切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2016, Vol. 05 ›› Issue (06) : 277 -280. doi: 10.3877/cma.j.issn.2095-3216.2016.06.009

所属专题: 文献

综述

连体动物模型的应用
刘东1, 孙雪峰2, 陈香美2,()   
  1. 1. 100853 北京,解放军总医院肾脏病科、解放军肾脏病研究所、肾脏疾病国家重点实验室、国家慢性肾病临床医学研究中心;100142 北京,空军总医院肾脏病科
    2. 100853 北京,解放军总医院肾脏病科、解放军肾脏病研究所、肾脏疾病国家重点实验室、国家慢性肾病临床医学研究中心
  • 收稿日期:2016-11-19 出版日期:2016-12-28
  • 通信作者: 陈香美
  • 基金资助:
    国家重大基础研究项目资助课题(2013CB530800); 国家自然科学基金资助课题(81270819)

Application of parabiosis animal model in biomedical research

Dong Liu1, Xuefeng Sun2, Xiangmei Chen2,()   

  1. 1. Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing 100853, China; Department of Nephrology, Air Force General Hospital, Chinese PLA, 30 Fu Cheng Road, Beijing 100142, China
    2. Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing 100853, China
  • Received:2016-11-19 Published:2016-12-28
  • Corresponding author: Xiangmei Chen
  • About author:
    Corresponding author: Chen Xiangmei, Email:
引用本文:

刘东, 孙雪峰, 陈香美. 连体动物模型的应用[J]. 中华肾病研究电子杂志, 2016, 05(06): 277-280.

Dong Liu, Xuefeng Sun, Xiangmei Chen. Application of parabiosis animal model in biomedical research[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2016, 05(06): 277-280.

连体动物模型是通过外科手术的方式将两只动物连接起来,在伤口处发生血管再通而形成共享的循环系统,最终实现细胞和可溶性因子的交换。是一个研究循环因素影响组织器官功能的动物模型。利用异龄连体动物模型,可以观察到青年内环境影响老年小鼠的衰老表型,恢复某些衰老器官的功能;利用同龄连体模型,可以观察到相对健康的内环境对病理生理状态产生的影响。

The experimental model of parabiosis, which is set up through joining two animals by surgical operation, develops a common and shared circulatory system. The blood cells and soluble factors can exchange continuously at physiological levels through their intercommunicated blood circulation. The parabiosis animal model is considered as a powerful model to observe the effect of circulating factors on organisms function. In the heterochronic parabiosis model, old mice exposed to a youthful systemic milieu exhibited rejuvenated organism function. And in the isochronic parabiosis model, it was observed that relative healthy systemic milieu affected the pathophysiological process of its attached partner.

10
Orlic D, Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infarcted myocardium [J]. Nature, 2001, 410(6829):701-705.
11
Conboy MJ, Conboy IM, Rando TA. Heterochronic parabiosis: historical perspective and methodological considerations for studies of aging and longevity [J]. Aging Cell, 2013, 12(3):525-530.
12
Carlson BM, Dedkov EI, Borisov AB, et al. Skeletal muscle regeneration in very old rats [J]. J Gerontol A Biol Sci Med Sci, 2001, 56(5):B224-B233.
13
Murphy T, Thuret S. The systemic milieu as a mediator of dietary influence on stem cell function during ageing [J]. Ageing Res Rev, 2015, 19:53-64.
14
Loffredo FS, Steinhauser ML, Jay SM, et al., Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy [J]. Cell, 2013, 153(4):828-839.
15
Sinha M, Jang YC, Oh J, et al. Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle [J]. Science, 2014, 344(6184):649-652.
16
Mattson MP, Magnus T. Ageing and neuronal vulnerability [J]. Nat Rev Neurosci, 2006, 7(4):278-294.
17
Ruckh JM, Zhao JW, Shadrach JL, et al., Rejuvenation of regeneration in the aging central nervous system [J]. Cell Stem Cell, 2012, 10(1):96-103.
18
Katsimpardi L, Litterman NK, Schein PA, et al. Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors [J]. Science, 2014, 344(6184):630-634.
19
Villeda SA, Luo J, Mosher KI, et al., The ageing systemic milieu negatively regulates neurogenesis and cognitive function [J]. Nature, 2011, 477(7362):90-94.
20
Bouchard J, Villeda SA. Aging and brain rejuvenation as systemic events [J]. J Neurochem, 2015, 132(1):5-19.
21
Baht GS, Silkstone D, Vi L, et al. Exposure to a youthful circulaton rejuvenates bone repair through modulation of beta-catenin [J]. Nat Commun, 2015, 6:7131.
22
Salpeter SJ, Khalaileh A, Weinberg-Corem N, et al. Systemic regulation of the age-related decline of pancreatic beta-cell replication [J]. Diabetes, 2013, 62(8):2843-2848.
23
Niikura Y, Niikura T, Wang N, et al. Systemic signals in aged males exert potent rejuvenating effects on the ovarian follicle reserve in mammalian females [J]. Aging (Albany NY), 2010, 2(12):999-1003.
24
Keyes BE, Segal JP, Heller E, et al., Nfatc1 orchestrates aging in hair follicle stem cells [J]. Proc Natl Acad Sci USA, 2013, 110(51):E4950-E4959.
25
Kim MJ, Miller CM, Shadrach JL, et al. Young, proliferative thymic epithelial cells engraft and function in aging thymuses [J]. J Immunol, 2015, 194(10):4784-4795.
26
Lateef DM, Xiao C, Reitman ML. Search for an endogenous Bombesin-like receptor 3 (BRS-3) ligand using parabiotic mice [J]. PLoS One, 2015, 10(11):e0142637.
27
Harris RB. Contribution made by parabiosis to the understanding of energy balance regulation [J]. Biochim Biophys Acta, 2013, 1832(9):1449-1455.
28
Zeng W, Lu YH, Lee J, et al. Reanalysis of parabiosis of obesity mutants in the age of leptin [J]. Proc Natl Acad Sci USA, 2015, 112(29):E3874-E3882.
29
Nakatsuji H, Kishida K, Sekimoto R, et al., Tracing the movement of adiponectin in a parabiosis model of wild-type and adiponectin-knockout mice [J]. FEBS Open Bio, 2014, 4:276-282.
30
Torres M, Rojas M, Campillo N, et al. Parabiotic model for differentiating local and systemic effects of continuous and intermittent hypoxia [J]. J Appl Physiol (1985), 2015, 118(1):42-47.
31
Yang JB, Wang YH, Yang W, et al. Successful treatment of murine autoimmune cholangitis by parabiosis: Implications for hematopoietic therapy [J]. J Autoimmun, 2016, 66:108-117.
32
Xiang Y, Bu XL, Liu YH, et al. Physiological amyloid-beta clearance in the periphery and its therapeutic potential for Alzheimer's disease [J]. Acta Neuropathol, 2015, 130(4):487-499.
33
Wu JM, Hsueh YC, Chang HJ, et al. Circulating cells contribute to cardiomyocyte regeneration after injury [J]. Circ Res, 2015, 116(4):633-641.
34
Quijada P, Sussman MA. Circulating around the tissue: hematopoietic cell-based fusion versus transdifferentiation [J]. Circ Res, 2015, 116(4):563-565.
35
Yamasaki S, Hashimoto Y, Takigami J, et al. Circulating nucleated peripheral blood cells contribute to early-phase meniscal healing [J]. J Tissue Eng Regen Med, 2014, 10:7.
36
Kiprov DD. Intermittent heterochronic plasma exchange as a modality for delaying cellular senescence-a hypothesis[J]. J Clin Apher, 2013, 28(6):387-389.
1
Eggel A, Wyss-Coray T. A revival of parabiosis in biomedical research [J]. Swiss Med Wkly, 2014, 144:w13914.
2
Kamran P, Sereti KI, Zhao P, et al. Parabiosis in mice: a detailed protocol [J]. J Vis Exp, 2013, 80:e50556.
3
Duyverman AM, Kohno M, Duda DG, et al. A transient parabiosis skin transplantation model in mice[J].Nat Protoc, 2012, 7(4):763-770.
4
Edmonds LD, PLayde PM. Conjoined twins in the United States, 1970-1977 [J]. Teratology, 1982, 25(3):301-308.
5
Reissmann KR. Studies on the mechanism of erythropoietic stimulation in parabiotic rats during hypoxia [J]. Blood, 1950, 5(4):372-380.
6
Reissmann KR. Studies on the mechanism of erythropoietic stimulation in parabiotic rats during hypoxia [J]. Blood, 2016, 127(5):519.
7
Conboy IM, Conboy MJ, Wagers AJ, et al. Rejuvenation of aged progenitor cells by exposure to a young systemic environment [J]. Nature, 2005, 433(7027):760-764.
8
Castellano JM, Palner M, Li SB, et al. In vivo assessment of behavioral recovery and circulatory exchange in the peritoneal parabiosis model [J]. Sci Rep, 2016, 6:29015.
9
Gibney BC, Chamoto K, Lee GS, et al. Cross-circulation and cell distribution kinetics in parabiotic mice [J]. J Cell Physiol, 2012, 227(2):821-828.
[1] 韩李念, 王君. 放射性皮肤损伤治疗的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 533-537.
[2] 孙佳辰, 宋垚垚, 申传安, 赵虹晴, 孙天骏. 表皮和表皮干细胞衰老的研究进展[J]. 中华损伤与修复杂志(电子版), 2022, 17(06): 531-534.
[3] 张欢桐, 周翰, 沈新, 林星辰, 孙怡亦, 周义, 张大勇. 细胞衰老与移植疗效研究进展[J]. 中华移植杂志(电子版), 2022, 16(06): 379-383.
[4] 宋丽媛, 陈琰, 戢福云, 钱频. 溶酶体与肿瘤的研究进展[J]. 中华肺部疾病杂志(电子版), 2022, 15(03): 441-444.
[5] 冯同, 代文静, 李万成. 线粒体质量控制在慢性阻塞性肺疾病作用机制的研究进展[J]. 中华肺部疾病杂志(电子版), 2022, 15(02): 287-289.
[6] 李晔, 何洁, 胡锦秀, 王金祥, 田川, 潘杭, 陈梦蝶, 赵晓娟, 叶丽, 张敏, 潘兴华. 高活性间充质干细胞干预猕猴卵巢衰老的研究[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 210-219.
[7] 周艳群, 陈鹏, 刘增慧, 毛晶晶, 黎耀和. 多发性骨髓瘤患者骨髓间充质干细胞衰老关键基因和通路的生物信息学分析与验证[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(05): 274-281.
[8] 王明. 糖尿病肾脏病[J]. 中华肾病研究电子杂志, 2022, 11(05): 300-300.
[9] 罗佳, 王梨名, 汪晓月, 喻芳, 陈客宏, 何娅妮, 陈佳. 胚肾发育过程中诱骗受体2表达与细胞衰老的关系[J]. 中华肾病研究电子杂志, 2022, 11(03): 126-131.
[10] 刘晓南, 余斌. 细胞衰老在骨代谢及退行性疾病中的研究进展[J]. 中华老年骨科与康复电子杂志, 2023, 09(02): 113-119.
[11] 左方舟, 莫小恩, 徐沙沙. 喹硫平和奥氮平治疗痴呆器质性精神障碍的效果比较及对机体内环境指标的影响[J]. 中华临床医师杂志(电子版), 2021, 15(08): 631-636.
[12] 郑屹, 谢冰歆, 刘彤. 白细胞端粒长度与心房颤动相关性研究进展[J]. 中华心脏与心律电子杂志, 2022, 10(04): 246-249.
[13] 吕斌, 胡良聪, 谢旭东, 程鹏, 米博斌, 刘国辉. 褪黑素调控椎间盘退变的研究进展[J]. 中华老年病研究电子杂志, 2022, 09(04): 58-64.
[14] 张婧, 毛根祥. 衰老机制及抗衰老研究新进展[J]. 中华老年病研究电子杂志, 2022, 09(02): 1-8.
[15] 黄朝晖, 刘仁华, 杨立文. 血液透析联合血液灌流对尿毒症患者机体铁及内环境代谢的影响及相关性分析[J]. 中华肥胖与代谢病电子杂志, 2022, 08(03): 169-173.
阅读次数
全文


摘要