, Xu Z, Xu W, et al. Efficacy and safety of tacrolimus versus corticosteroid as inital monotherapy in adult-onset minimal change disease:a meta-analysis [J]. Int Urol Nephrol, 2022, 54(9): 2205-2213.
|
[41] |
Lusco MA, Fogo AB, Najafian B, et al. AJKD atlas of renal pathology: calcineurin inhibitor nephrotoxicity [J]. Am J Kidney Dis, 2017, 69(5): e21-e22.
|
[42] |
Ferreira PCL, Thiesen FV, Pereira AG, et al. A short overview on mycophenolic acid pharmacology and pharmacokinetics [J]. Clin Transplant, 2020, 34(8): e13997.
|
[43] |
于丹. 吗替麦考酚酯联合小剂量激素治疗微小病变性肾病综合征患者的临床疗效[J]. 中国药物经济学,2019, 14(11): 107-109.
|
[44] |
钟建瑜,陈兰兰,谋梁,等. 吗替麦考酚酯联合小剂量激素治疗成人激素依赖或激素抵抗微小病变肾病的疗效[J]. 广州医药,2016, 47(1): 35-38.
|
[45] |
Ishikura K, Yoshikawa N, Nakazato H, et al. Morbidity in children with frequently relapsing nephrosis: 10-year follow-up of a randomized controlled trial [J]. Pediatr Nephrol, 2015, 30(3): 459-468.
|
[46] |
Maas RJ, Nijenhuts T, Van D VJ. Minimal change disease: more than a podocytopathy? [J]. Kidney Int Rep, 2022, 7(4): 675-677.
|
[47] |
Ehren R, Benz MR, Brinkk?tter PT, et al. Pediatric idiopathic steroid-sensitive nephrotic syndrome: diagnosis and therapy -short version of the updated German best practice guideline (S2e) - AWMF register no. 166-001, 6/2020 [J]. Pediatr Nephrol, 2021, 36(10): 2971-2985.
|
[48] |
Gauckler P, Shin JI, AlbericiL F, et al. Rituximab in adult minimal change disease and focal segmental glomerulosclerosis - what is known and what is still unknown? [J]. Autoimmun Rev, 2020, 19(11): 102671.
|
[49] |
Fenoglio R, Sciascia S, Beltrame G, et al. Rituximab as a front-line therapy for adult-onset minimal change disease with nephrotic syndrome [J]. Oncotarget, 2018, 9(48): 28799-28804.
|
[50] |
Munyentwali H, Bouachi K, Audard V, et al. Rituximab is an efficient and safe treatment in adults with steroid-dependent minimal change disease [J]. Kidney Int, 2013, 83(3): 511-516.
|
[51] |
Heybeli C, Erickson SB, Fervenza FC, et al. Comparison of treatment options in adults with frequently relapsing or steroid-dependent minimal change disease [J]. Nephrol Dial Transplant, 2021, 36(10): 1821-1827.
|
[52] |
Lin L, Wang W, Wu Y, et al. Consolidation treatment and long-term prognosis of rituximab in minimal change disease and focal segmental glomerular sclerosis [J]. Drug Des Devel Ther, 2021, 15: 1945-1953.
|
[53] |
Ramachandran R, Bharati J, Nada R, et al. Rituximab in maintaining remission in adults with podocytopathy [J]. Nephrology (Carlton), 2020, 25(8): 616-624.
|
[54] |
Osterholt T, Todorova P, Kühne L, et al. Repetitive administration of rituximab can achieve and maintain clinical remission in patients with MCD or FSGS [J]. Sci Rep, 2023, 13(1): 6980.
|
[55] |
Teh YM, Lim SK, Jusoh N, et al. CD80 insights as therapeutic target in the current and future treatment options of frequent-relapse minimal change disease [J]. Biomed Res Int, 2021, 2021: 6671552.
|
[56] |
Isom R, Shoor S, Higgins J, et al. Abatacept in steroid-dependent minimal change disease and CD80-uria [J]. Kidney Int Rep, 2019, 4(9): 1349-1353.
|