切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2016, Vol. 05 ›› Issue (06) : 281 -284. doi: 10.3877/cma.j.issn.2095-3216.2016.06.010

所属专题: 文献

综述

间充质-上皮转化的生物学作用及其影响因素
和鹏飞1, 魏凯1, 谢院生1,()   
  1. 1. 100853 北京,解放军总医院肾脏病科、解放军肾脏病研究所、肾脏疾病国家重点实验室、国家慢性肾病临床医学研究中心
  • 收稿日期:2016-10-23 出版日期:2016-12-28
  • 通信作者: 谢院生
  • 基金资助:
    北京市自然科学基金项目(7152138); 国家自然科学基金项目(81473531)

Biological functions and influential factors of mesenchymal-epithelial transition

Pengfei He1, Kai Wei1, Yuansheng Xie1,()   

  1. 1. Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing 100853, China
  • Received:2016-10-23 Published:2016-12-28
  • Corresponding author: Yuansheng Xie
  • About author:
    Corresponding author: Xie Yuansheng, Email:
引用本文:

和鹏飞, 魏凯, 谢院生. 间充质-上皮转化的生物学作用及其影响因素[J]. 中华肾病研究电子杂志, 2016, 05(06): 281-284.

Pengfei He, Kai Wei, Yuansheng Xie. Biological functions and influential factors of mesenchymal-epithelial transition[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2016, 05(06): 281-284.

细胞可塑性是机体多种生物学过程的基础。其中,上皮表型和间充质细胞表型的相互转化是不可忽视的生物学过程。间充质细胞向上皮细胞转化在胚胎发育早期阶段就已开始,并且参与了肾脏等多个器官的形成。此外,间充质上皮转化还参与了机体组织的损伤修复以及肿瘤的发生发展过程。研究表明,多种因素可以促进间充质-上皮转化进程,可能成为促进组织损伤修复和抑制肿瘤生长的治疗靶点。

Cellular plasticity is the basis of many biological processes in the body. The transition between epithelial phenotype and mesenchymal phenotype is of great importance. Mesenchymal-epithelial transition (MET) begins at the early stage of embryo development and is involved in the organogenesis of kidney and other organs. In addition, MET is also involved in the repair of injury and the development of carcinomas. It has been reported that many factors could affect MET, which might become targets for promoting the repair of tissue injuries and inhibiting the development of carcinomas.

图1 MET的生物学作用及影响因素
1
李旭艳,谢院生,陈香美. 肾小管上皮-间充质转化的研究现状[J/CD]. 中华肾病研究电子杂志,2013,2(2):98-102.
2
Thiery JP, Acloque H, Huang RY, et al. Epithelial-mesenchymal transitions in development and disease [J]. Cell, 2009, 139(5):871-890.
3
Larue L, Bellacosa A. Epithelial-mesenchymal transition in development and cancer: role of phosphatidylinositol 3' kinase/AKT pathways [J]. Oncogene, 2005, 24(50):7443-7454.
4
Guo F, Parker Kerrigan BC, Yang D, et al. Post-transcriptional regulatory network of epithelial-to-mesenchymal and mesenchymal-to-epithelial transitions [J]. J Hematol Oncol, 2014, 7:19.
5
Tang H, Massi D, Hemmings BA, et al. AKT-ions with a TWIST between EMT and MET [J]. Oncotarget, 2016, [Epub ahead of print].
6
Kim HY, Jackson TR, Davidson LA. On the role of mechanics in driving mesenchymal-to-epithelial transitions [J]. Semin Cell Dev Biol, 2016, [Epub ahead of print].
7
Gumbiner BM. Cell adhesion: the molecular basis of tissue architecture and morphogenesis [J]. Cell, 1996, 84(3):345-357.
8
Fleming TP, McConnell J, Johnson MH, et al. Development of tight junctions de novo in the mouse early embryo: control of assembly of the tight junction-specific protein, ZO-1 [J]. J Cell Biol, 1989, 108(4):1407-1418.
9
Roberts SJ, Leaf DS, Moore HP, et al. The establishment of polarized membrane traffic in Xenopus laevis embryos [J]. J Cell Biol, 1992, 118(6):1359-1369.
10
Vainio S, Lin Y. Coordinating early kidney development: lessons from gene targeting [J]. Nat Rev Genet, 2002, 3(7):533-543.
11
Dressler GR. The cellular basis of kidney development [J]. Annu Rev Cell Dev Biol, 2006, 22:509-529.
12
Chao Y, Wu Q, Acquafondata M, et al. Partial mesenchymal to epithelial reverting transition in breast and prostate cancer metastases [J]. Cancer Microenviron, 2012, 5(1):19-28.
13
Ocana OH, Corcoles R, Fabra A, et al. Metastatic colonization requires the repression of the epithelial-mesenchymal transition inducer Prrx1 [J]. Cancer Cell, 2012, 22(6):709-724.
14
Stone RC, Pastar I, Ojeh N, et al. Epithelial-mesenchymal transition in tissue repair and fibrosis [J]. Cell Tissue Res, 2016, 365(3):495-506.
15
Eming SA, Martin P, Tomic-Canic M. Wound repair and regeneration: mechanisms, signaling, and translation [J]. Sci Transl Med, 2014, 6(265):265-266.
16
Tan B, Pascual A, de Beus A, et al. TGFbeta (transforming growth factor beta) and keratocyte motility in 24 h zebrafish explant cultures [J]. Cell Biol Int, 2011, 35(11):1131-1139.
17
Esteban MA, Bao X, Zhuang Q, et al. The mesenchymal-to-epithelial transition in somatic cell reprogramming [J]. Curr Opin Genet Dev, 2012, 22(5):423-428.
18
Pattabiraman DR, Bierie B, Kober KI, et al. Activation of PKA leads to mesenchymal-to-epithelial transition and loss of tumor-initiating ability [J]. Science, 2016, 351(6277):aad3680.
19
Zeisberg M, Hanai J, Sugimoto H, et al. BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury [J]. Nature Med, 2003, 9(7):964-968.
20
Xu Y, Wan J, Jiang D, et al. BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition in human renal proximal tubular epithelial cells [J]. J Nephrol, 2009, 22(3):403-410.
21
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors [J]. Cell, 2006, 126(4):663-676.
22
Wu HJ, Yiu WH, Li RX, et al. Mesenchymal stem cells modulate albumin-induced renal tubular inflammation and fibrosis [J]. PloS One, 2014, 9(3):e90883.
23
Ebrahimi B, Eirin A, Li Z, et al. Mesenchymal stem cells improve medullary inflammation and fibrosis after revascularization of swine atherosclerotic renal artery stenosis [J]. PloS One, 2013, 8(7):e67474.
24
Bullock MD, Sayan AE, Packham GK, et al. MicroRNAs: critical regulators of epithelial to mesenchymal (EMT) and mesenchymal to epithelial transition (MET) in cancer progression [J]. Biol Cell, 2012, 104(1):3-12.
25
Chung AC, Yu X, Lan HY. MicroRNA and nephropathy: emerging concepts [J]. Int J Nephrol Renovasc Dis, 2013, 6:169-179.
26
Xiong M, Jiang L, Zhou Y, et al. The miR-200 family regulates TGF-beta1-induced renal tubular epithelial to mesenchymal transition through Smad pathway by targeting ZEB1 and ZEB2 expression [J]. Am J Physiol Renal Physiol, 2012, 302(3):F369-379.
27
Aoyama T, Yamamoto S, Kanematsu A, et al. Local delivery of matrix metalloproteinase gene prevents the onset of renal sclerosis in streptozotocin-induced diabetic mice [J]. Tissue Eng, 2003, 9(6):1289-1299.
28
Yoshikawa M, Hishikawa K, Marumo T, et al. Inhibition of histone deacetylase activity suppresses epithelial-to-mesenchymal transition induced by TGF-beta1 in human renal epithelial cells [J]. J Am Soc Nephrol, 2007, 18(1):58-65.
29
Kang SW, Lee SM, Kim JY, et al. Therapeutic activity of the histone deacetylase inhibitor SB939 on renal fibrosis [J]. Int Immunopharmacol, 2016, 42:25-31.
30
Zhu FQ, Chen MJ, Zhu M, et al. Curcumin suppresses epithelial-mesenchymal transition of renal tubular epithelial cells through the inhibition of Akt/mTOR pathway [J]. Biol Pharm Bull, 2016, [Epub ahead of print].
31
Galichon P, Finianos S, Hertig A. EMT-MET in renal disease: should we curb our enthusiasm? [J]. Cancer Lett, 2013, 341(1):24-29.
[1] 贺林凤, 曹雨, 张宁, 冉新泽, 王锋超. 肠干细胞调控与肠道放射损伤修复的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 358-363.
[2] 王在强, 金发光, 傅恩清. 颗粒酶B在组织损伤修复中的研究进展[J]. 中华损伤与修复杂志(电子版), 2021, 16(04): 349-352.
[3] 崔凤瑞, 李芳, 张铁凝, 李全. 干细胞源性外泌体在损伤修复中作用的研究进展[J]. 中华损伤与修复杂志(电子版), 2021, 16(01): 71-73.
[4] 朱韵莹, 高晓琳, 戈艳萍, 王张嵩, 林钊宇, 李劲松, 武东辉. 缺氧相关的长链非编码RNA LINC00970在唾液腺腺样囊性癌中的表达及其作用[J]. 中华口腔医学研究杂志(电子版), 2023, 17(03): 210-217.
[5] 郑希彦, 周正, 何方平, 林志群, 杜飞, 谢琴, 王少平, 史宪杰. 代谢综合征与乙型肝炎病毒相关性肝细胞癌预后的危险因素分析[J]. 中华普通外科学文献(电子版), 2023, 17(02): 104-109.
[6] 乔梁, 杨向群. 脂肪干细胞在心肌损伤修复中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(04): 230-236.
[7] 李婧娴, 韩兴龙, 涂元媛, 胡士军, 于淼, 雷伟. 内皮祖细胞在血管损伤修复中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(03): 176-180.
[8] 朱亿豪, 汤庆超. 长链非编码RNA在结直肠癌中的研究进展[J]. 中华结直肠疾病电子杂志, 2022, 11(01): 65-69.
[9] 潘娟, 乔晞. 环状核糖核酸:糖尿病肾病治疗新靶点[J]. 中华肾病研究电子杂志, 2022, 11(01): 44-47.
[10] 孙秀丽, 刘振宇, 唐婷婷, 张景尚, 李猛, 毛迎燕, 万修华. 关注后发性白内障的发病机制及防控措施[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 193-198.
[11] 刘卓, 段虎斌. 生物电相关疗法在神经损伤修复中的应用进展[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 257-260.
[12] 程俊凯, 罗耀文, 李娟, 张磊, 杨淑涵, 王彦刚. 重复经颅磁刺激上调DJ-1表达改善小鼠创伤性脑损伤后功能障碍的研究[J]. 中华神经创伤外科电子杂志, 2022, 08(05): 261-268.
[13] 徐如祥, 邱文乔. 生物组装类脑生态位促进神经再生修复展望[J]. 中华神经创伤外科电子杂志, 2022, 08(01): 1-5.
[14] 岳茂兴, 周培根, 郝冬琳, 李瑛, 尹进南, 郑琦涵, 杨学峰, 梅冰, 孙志辉, 马临庆, 徐冰心, 吴静, 吴娟, 郁婷婷, 钱亿超, 朱晓瓞, 冯斌, 徐君晨, 关竹颖, 岳慧, 魏艳红. 一种促进神经损伤修复的药物组合物治疗22例ALS患者1年后的疗效观察[J]. 中华卫生应急电子杂志, 2018, 04(05): 264-272.
[15] 岳茂兴, 周培根, 郝冬琳, 李瑛, 尹进南, 郑琦涵, 杨学峰, 梅冰, 孙志辉, 马临庆, 吴静, 吴娟, 郁婷婷, 钱亿超, 朱晓瓞, 冯斌, 徐君晨, 关竹颖, 岳慧, 魏艳红, 庄德志, 常华, 唐瑞秀, 黄筱丽. 一种促进神经损伤修复的药物组合物治疗60例MND患者6个月后的疗效观察[J]. 中华卫生应急电子杂志, 2018, 04(05): 281-289.
阅读次数
全文


摘要