切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2022, Vol. 11 ›› Issue (01) : 44 -47. doi: 10.3877/cma.j.issn.2095-3216.2022.01.008

综述

环状核糖核酸:糖尿病肾病治疗新靶点
潘娟1, 乔晞1,()   
  1. 1. 030001 太原,山西医科大学第二医院、山西省肾脏病研究所、山西医科大学肾脏病研究所
  • 收稿日期:2021-11-02 出版日期:2022-02-28
  • 通信作者: 乔晞
  • 基金资助:
    山西省回国留学人员科研资助项目(2020-186); 山西省留学回国人员科技活动择优资助项目(2017-29)

Circular RNAs: new therapeutic target for diabetic kidney disease

Juan Pan1, Xi Qiao1,()   

  1. 1. Department of Nephrology, Second Hospital of Shanxi Medical University, Shanxi Provincial Institute for Kidney Disease, Kidney Disease Institute of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
  • Received:2021-11-02 Published:2022-02-28
  • Corresponding author: Xi Qiao
引用本文:

潘娟, 乔晞. 环状核糖核酸:糖尿病肾病治疗新靶点[J/OL]. 中华肾病研究电子杂志, 2022, 11(01): 44-47.

Juan Pan, Xi Qiao. Circular RNAs: new therapeutic target for diabetic kidney disease[J/OL]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2022, 11(01): 44-47.

糖尿病肾病(DKD)是糖尿病患者最常见和最严重的慢性微血管并发症,已成为终末期肾病(ESRD)的主要原因,对全球公共卫生造成沉重负担。因此,延缓DKD进展对减少ESRD的发生至关重要。研究显示,环状RNA(circRNAs)可通过调节炎症、凋亡、焦亡、上皮-间充质转化等促进或抑制肾小球硬化及肾小管间质纤维化,加重或延缓DKD。本文将就circRNAs在DKD不同机制中的作用进行综述,为发现DKD的临床治疗新靶点提供支持。

Diabetic kidney disease (DKD) is the most common and serious chronic microvascular complication in diabetic patients, and has become the main cause of end-stage renal disease (ESRD), causing a heavy burden on global public health. Therefore, delaying DKD progression is crucial for reducing the occurrence of ESRD. Studies have shown that circular RNAs (circRNAs) may promote or inhibit glomerulosclerosis and renal tubulointerstitial fibrosis, and aggravate DKD or delay its progression by regulating inflammation, apoptosis, pyroptosis, epithelial-mesenchymal transformation, and so on. This article reviewed the roles of circRNAs in different mechanisms of DKD in order to provide support for finding new targets of DKD treatment.

图1 环状RNAs-微小RNAs-靶基因轴调控DKD机制注:circ:环状RNAs系列;miR:微小RNAs系列;NF-ΚB:核因子-κB;AKT3:serine/threonine kinase 3,丝氨酸/苏氨酸蛋白激酶3;TLR4:Toll-like receptor 4, Toll样受体4;SERBP1:serpine mRNA binding protein 1,丝氨酸mRNA结合蛋白1;TGF-β:transforming growth factor-β,转化生长因子-β;Anxa2:annexin A2,膜联蛋白A2;SIRT1:silencing information regulator 2-related enzyme 1,沉默信息调节子2的相关酶1;TGF-βR1:TGF-β受体1;EMT:epithelial-mesenchymal transition,上皮-间充质转化
[1]
Zheng W, Guo J, Liu ZS. Effects of metabolic memory on inflammation and fibrosis associated with diabetic kidney disease: an epigenetic perspective [J]. Clin Epigenetics, 2021, 13(1): 87.
[2]
Adler A, Stevens R, Manley S, et al. Development and progression of nephropathy in type 2 diabetes: the United Kingdom Prospective Diabetes Study (UKPDS 64) [J]. Kidney Int, 2003, 63(1): 225-232.
[3]
Yang C, Wang J, Yang Y, et al. Impact of anemia and chronic kidney disease on the risk of cardiovascular disease and all-cause mortality among diabetic patients [J]. J Peking Univ Health Sci, 2018, 50(3): 495-500.
[4]
Lin X, Xu Y, Pan X, et al. Global, regional, and national burden and trend of diabetes in 195 countries and territories: an analysis from 1990 to 2025 [J]. Sci Rep, 2020, 10(1): 14790.
[5]
Umanath K, Lewis J. Update on diabetic nephropathy: core curriculum 2018 [J]. Am J Kidney Dis, 2018, 71(6): 884-895.
[6]
Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9 edition [J]. Diabetes Res Clin Pract, 2019, 157: 107843.
[7]
Jin J, Sun H, Shi C, et al. Circular RNA in renal diseases [J]. J Cell Mol Med, 2020, 24(12): 6523-6533.
[8]
Eger N, Schoppe L, Schuster S, et al. Circular RNA splicing [J]. Adv Exp Med Biol, 2018, 1087: 41-52.
[9]
Zhao X, Cai Y, Xu J. Circular RNAs: biogenesis, mechanism, and function in human cancers [J]. Int J Mol Sci, 2019, 20(16): 3926.
[10]
Qu S, Yang X, Li X, et al. Circular RNA: a new star of noncoding RNAs [J]. Cancer Lett, 2015, 365(2): 141-148.
[11]
Kristensen LS, Andersen MS, Stagsted LVW, et al. The biogenesis, biology and characterization of circular RNAs [J]. Nat Rev Genet, 2019, 20(11): 675-691.
[12]
Goldfine A, Shoelson S. Therapeutic approaches targeting inflammation for diabetes and associated cardiovascular risk [J]. J Clin Invest, 2017, 127(1): 83-93.
[13]
Meng X. Inflammatory mediators and renal fibrosis [J]. Adv Exp Med Biol, 2019, 1165: 381-406.
[14]
Shao BY, Zhang SF, Li HD, et al. Epigenetics and inflammation in diabetic nephropathy [J]. Front Physiol, 2021, 12: 649587.
[15]
Tang PC, Zhang YY, Chan MK, et al. The emerging role of innate immunity in chronic kidney diseases [J]. Int J Mol Sci, 2020, 21(11): 4018.
[16]
Mikuda N, Kolesnichenko M, Beaudette P, et al. The IκB kinase complex is a regulator of mRNA stability [J]. EMBO J, 2018, 37(24): e98658.
[17]
Bai Y, Zhang Y, Han B, et al. Circular RNA DLGAP4 ameliorates ischemic stroke outcomes by targeting miR-143 to regulate endothelial-mesenchymal transition associated with blood-brain barrier integrity [J]. J Neurosci, 2018, 38(1): 32-50.
[18]
Wang Q, Cang Z, Shen L, et al. circ_0037128/miR-17-3p/AKT3 axis promotes the development of diabetic nephropathy [J]. Gene, 2021, 765: 145076.
[19]
Hong JN, Li WW, Wang LL, et al. Jiangtang decoction ameliorate diabetic nephropathy through the regulation of PI3K/Akt-mediated NF-κB pathways in KK-Ay mice [J]. Chin Med, 2017, 12: 13.
[20]
Lin M, Tang S. Toll-like receptors: sensing and reacting to diabetic injury in the kidney [J]. Nephrol Dial Transplant, 2014, 29(4): 746-754.
[21]
Panchapakesan U, Pollock C. The role of Toll-like receptors in diabetic kidney disease [J]. Curr Opin Nephrol Hypertens, 2018, 27(1): 30-34.
[22]
Wang Y, Luo W, Han J, et al. MD2 activation by direct AGE interaction drives inflammatory diabetic cardiomyopathy [J]. Nat Commun, 2020, 11(1): 2148.
[23]
Garibotto G, Carta A, Picciotto D, et al. Toll-like receptor-4 signaling mediates inflammation and tissue injury in diabetic nephropathy [J]. J Nephrol, 2017, 30(6): 719-727.
[24]
Feng Q, Liu D, Lu Y, et al. The interplay of renin-angiotensin system and Toll-like receptor 4 in the inflammation of diabetic nephropathy [J]. J Immunol Res, 2020, 2020: 6193407.
[25]
Chen B, Li Y, Liu Y, et al. circLRP6 regulates high glucose-induced proliferation, oxidative stress, ECM accumulation, and inflammation in mesangial cells [J]. J Cell Physiol, 2019, 234(11): 21249-21259.
[26]
Meng X, Nikolic-Paterson D, Lan H. TGF-β:the master regulator of fibrosis [J]. Nat Rev Nephrol, 2016, 12(6): 325-338.
[27]
Xu B, Wang Q, Li W, et al. Circular RNA circEIF4G2 aggravates renal fibrosis in diabetic nephropathy by sponging miR-218 [J]. J Cell Mol Med, 2020, Epub ahead of print.
[28]
Li G, Qin Y, Qin S, et al. Circ_WBSCR17 aggravates inflammatory responses and fibrosis by targeting miR-185-5p/SOX6 regulatory axis in high glucose-induced human kidney tubular cells [J]. Life Sci, 2020, 259: 118269.
[29]
Hu W, Han Q, Zhao L, et al. Circular RNA circRNA_15698 aggravates the extracellular matrix of diabetic nephropathy mesangial cells via miR-185/TGF-beta1 [J]. J Cell Physiol, 2019, 234(2): 1469-1476.
[30]
Schwarzer R, Laurien L, Pasparakis M. New insights into the regulation of apoptosis, necroptosis, and pyroptosis by receptor interacting protein kinase 1 and caspase-8 [J]. Curr Opin Cell Biol, 2020, 63: 186-193.
[31]
Ge X, Xi L, Wang Q, et al. Circular RNA circ_0000064 promotes the proliferation and fibrosis of mesangial cells via miR-143 in diabetic nephropathy [J]. Gene, 2020, 758: 144952.
[32]
Tang B, Li W, Ji TT, et al. Circ-AKT3 inhibits the accumulation of extracellular matrix of mesangial cells in diabetic nephropathy via modulating miR-296-3p/E-cadherin signals [J]. J Cell Mol Med, 2020, 24(15): 8779-8788.
[33]
Hu Y, Gu J, Shen H, et al. Circular RNA LARP4 correlates with decreased Enneking stage, better histological response, and prolonged survival profiles, and it elevates chemosensitivity to cisplatin and doxorubicin via sponging microRNA-424 in osteosarcoma [J]. J Clin Lab Anal, 2020, 34(2): e23045.
[34]
Zhuang L, Wang Z, Hu X, et al. CircHIPK3 alleviates high glucose toxicity to human renal tubular epithelial HK-2 cells through regulation of miR-326/miR-487a-3p/SIRT1 [J]. Diabetes Metab Syndr Obes, 2021, 14: 729-740.
[35]
An L, Ji D, Hu W, et al. Interference of Hsa_circ_0003928 alleviates high glucose-induced cell apoptosis and inflammation in HK-2 cells via miR-151-3p/Anxa2 [J]. Diabetes Metab Syndr Obes, 2020, 13: 3157-3168.
[36]
Lin J, Cheng A, Cheng K, et al. New insights into the mechanisms of pyroptosis and implications for diabetic kidney disease [J]. Int J Mol Sci, 2020, 21(19): 7057.
[37]
Wen S, Li S, Li L, et al. circACTR2: a novel mechanism regulating high glucose-induced fibrosis in renal tubular cells via pyroptosis [J]. Biol Pharm Bull, 2020, 43(3): 558-564.
[38]
Zhang H, Wang Z. Effect and regulation of the NLRP3 inflammasome during renal fibrosis [J]. Front Cell Dev Biol, 2020, 7: 379.
[39]
Wang J, Gao Y, Zhang N, et al. miR-21 overexpression enhances TGF-β1-induced epithelial-to-mesenchymal transition by target smad7 and aggravates renal damage in diabetic nephropathy [J]. Mol Cell Endocrinol, 2014, 392(1-2): 163-172.
[40]
Bartis D, Mise N, Mahida R, et al. Epithelial-mesenchymal transition in lung development and disease: does it exist and is it important? [J]. Thorax, 2014, 69(8): 760-765.
[41]
Liu B, Tang T, Lv L, et al. Renal tubule injury: a driving force toward chronic kidney disease [J]. Kidney Int, 2018, 93(3): 568-579.
[42]
Mou X, Chenv JW, Zhou DY, et al. A novel identified circular RNA, circ_0000491, aggravates the extracellular matrix of diabetic nephropathy glomerular mesangial cells through suppressing miR101b by targeting TGFβRI [J]. Mol Med Rep, 2020, 22(5): 3785-3794.
[43]
Ling L, Tan Z, Zhang C, et al. CircRNAs in exosomes from high glucose-treated glomerular endothelial cells activate mesangial cells [J]. Am J Transl Res, 2019, 11(8): 4667-4682.
[1] 王振宇, 张洪美, 荆琳, 何名江, 闫奇. 膝骨关节炎相关炎症因子与血浆代谢物间的因果关系及中介效应[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 467-473.
[2] 张洁, 罗小霞, 余鸿. 系统性免疫炎症指数对急性胰腺炎患者并发器官功能损伤的预测价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 68-71.
[3] 唐梅, 周丽, 牛岑月, 周小童, 王倩. ICG荧光导航的腹腔镜肝切除术临床意义[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 655-658.
[4] 付成旺, 杨大刚, 王榕, 李福堂. 营养与炎症指标在可切除胰腺癌中的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 704-708.
[5] 杜贵伟, 陆勇, 成博, 贺薏, 梁爽. 钬激光碎石术术后联合坦索罗辛治疗对输尿管结石患者的影响分析[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 491-496.
[6] 郑俊, 吴杰英, 谭海波, 郑安全, 李腾成. EGFR-MEK-TZ三联合分子的构建及其对去势抵抗性前列腺癌细胞增殖与凋亡的影响[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 503-508.
[7] 高娟, 徐建庆, 闫芳, 丁盛华, 刘霞. Rutkow、TAPP、TEP 手术治疗单侧腹股沟疝患者的临床疗效及对血清炎症因子水平的影响[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 675-680.
[8] 孙璐, 蒋亚玲, 陈凌君. 布托啡诺对脑缺血再灌注损伤大鼠神经炎症和JAK2/STAT3信号通路的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 344-350.
[9] 董晓斌, 张静, 苏莎莎, 莎比亚·沙吾提, 盛好. 溃疡性结肠炎患者相关环状RNA 差异表达谱分析及功能研究[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 499-509.
[10] 杜霞, 马梦青, 曹长春. 造影剂诱导的急性肾损伤的发病机制及干预靶点研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 279-282.
[11] 王国强, 张纲, 唐建坡, 张玉国, 杨永江. LINC00839 调节miR-17-5p/WEE1 轴对结直肠癌细胞增殖、凋亡和迁移的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 491-499.
[12] 陈利, 杨长青, 朱风尚. 重视炎症性肠病和代谢相关脂肪性肝病间的串话机制研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 385-389.
[13] 王湛, 李文坤, 杨奕, 徐芳, 周敏思, 苏珈仪, 王亚丹, 吴静. 炎症指标在早发性结直肠肿瘤中的应用[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 802-810.
[14] 丁洪基, 赵长江, 孙鹏飞, 王灿, 王贵珍, 李龙龙. 细胞焦亡与疾病的关系研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 682-686.
[15] 靳英, 付小霞, 陈美茹, 袁璐, 郝力瑶. CD147调控MAPK信号通路对结肠癌细胞增殖和凋亡的影响及机制研究[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 474-480.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?