切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2013, Vol. 02 ›› Issue (03) : 120 -125. doi: 10.3877/cma.j.issn.2095-3216.2013.03.003

专家论坛

急性肾损伤发病与修复的机制
杨莉1,()   
  1. 1.100034 北京大学第一医院肾病科 北京大学肾脏病研究所
  • 出版日期:2013-06-15
  • 通信作者: 杨莉

Mechanisms of injury and repair of acute kidney injury

Li YANG1,()   

  1. 1.Renal Division, Department of Medicine, Peking University First Hospital; Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing 100034, P.R.China
  • Published:2013-06-15
  • Corresponding author: Li YANG
引用本文:

杨莉. 急性肾损伤发病与修复的机制[J/OL]. 中华肾病研究电子杂志, 2013, 02(03): 120-125.

Li YANG. Mechanisms of injury and repair of acute kidney injury[J/OL]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2013, 02(03): 120-125.

急性肾损伤(AKI)的组织损伤与修复过程由复杂的多种机制、多种效应细胞共同参与。肾小管上皮、微血管内皮和炎症细胞是这一复杂体系的三个关键环节。肾小管上皮细胞是急性损伤的主要靶细胞,通过分泌多种细胞因子调控免疫炎症反应,其增殖障碍直接导致纤维化的发生与发展;微血管内皮损伤后不仅参与炎症反应的发生和发展,其修复不良还导致组织持续缺血缺氧,促进纤维化的发生;AKI后持续免疫炎症反应的失调特别是单核巨噬的持续活化亦为AKI后修复不良的重要因素。

The renal tubular epithelium, the endothelium of microvessels and the inflammatory cells are the three major components of the complicated mechanisms that are involved in the process of tissue injury and repair during acute kidney injury (AKI). The renal tubular epithelial cells are not only the major target of injury, but also modulate inflammatory responses through secreting various cytokines. The maladaptive repair of tubular epithelial cells after AKI initiates interstitial fibrosis. The continuous loss of endothelium of microvessels induces chronic ischemia and hypoxia in the tubulointerstitial compartment,which promotes the progression of fibrosis. The sustained activation of monocytes/macrophages also devotes to the process of fibrosis.

1
Bagshaw SM, George C, Gibney RT, et al. A multi-center evaluation of early acute kidney injury in critically ill trauma patients [J]. Ren Fail, 2008,30(6): 581-589.
2
Coca SG, Singanamala S, Parikh CR. Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis [J].Kidney Int, 2012,81(5): 442-448.
3
Chawla LS, Kimmel PL. Acute kidney injury and chronic kidney disease:an integrated clinical syndrome [J]. Kidney Int, 2012, 82(5): 516-524.
4
Macedo E, Bouchard J, Mehta RL. Renal recovery following acute kidney injury [J]. Curr Opin Crit Care, 2008, 14(6): 660-665.
5
Ishani A, Xue JL, Himmelfarb J, et al. Acute kidney injury increases risk of ESRD among elderly [J]. J Am Soc Nephrol, 2009, 20(1): 223-228.
6
Coca SG, Yusuf B, Shlipak MG, et al. Long-term risk of mortality and other adverse outcomes after acute kidney injury: a systematic review and meta-analysis [J]. Am J Kidney Dis, 2009, 53(6): 961-973.
7
Chawla LS, Amdur RL, Amodeo S, et al. The severity of acute kidney injury predicts progression to chronic kidney disease [J]. Kidney Int, 2011,79(12):1361-1369.
8
Thakar CV, Christianson A, Himmelfarb J, et al. Acute kidney injury episodes and chronic kidney disease risk in diabetes mellitus [J]. Clin J Am Soc Nephrol, 2011, 6(11): 2567-2572.
9
Bonventre JV, Yang L. Cellular Pathophysiology of Ischemic Acute Kidney Injury [J]. J Clinic Invest, 2011, 121(11):4210-4221.
10
Zuk A, Bonventre JV, Matlin KS. Expression of fibronectin splice variants in the postischemic rat kidney [J]. Am J Physiol Renal Physiol, 2001,280(6):F1037-F1053.
11
Bonventre JV, Zuk A. Ischemic acute renal failure: an inflammatory disease? [J]. Kidney Int, 2004, 66(2):480-485.
12
Wu H, Chen G, Wyburn KR, et al. TLR4 activation mediates kidney ischemia/reperfusion injury [J]. J Clin Invest, 2007, 117(10): 2847-2859.
13
Cunningham PN, Wang Y, Guo R, et al. Role of Toll-like receptor 4 in endotoxin-induced acute renal failure[J]. J. Immunol, 2004, 172(4):2629-2635.
14
Wahl P, Schoop R, Bilic G, et al. Renal tubular epithelial expression of the costimulatory molecule B7RP-1 (inducible costimulator ligand) [J]. J Am Soc Nephrol, 2002, 13(6):1517-1526.
15
Patschan D, Patschan S, Müller GA. Inflammation and microvasculopathy in renal ischemia reperfusion Injury [J]. J Transplantation, 2012,EPUB.16.
16
Molitoris BA, Sutton TA. Endothelial injury and dysfunction: role in the extension phase of acute renal failure [J]. Kidney Int, 2004; 66(2): 496-499.
17
Kinsey GR, Li L, Okusa MD. Inflammation in acute kidney injury [J].Nephron Exp Nephrol, 2008, 109(4): e102-e107.
18
Jang HR, Rabb H. The innate immune response in ischemic acute kidney injury [J]. Clin Immunol, 2009, 130(1): 41-50.
19
Sutton TA, Hato T, Mai E, et al. p53 is renoprotective after ischemic kidney injury by reducing inflammation [J]. J Am Soc Nephrol, 2012, 23(4): 696-705.
20
Ahn JM, You SJ, Lee YM, et al. Hypoxia-inducible factor activation protects the kidney from gentamicin-induced acute injury [J]. PLoS One,2012, 7(11):e48952.
21
Friedewald JJ, Rabb H. Inflammatory cells in ischemic acute renal failure[J]. Kidney Int, 2004, 66 (2): 486-491.
22
Day Y J, Huang L, Ye H, et al. Renal ischemia-reperfusion injury and adenosine 2A receptor-mediated tissue protection: role of macrophages [J].Am J Physiol, 2005, 288(4): F722-F731.
23
Li L, Huang L, Sun-sang J S, et al. NKT cell activation mediates neutrophil IFN-γ production and renal eschemia-reperfusion injury [J]. J Immunol,2007, 178 (9):5899-5911.
24
Burne MJ, Daniels F, El Ghandour A, et al. Identification of the CD4+ T cell as a major pathogenic factor in ischemic acute renal failure [J]. J Clinic Invest, 2001, 108(9):1283-1290.
25
Jang HR, Gandolfo MT, Ko GJ, et al. B cells limit repair after ischemic acute kidney injury[J]. J Am Soc Nephrol, 2010, 21(4): 654-665.
26
de Vries B, Köhl J, Leclercq WKG, et al. Complement factor C5a mediates renal ischemia-reperfusion injury independent from neutrophils[J]. J Immunol, 2003, 170(7): 3883-3889.
27
Kinsey GR, Sharma R, Huang L, et al. Regulatory T Cells Suppress Innate Immunity in Kidney Ischemia-Reperfusion Injury [J]. J Am Soc Nephrol,2009, 20(8): 1744-1753.
28
Kim MG, Boo CS, Ko YS, et al. Depletion of kidney CD11c+ F4/80+cells impairs the recovery process in ischaemia/ reperfusion induced acute kidney injury [J]. Nephrol Dial Transplant, 2010, 25(9):2908-2921.
29
Humphreys BD, Valerius MT, Kobayashi A, et al. Intrinsic epithelial cells repair the kidney after injury [J]. Cell Stem Cell, 2008, 2(3):284-291.
30
Yang L, Besschetnova TY, Brooks CR, et al. Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury [J]. Nature Medicine, 2010,16(5):535-543.
31
Niida H, Nakanishi M. DNA damage checkpoints in mammals [J].Mutagenesis, 2006, 21(1): 3-9.
32
Price PM, Safirstein RL, Megyesi J. The cell cycle and acute kidney injury[J]. Kidney Int, 2009, 76(6): 604-613.
33
Abraham RT. Cell cycle checkpoint signaling through the ATM and ATR kinases [J]. Genes Dev, 2001, 15(17): 2177-2196.
34
Bencokova Z, Kaufmann MR, Pires IM, et al. ATM activation and signaling under hypoxic conditions [J]. Mol Cell Biol, 2009, 29(2): 526-537.
35
Zahedi K, Revelo MP, Barone S, et al. Stathmin-deficient mice develop fibrosis and show delayed recovery from ischemic-reperfusion injury [J].Am J Physiol Renal Physiol, 2006, 290(6): F1559-F1567.
36
Li K, Du X, He Y, et al. P53-Rb signaling pathway is involved in tubular cell senescence in renal ischemia/reperfusion injury [J]. Biocell, 2007,31(2): 213-223.
37
Megyesi J, Price PM, Tamayo E, et al. The lack of a functional p21(WAF1/CIP1) gene ameliorates progression to chronic renal failure [J]. Proc Natl Acad Sci U S A, 1999, 96(19): 10830-10835.
38
Molitoris BA, Sandoval RM. Kidney endothelial dysfunction: ischemia,localized infections and sepsis [J]. Contrib Nephrol, 2011, 174:108-118.
39
Basile DP, Donohoe D, Roethe K, et al. Renal ischemic injury results in permanent damage to peritubular capillaries and influences long-term function [J]. Am J Physiol, 2001, 281(5): F887-F899.
40
Basile DP. The endothelial cell in ischemic acute kidney injury:implications for acute and chronic function [J]. Kidney Int, 2007, 72(2):151-156.
41
Basile D P, Fredrich K, Chelladurai B, et al. Renal ischemia reperfusion inhibits VEGF expression and induces ADAMTS-1, a novel VEGF inhibitor [J]. Am J Physiol Renal Physiol, 2008, 294(4):F928-F936.
42
Fligny C, Duffield JS. Activation of pericytes: recent insights into kidney fibrosis and microvascular rarefaction [J].Curr Opin Rheumatol, 2013,25(1):78-86.
43
Kwon O, Hong SM, Sutton TA, et al. Preservation of peritubular capillary endothelial integrity and increasing pericytes may be critical to recovery from postischemic acute kidney injury [J]. Am J Physiol Renal Physiol,2008, 295(2):F351-F359.
44
Leonard EC, Friedrich JL, Basile DP. VEGF-121 preserves renal microvessel structure and ameliorates secondary renal disease following acute kidney injury [J]. Am J Physiol Renal Physiol, 2008,295(6):F1648-F1657.
45
Li B, Cohen A, Hudson TE, et al. Mobilized human hematopoietic stem/progenitor cells promote kidney repair after ischemia/reperfusion injury [J].Circulation,121(20): 2211-2220.
46
Kwon O, Miller S, Li N, et al. Bone marrow-derived endothelial progenitor cells and endothelial cells may contribute to endothelial repair in the kidney immediately after ischemia-reperfusion [J]. J Histochem Cytochem, 2010, 58(8): 687-694.
47
Semedo P, Donizetti-Oliveira C, Burgos-Silva M, et al. Bone marrow mononuclear cells attenuate fibrosis development after severe acute kidney injury [J]. Lab Invest, 2010, 90(5): 685-695.
48
Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis [J]. Science, 1997, 275(5302): 964-967.
49
Patschan D, Patschan S, Müller GA. Endothelial progenitor cells in acute ischemic kidney injury: strategies for increasing the cells’renoprotective competence [J] Int J of Nephrol, 2011, EPUB.
50
Rehman J, Li J, Orschell CM, et al. Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors [J]. Circulation, 2003, 107(8):1164-1169.
51
Goligorsky MS, Yasuda K, Ratliff B. Dysfunctional endothelial progenitor cells in chronic kidney disease [J]. J Am Soc Nephrol, 2010, 21(6):911-919.
52
Ko GJ, Boo CS, Jo SK, et al.Macrophages contribute to the development of renal fibrosis following ischaemia/reperfusion-induced acute kidney injury [J]. Nephrol Dial Transplant, 2008, 23(3): 842-852.
53
Lee S, Huen S, Nishio H, et al. Distinct macrophage phenotypes contribute to kidney injury and repair [J]. J Am Soc Nephrol, 2011, 22(2): 317-326.
54
Lin SL, Li B, Rao S, et al. Macrophage Wnt7b is critical for kidney repair and regeneration [J]. Proc Natl Acad Sci U S A, 2010, 107(9): 4194-4199.
[1] 王振宇, 张洪美, 荆琳, 何名江, 闫奇. 膝骨关节炎相关炎症因子与血浆代谢物间的因果关系及中介效应[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 467-473.
[2] 徐志刚, 曹涛, 何亭, 李博奥, 魏婧韬, 张栋梁, 官浩, 杨薛康. 采用抗生素骨水泥治疗糖尿病患者心脏术后胸骨骨髓炎的临床效果观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 498-502.
[3] 林同辉, 杨卫玺. 股前外侧穿支皮瓣在电烧伤治疗中应用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 526-530.
[4] 张洁, 罗小霞, 余鸿. 系统性免疫炎症指数对急性胰腺炎患者并发器官功能损伤的预测价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 68-71.
[5] 唐梅, 周丽, 牛岑月, 周小童, 王倩. ICG荧光导航的腹腔镜肝切除术临床意义[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 655-658.
[6] 付成旺, 杨大刚, 王榕, 李福堂. 营养与炎症指标在可切除胰腺癌中的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 704-708.
[7] 唐丹萍, 王萍, 江孟蝶, 杨晓蓉. 自体脂肪移植在乳腺癌术后乳房重建的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(05): 582-585.
[8] 高娟, 徐建庆, 闫芳, 丁盛华, 刘霞. Rutkow、TAPP、TEP 手术治疗单侧腹股沟疝患者的临床疗效及对血清炎症因子水平的影响[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 675-680.
[9] 孙璐, 蒋亚玲, 陈凌君. 布托啡诺对脑缺血再灌注损伤大鼠神经炎症和JAK2/STAT3信号通路的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 344-350.
[10] 严虹霞, 王晓娟, 张毅勋. 2 型糖尿病对结直肠癌患者肿瘤标记物、临床病理及预后的影响[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 483-487.
[11] 陈倩倩, 袁晨, 刘基, 尹婷婷. 多层螺旋CT 参数、癌胚抗原、错配修复基因及病理指标对结直肠癌预后的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 507-511.
[12] 沈炎, 张俊峰, 唐春芳. 预后营养指数结合血清降钙素原、胱抑素C及视黄醇结合蛋白对急性胰腺炎并发急性肾损伤的预测价值[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 536-540.
[13] 杭丽, 张耀辉, 孙文恺. 参菝抗瘤液对结直肠腺瘤性息肉术后肠道功能、炎症指标及复发情况的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 413-416.
[14] 王湛, 李文坤, 杨奕, 徐芳, 周敏思, 苏珈仪, 王亚丹, 吴静. 炎症指标在早发性结直肠肿瘤中的应用[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 802-810.
[15] 颜世锐, 熊辉. 感染性心内膜炎合并急性肾损伤患者的危险因素探索及死亡风险预测[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 618-624.
阅读次数
全文


摘要