| 1 | Bagshaw SM, George C, Gibney RT, et al. A multi-center evaluation of early acute kidney injury in critically ill trauma patients [J]. Ren Fail, 2008,30(6): 581-589. | 
																													
																						| 2 | Coca SG, Singanamala S, Parikh CR. Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis [J].Kidney Int, 2012,81(5): 442-448. | 
																													
																						| 3 | Chawla LS, Kimmel PL. Acute kidney injury and chronic kidney disease:an integrated clinical syndrome [J]. Kidney Int, 2012, 82(5): 516-524. | 
																													
																						| 4 | Macedo E, Bouchard J, Mehta RL. Renal recovery following acute kidney injury [J]. Curr Opin Crit Care, 2008, 14(6): 660-665. | 
																													
																						| 5 | Ishani A, Xue JL, Himmelfarb J, et al. Acute kidney injury increases risk of ESRD among elderly [J]. J Am Soc Nephrol, 2009, 20(1): 223-228. | 
																													
																						| 6 | Coca SG, Yusuf B, Shlipak MG, et al. Long-term risk of mortality and other adverse outcomes after acute kidney injury: a systematic review and meta-analysis [J]. Am J Kidney Dis, 2009, 53(6): 961-973. | 
																													
																						| 7 | Chawla LS, Amdur RL, Amodeo S, et al. The severity of acute kidney injury predicts progression to chronic kidney disease [J]. Kidney Int, 2011,79(12):1361-1369. | 
																													
																						| 8 | Thakar CV, Christianson A, Himmelfarb J, et al. Acute kidney injury episodes and chronic kidney disease risk in diabetes mellitus [J]. Clin J Am Soc Nephrol, 2011, 6(11): 2567-2572. | 
																													
																						| 9 | Bonventre JV, Yang L. Cellular Pathophysiology of Ischemic Acute Kidney Injury [J]. J Clinic Invest, 2011, 121(11):4210-4221. | 
																													
																						| 10 | Zuk A, Bonventre JV, Matlin KS. Expression of fibronectin splice variants in the postischemic rat kidney [J]. Am J Physiol Renal Physiol, 2001,280(6):F1037-F1053. | 
																													
																						| 11 | Bonventre JV, Zuk A. Ischemic acute renal failure: an inflammatory disease? [J]. Kidney Int, 2004, 66(2):480-485. | 
																													
																						| 12 | Wu H, Chen G, Wyburn KR, et al. TLR4 activation mediates kidney ischemia/reperfusion injury [J]. J Clin Invest, 2007, 117(10): 2847-2859. | 
																													
																						| 13 | Cunningham PN, Wang Y, Guo R, et al. Role of Toll-like receptor 4 in endotoxin-induced acute renal failure[J]. J. Immunol, 2004, 172(4):2629-2635. | 
																													
																						| 14 | Wahl P, Schoop R, Bilic G, et al. Renal tubular epithelial expression of the costimulatory molecule B7RP-1 (inducible costimulator ligand) [J]. J Am Soc Nephrol, 2002, 13(6):1517-1526. | 
																													
																						| 15 | Patschan D, Patschan S, Müller GA. Inflammation and microvasculopathy in renal ischemia reperfusion Injury [J]. J Transplantation, 2012,EPUB.16. | 
																													
																						| 16 | Molitoris BA, Sutton TA. Endothelial injury and dysfunction: role in the extension phase of acute renal failure [J]. Kidney Int, 2004; 66(2): 496-499. | 
																													
																						| 17 | Kinsey GR, Li L, Okusa MD. Inflammation in acute kidney injury [J].Nephron Exp Nephrol, 2008, 109(4): e102-e107. | 
																													
																						| 18 | Jang HR, Rabb H. The innate immune response in ischemic acute kidney injury [J]. Clin Immunol, 2009, 130(1): 41-50. | 
																													
																						| 19 | Sutton TA, Hato T, Mai E, et al. p53 is renoprotective after ischemic kidney injury by reducing inflammation [J]. J Am Soc Nephrol, 2012, 23(4): 696-705. | 
																													
																						| 20 | Ahn JM, You SJ, Lee YM, et al. Hypoxia-inducible factor activation protects the kidney from gentamicin-induced acute injury [J]. PLoS One,2012, 7(11):e48952. | 
																													
																						| 21 | Friedewald JJ, Rabb H. Inflammatory cells in ischemic acute renal failure[J]. Kidney Int, 2004, 66 (2): 486-491. | 
																													
																						| 22 | Day Y J, Huang L, Ye H, et al. Renal ischemia-reperfusion injury and adenosine 2A receptor-mediated tissue protection: role of macrophages [J].Am J Physiol, 2005, 288(4): F722-F731. | 
																													
																						| 23 | Li L, Huang L, Sun-sang J S, et al. NKT cell activation mediates neutrophil IFN-γ production and renal eschemia-reperfusion injury [J]. J Immunol,2007, 178 (9):5899-5911. | 
																													
																						| 24 | Burne MJ, Daniels F, El Ghandour A, et al. Identification of the CD4+ T cell as a major pathogenic factor in ischemic acute renal failure [J]. J Clinic Invest, 2001, 108(9):1283-1290. | 
																													
																						| 25 | Jang HR, Gandolfo MT, Ko GJ, et al. B cells limit repair after ischemic acute kidney injury[J]. J Am Soc Nephrol, 2010, 21(4): 654-665. | 
																													
																						| 26 | de Vries B, Köhl J, Leclercq WKG, et al. Complement factor C5a mediates renal ischemia-reperfusion injury independent from neutrophils[J]. J Immunol, 2003, 170(7): 3883-3889. | 
																													
																						| 27 | Kinsey GR, Sharma R, Huang L, et al. Regulatory T Cells Suppress Innate Immunity in Kidney Ischemia-Reperfusion Injury [J]. J Am Soc Nephrol,2009, 20(8): 1744-1753. | 
																													
																						| 28 | Kim MG, Boo CS, Ko YS, et al. Depletion of kidney CD11c+ F4/80+cells impairs the recovery process in ischaemia/ reperfusion induced acute kidney injury [J]. Nephrol Dial Transplant, 2010, 25(9):2908-2921. | 
																													
																						| 29 | Humphreys BD, Valerius MT, Kobayashi A, et al. Intrinsic epithelial cells repair the kidney after injury [J]. Cell Stem Cell, 2008, 2(3):284-291. | 
																													
																						| 30 | Yang L, Besschetnova TY, Brooks CR, et al. Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury [J]. Nature Medicine, 2010,16(5):535-543. | 
																													
																						| 31 | Niida H, Nakanishi M. DNA damage checkpoints in mammals [J].Mutagenesis, 2006, 21(1): 3-9. | 
																													
																						| 32 | Price PM, Safirstein RL, Megyesi J. The cell cycle and acute kidney injury[J]. Kidney Int, 2009, 76(6): 604-613. | 
																													
																						| 33 | Abraham RT. Cell cycle checkpoint signaling through the ATM and ATR kinases [J]. Genes Dev, 2001, 15(17): 2177-2196. | 
																													
																						| 34 | Bencokova Z, Kaufmann MR, Pires IM, et al. ATM activation and signaling under hypoxic conditions [J]. Mol Cell Biol, 2009, 29(2): 526-537. | 
																													
																						| 35 | Zahedi K, Revelo MP, Barone S, et al. Stathmin-deficient mice develop fibrosis and show delayed recovery from ischemic-reperfusion injury [J].Am J Physiol Renal Physiol, 2006, 290(6): F1559-F1567. | 
																													
																						| 36 | Li K, Du X, He Y, et al. P53-Rb signaling pathway is involved in tubular cell senescence in renal ischemia/reperfusion injury [J]. Biocell, 2007,31(2): 213-223. | 
																													
																						| 37 | Megyesi J, Price PM, Tamayo E, et al. The lack of a functional p21(WAF1/CIP1) gene ameliorates progression to chronic renal failure [J]. Proc Natl Acad Sci U S A, 1999, 96(19): 10830-10835. | 
																													
																						| 38 | Molitoris BA, Sandoval RM. Kidney endothelial dysfunction: ischemia,localized infections and sepsis [J]. Contrib Nephrol, 2011, 174:108-118. | 
																													
																						| 39 | Basile DP, Donohoe D, Roethe K, et al. Renal ischemic injury results in permanent damage to peritubular capillaries and influences long-term function [J]. Am J Physiol, 2001, 281(5): F887-F899. | 
																													
																						| 40 | Basile DP. The endothelial cell in ischemic acute kidney injury:implications for acute and chronic function [J]. Kidney Int, 2007, 72(2):151-156. | 
																													
																						| 41 | Basile D P, Fredrich K, Chelladurai B, et al. Renal ischemia reperfusion inhibits VEGF expression and induces ADAMTS-1, a novel VEGF inhibitor [J]. Am J Physiol Renal Physiol, 2008, 294(4):F928-F936. | 
																													
																						| 42 | Fligny C, Duffield JS. Activation of pericytes: recent insights into kidney fibrosis and microvascular rarefaction [J].Curr Opin Rheumatol, 2013,25(1):78-86. | 
																													
																						| 43 | Kwon O, Hong SM, Sutton TA, et al. Preservation of peritubular capillary endothelial integrity and increasing pericytes may be critical to recovery from postischemic acute kidney injury [J]. Am J Physiol Renal Physiol,2008, 295(2):F351-F359. | 
																													
																						| 44 | Leonard EC, Friedrich JL, Basile DP. VEGF-121 preserves renal microvessel structure and ameliorates secondary renal disease following acute kidney injury [J]. Am J Physiol Renal Physiol, 2008,295(6):F1648-F1657. | 
																													
																						| 45 | Li B, Cohen A, Hudson TE, et al. Mobilized human hematopoietic stem/progenitor cells promote kidney repair after ischemia/reperfusion injury [J].Circulation,121(20): 2211-2220. | 
																													
																						| 46 | Kwon O, Miller S, Li N, et al. Bone marrow-derived endothelial progenitor cells and endothelial cells may contribute to endothelial repair in the kidney immediately after ischemia-reperfusion [J]. J Histochem Cytochem, 2010, 58(8): 687-694. | 
																													
																						| 47 | Semedo P, Donizetti-Oliveira C, Burgos-Silva M, et al. Bone marrow mononuclear cells attenuate fibrosis development after severe acute kidney injury [J]. Lab Invest, 2010, 90(5): 685-695. | 
																													
																						| 48 | Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis [J]. Science, 1997, 275(5302): 964-967. | 
																													
																						| 49 | Patschan D, Patschan S, Müller GA. Endothelial progenitor cells in acute ischemic kidney injury: strategies for increasing the cells’renoprotective competence [J] Int J of Nephrol, 2011, EPUB. | 
																													
																						| 50 | Rehman J, Li J, Orschell CM, et al. Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors [J]. Circulation, 2003, 107(8):1164-1169. | 
																													
																						| 51 | Goligorsky MS, Yasuda K, Ratliff B. Dysfunctional endothelial progenitor cells in chronic kidney disease [J]. J Am Soc Nephrol, 2010, 21(6):911-919. | 
																													
																						| 52 | Ko GJ, Boo CS, Jo SK, et al.Macrophages contribute to the development of renal fibrosis following ischaemia/reperfusion-induced acute kidney injury [J]. Nephrol Dial Transplant, 2008, 23(3): 842-852. | 
																													
																						| 53 | Lee S, Huen S, Nishio H, et al. Distinct macrophage phenotypes contribute to kidney injury and repair [J]. J Am Soc Nephrol, 2011, 22(2): 317-326. | 
																													
																						| 54 | Lin SL, Li B, Rao S, et al. Macrophage Wnt7b is critical for kidney repair and regeneration [J]. Proc Natl Acad Sci U S A, 2010, 107(9): 4194-4199. |