切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2014, Vol. 03 ›› Issue (05) : 268 -271. doi: 10.3877/cma.j.issn.2095-3216.2014.05.009

综述

自噬在肾脏疾病发生中的作用
邵枫1, 白雪源1,(), 陈香美1, 刘永泉2   
  1. 1.100853 北京,解放军总医院肾脏病科,解放军肾脏病研究所、肾脏疾病国家重点实验室、国家慢性肾病临床医学研究中心
    2.北京市通州区潞河医院肾内科
  • 出版日期:2014-10-15
  • 通信作者: 白雪源
  • 基金资助:
    国家973计划项目( 编号: 2011CBA01003,2011CB964904)

Role of autophagy in pathogenesis of kidney diseases

Feng Shao1, Xueyuan Bai1,(), Xiangmei Chen1, Yongquan Liu1   

  1. 1.Department of Nephrology, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing 100853, China
  • Published:2014-10-15
  • Corresponding author: Xueyuan Bai
引用本文:

邵枫, 白雪源, 陈香美, 刘永泉. 自噬在肾脏疾病发生中的作用[J/OL]. 中华肾病研究电子杂志, 2014, 03(05): 268-271.

Feng Shao, Xueyuan Bai, Xiangmei Chen, Yongquan Liu. Role of autophagy in pathogenesis of kidney diseases[J/OL]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2014, 03(05): 268-271.

自噬(autophagy) 是普遍存在于真核细胞中的一种依赖溶酶体的胞内降解系统。 它是一种适应性的代谢反应,能清除细胞中损伤或衰老细胞器及生物大分子,是一种高度保守的维持自身稳态的重要调节机制。 近年研究发现,自噬与肾脏缺血再灌注等急性肾损伤、药物性肾损害、遗传性肾脏病、糖尿病肾病等肾脏疾病的发病及肾脏衰老有关。 因此,自噬未来可能作为治疗肾脏疾病的一个新靶点。

Autophagy generally exists in eukaryotic cells, and is an intracellular degradation system dependent on lysosomes. Autophagy is an adaptive metabolic response, can eliminate damaged or senile organelles and biological macromolecules in the cell. It is a kind of highly conservative and important regulatory mechanism to maintain steady state of cells. In recent years, studies showed that autophagy was associated with acute kidney injury, drug-induced renal damage, hereditary kidney disease, diabetic nephropathy, and renal senescence. Therefore, autophagy may be a novel therapeutic target of kidney diseases in the future.

1
Ezaki J, Matsumoto N, Takeda M, et al. Liver autophagy contributes to the maintenance of blood glucose and amino acid levels[J]. Autophagy,2011,7(3):727-736.
2
Johansen T, Lamark T. Selective autophagy mediated by autophagic adapter proteins [J]. Autophagy,2011,7(3):279-296.
3
Riley BE, Kaiser SE, Shaler TA, et al. Ubiquitin accumulation in autophagy-deficient mice is dependent on the Nrf2-mediated stress response pathway: a potential role for protein aggregation in autophagic substrate selection [J]. J Cell Biol,2010,91(3):537-552.
4
Saitoh T, Fujita N, Jang MH, et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1b production [ J].Nature,2008,456(7219):264-268.
5
Saitoh T, Fujita N, Takuya H, et al. Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response[J]. Proc Natl Acad Sci,2009,106(49):20842-20846.
6
Wang SH, Shih YL, Ko WC, et al. Cadmium-induced autophagy and apoptosis are mediated by a calcium signaling pathway[J]. Cell Mol Life Sci,2008,65(22):3640-3652
7
Wu HH,Hsiao TY,Chien CT,et al. Ischemic conditioning by short periods of reperfusion attenuates renal ischemia/reperfusion induced apoptosis and autophagy in the rat [J]. J Biomed Sci, 2009,16:19.
8
Hartleben B, Gödel M, Meyer-Schwesinger C, et al. Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice [J]. J Clin Invest, 2010, 120 (4):1084-1096.
9
Hartleben B, Gödel M, Meyer-Schwesinger C, et al. Autophagy influences glomerular disease susceptiblity and maintains podocyte homeostasis in aging mice[J]. J Clin Invest,2010,120(4):1084-1096.
10
Kimura T, Takabatake Y, Takahashi A, et al. Autophagy protects the proximal tubule from degeneration and acute ischemic injury[J]. J Am Soc Nephrol,2011,22 (5):902-913.
11
Jiang M, Wei Q, Dong G, et al. Autophagy in proximal tubules protects against acute kidney injury [J]. Kidney Int, 2012, 82(12):1271-1283.
12
Periyasamy-Thandavan S, Jiang M, Wei Q, et al. Autophagy is cytoprotective during cisplatin injury of renal proximal tubular cells[J]. Kidney Int,2008,74(5):631-640.
13
Pallet N, Bouvier N, Legendre C, et al. Autophagy protects renal tubular cells against cyclosporine toxicity [J]. Autophagy, 2008, 4(6):783-791.
14
Koesters R, Kaissling B, Lehir M, et al. Tubular overexpression of transforming growth factor beta1 induces autophagy and fibrosis but not mesenchymal transition of renal epithelial cells [J]. Am J Pathol,2010,177 (2):632-643.
15
Forbes MS, Thornhill BA, Minor JJ, et al. Fight-or-flight: murine unilateral ureteral obstruction causes extensive proximal tubular degeneration, collecting duct dilatation, and minimal fibrosis [J].Am J Physiol Renal Physiol,2012,303 (1): F120-F129.
16
Kim WY, Nam SA, Song HC, et al. The role of autophagy in unilateral ureteral obstruction rat model [J]. Nephrology, 2012,17(2):148-159
17
Sansanwal P,Sarwal MM. p62/SQSTM1 prominently accumulates in renal proximal tubules in nephropathic cystinosis [J]. Pediatr Nephrol,2012,27(11):2137-2144.
18
Cui J, Bai XY, Shi S, et al. Age-related changes in the function of autophagy in rat kidneys [J]. Age (Dordr), 2012, 34(2): 329-339.
19
Cui J, Shi S, Sun XF, et al. Mitochondrial autophagy involving renal injury and aging is modulated by caloric intake in aged rat kidneys [J]. PLos One,2013,8(7): e69720.
20
Kitada M, Takeda A, Nagai T, et al. Dietary restriction ameliorates diabetic nephropathy through anti-inflammatory effects and regulation of the autophagy via restoration of Sirt1 in diabetic Wistar fatty (fa/fa) rats: a model of type 2 diabetes [J]. Exp Diabetes Res,2011,2011:908185.
[1] 张刚, 秦勇, 黄超, 薛震, 吕松岑. 基于骨关节炎软骨细胞表型转化的新兴治疗靶点[J/OL]. 中华关节外科杂志(电子版), 2024, 18(03): 352-362.
[2] 王帆, 余辉, 谢佳乐, 许焕焕, 马瑞, 依日夏提·艾海提, 许珂, 许鹏. 成纤维样滑膜细胞在类风湿关节炎发病机制中的作用[J/OL]. 中华关节外科杂志(电子版), 2024, 18(02): 225-230.
[3] 吴杰, 周志强, 符菁, 李喜功, 张钦. 吸入性氢气对大鼠脊髓损伤后自噬及神经功能的影响[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 363-371.
[4] 许彬, 王丽, 陈瑞, 沈奕, 陆件. 瞬时受体电位粘脂素1介导细胞自噬在远端缺血后处理保护大鼠脑缺血-再灌注损伤中的作用研究[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(03): 180-187.
[5] 李争光, 宰爽嘉, 吴火峰, 孙华, 张永博, 陈浏阳, 戴睿, 张亮. 昼夜节律相关因子在椎间盘退行性变发病机制中作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 457-461.
[6] 廖泽楷, 梁爱琳, 龚启梅. 根尖周病中程序性细胞死亡的研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(03): 150-155.
[7] 周学锋, 董哲毅, 冯哲, 蔡广研, 陈香美. 糖尿病肾脏疾病中西医结合诊疗指南计划书[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 301-305.
[8] 崔文鹏. 腹膜透析在老年终末期肾脏疾病患者中的应用[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 300-300.
[9] 张今宜, 李月红. 慢性肾脏病患者接种新型冠状病毒疫苗有效力及接种策略的研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(02): 97-100.
[10] 付章宁, 耿晓东, 张永军, 陆宇平, 孙冠南, 张益帆, 蔡广研, 陈香美, 洪权. 间充质干细胞促进肾脏损伤修复机制研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(02): 87-91.
[11] 任夏雨, 侯延娟, 王利华. 1-磷酸鞘氨醇在肾脏疾病中的作用研究进展[J/OL]. 中华肾病研究电子杂志, 2023, 12(06): 344-348.
[12] 史清泉, 苗彬, 王烁, 陶琳, 沈晨. miR-181a-5p 靶向ATG5 抑制雨蛙素诱导的大鼠胰腺腺泡细胞AR42J自噬的机制研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 524-530.
[13] 于伟伟, 张国高, 吴军, 胡俊, 黄一宁, 徐晶. 线粒体相关内质网膜相关线粒体功能障碍在阿尔茨海默病中的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(02): 223-230.
[14] 包文华, 塔拉. 自噬及内质网应激在卡非佐米对MCF-7细胞的影响及作用机制[J/OL]. 中华临床医师杂志(电子版), 2023, 17(11): 1181-1191.
[15] 刘霖, 张文欢, 宋雅茹, 姜云璐. Apelin-13 在阿尔茨海默病中的神经保护作用机制研究进展[J/OL]. 中华诊断学电子杂志, 2024, 12(04): 276-280.
阅读次数
全文


摘要