切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2022, Vol. 11 ›› Issue (01) : 44 -47. doi: 10.3877/cma.j.issn.2095-3216.2022.01.008

综述

环状核糖核酸:糖尿病肾病治疗新靶点
潘娟1, 乔晞1,()   
  1. 1. 030001 太原,山西医科大学第二医院、山西省肾脏病研究所、山西医科大学肾脏病研究所
  • 收稿日期:2021-11-02 出版日期:2022-02-28
  • 通信作者: 乔晞
  • 基金资助:
    山西省回国留学人员科研资助项目(2020-186); 山西省留学回国人员科技活动择优资助项目(2017-29)

Circular RNAs: new therapeutic target for diabetic kidney disease

Juan Pan1, Xi Qiao1,()   

  1. 1. Department of Nephrology, Second Hospital of Shanxi Medical University, Shanxi Provincial Institute for Kidney Disease, Kidney Disease Institute of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
  • Received:2021-11-02 Published:2022-02-28
  • Corresponding author: Xi Qiao
引用本文:

潘娟, 乔晞. 环状核糖核酸:糖尿病肾病治疗新靶点[J]. 中华肾病研究电子杂志, 2022, 11(01): 44-47.

Juan Pan, Xi Qiao. Circular RNAs: new therapeutic target for diabetic kidney disease[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2022, 11(01): 44-47.

糖尿病肾病(DKD)是糖尿病患者最常见和最严重的慢性微血管并发症,已成为终末期肾病(ESRD)的主要原因,对全球公共卫生造成沉重负担。因此,延缓DKD进展对减少ESRD的发生至关重要。研究显示,环状RNA(circRNAs)可通过调节炎症、凋亡、焦亡、上皮-间充质转化等促进或抑制肾小球硬化及肾小管间质纤维化,加重或延缓DKD。本文将就circRNAs在DKD不同机制中的作用进行综述,为发现DKD的临床治疗新靶点提供支持。

Diabetic kidney disease (DKD) is the most common and serious chronic microvascular complication in diabetic patients, and has become the main cause of end-stage renal disease (ESRD), causing a heavy burden on global public health. Therefore, delaying DKD progression is crucial for reducing the occurrence of ESRD. Studies have shown that circular RNAs (circRNAs) may promote or inhibit glomerulosclerosis and renal tubulointerstitial fibrosis, and aggravate DKD or delay its progression by regulating inflammation, apoptosis, pyroptosis, epithelial-mesenchymal transformation, and so on. This article reviewed the roles of circRNAs in different mechanisms of DKD in order to provide support for finding new targets of DKD treatment.

图1 环状RNAs-微小RNAs-靶基因轴调控DKD机制注:circ:环状RNAs系列;miR:微小RNAs系列;NF-ΚB:核因子-κB;AKT3:serine/threonine kinase 3,丝氨酸/苏氨酸蛋白激酶3;TLR4:Toll-like receptor 4, Toll样受体4;SERBP1:serpine mRNA binding protein 1,丝氨酸mRNA结合蛋白1;TGF-β:transforming growth factor-β,转化生长因子-β;Anxa2:annexin A2,膜联蛋白A2;SIRT1:silencing information regulator 2-related enzyme 1,沉默信息调节子2的相关酶1;TGF-βR1:TGF-β受体1;EMT:epithelial-mesenchymal transition,上皮-间充质转化
[1]
Zheng W, Guo J, Liu ZS. Effects of metabolic memory on inflammation and fibrosis associated with diabetic kidney disease: an epigenetic perspective [J]. Clin Epigenetics, 2021, 13(1): 87.
[2]
Adler A, Stevens R, Manley S, et al. Development and progression of nephropathy in type 2 diabetes: the United Kingdom Prospective Diabetes Study (UKPDS 64) [J]. Kidney Int, 2003, 63(1): 225-232.
[3]
Yang C, Wang J, Yang Y, et al. Impact of anemia and chronic kidney disease on the risk of cardiovascular disease and all-cause mortality among diabetic patients [J]. J Peking Univ Health Sci, 2018, 50(3): 495-500.
[4]
Lin X, Xu Y, Pan X, et al. Global, regional, and national burden and trend of diabetes in 195 countries and territories: an analysis from 1990 to 2025 [J]. Sci Rep, 2020, 10(1): 14790.
[5]
Umanath K, Lewis J. Update on diabetic nephropathy: core curriculum 2018 [J]. Am J Kidney Dis, 2018, 71(6): 884-895.
[6]
Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9 edition [J]. Diabetes Res Clin Pract, 2019, 157: 107843.
[7]
Jin J, Sun H, Shi C, et al. Circular RNA in renal diseases [J]. J Cell Mol Med, 2020, 24(12): 6523-6533.
[8]
Eger N, Schoppe L, Schuster S, et al. Circular RNA splicing [J]. Adv Exp Med Biol, 2018, 1087: 41-52.
[9]
Zhao X, Cai Y, Xu J. Circular RNAs: biogenesis, mechanism, and function in human cancers [J]. Int J Mol Sci, 2019, 20(16): 3926.
[10]
Qu S, Yang X, Li X, et al. Circular RNA: a new star of noncoding RNAs [J]. Cancer Lett, 2015, 365(2): 141-148.
[11]
Kristensen LS, Andersen MS, Stagsted LVW, et al. The biogenesis, biology and characterization of circular RNAs [J]. Nat Rev Genet, 2019, 20(11): 675-691.
[12]
Goldfine A, Shoelson S. Therapeutic approaches targeting inflammation for diabetes and associated cardiovascular risk [J]. J Clin Invest, 2017, 127(1): 83-93.
[13]
Meng X. Inflammatory mediators and renal fibrosis [J]. Adv Exp Med Biol, 2019, 1165: 381-406.
[14]
Shao BY, Zhang SF, Li HD, et al. Epigenetics and inflammation in diabetic nephropathy [J]. Front Physiol, 2021, 12: 649587.
[15]
Tang PC, Zhang YY, Chan MK, et al. The emerging role of innate immunity in chronic kidney diseases [J]. Int J Mol Sci, 2020, 21(11): 4018.
[16]
Mikuda N, Kolesnichenko M, Beaudette P, et al. The IκB kinase complex is a regulator of mRNA stability [J]. EMBO J, 2018, 37(24): e98658.
[17]
Bai Y, Zhang Y, Han B, et al. Circular RNA DLGAP4 ameliorates ischemic stroke outcomes by targeting miR-143 to regulate endothelial-mesenchymal transition associated with blood-brain barrier integrity [J]. J Neurosci, 2018, 38(1): 32-50.
[18]
Wang Q, Cang Z, Shen L, et al. circ_0037128/miR-17-3p/AKT3 axis promotes the development of diabetic nephropathy [J]. Gene, 2021, 765: 145076.
[19]
Hong JN, Li WW, Wang LL, et al. Jiangtang decoction ameliorate diabetic nephropathy through the regulation of PI3K/Akt-mediated NF-κB pathways in KK-Ay mice [J]. Chin Med, 2017, 12: 13.
[20]
Lin M, Tang S. Toll-like receptors: sensing and reacting to diabetic injury in the kidney [J]. Nephrol Dial Transplant, 2014, 29(4): 746-754.
[21]
Panchapakesan U, Pollock C. The role of Toll-like receptors in diabetic kidney disease [J]. Curr Opin Nephrol Hypertens, 2018, 27(1): 30-34.
[22]
Wang Y, Luo W, Han J, et al. MD2 activation by direct AGE interaction drives inflammatory diabetic cardiomyopathy [J]. Nat Commun, 2020, 11(1): 2148.
[23]
Garibotto G, Carta A, Picciotto D, et al. Toll-like receptor-4 signaling mediates inflammation and tissue injury in diabetic nephropathy [J]. J Nephrol, 2017, 30(6): 719-727.
[24]
Feng Q, Liu D, Lu Y, et al. The interplay of renin-angiotensin system and Toll-like receptor 4 in the inflammation of diabetic nephropathy [J]. J Immunol Res, 2020, 2020: 6193407.
[25]
Chen B, Li Y, Liu Y, et al. circLRP6 regulates high glucose-induced proliferation, oxidative stress, ECM accumulation, and inflammation in mesangial cells [J]. J Cell Physiol, 2019, 234(11): 21249-21259.
[26]
Meng X, Nikolic-Paterson D, Lan H. TGF-β:the master regulator of fibrosis [J]. Nat Rev Nephrol, 2016, 12(6): 325-338.
[27]
Xu B, Wang Q, Li W, et al. Circular RNA circEIF4G2 aggravates renal fibrosis in diabetic nephropathy by sponging miR-218 [J]. J Cell Mol Med, 2020, Epub ahead of print.
[28]
Li G, Qin Y, Qin S, et al. Circ_WBSCR17 aggravates inflammatory responses and fibrosis by targeting miR-185-5p/SOX6 regulatory axis in high glucose-induced human kidney tubular cells [J]. Life Sci, 2020, 259: 118269.
[29]
Hu W, Han Q, Zhao L, et al. Circular RNA circRNA_15698 aggravates the extracellular matrix of diabetic nephropathy mesangial cells via miR-185/TGF-beta1 [J]. J Cell Physiol, 2019, 234(2): 1469-1476.
[30]
Schwarzer R, Laurien L, Pasparakis M. New insights into the regulation of apoptosis, necroptosis, and pyroptosis by receptor interacting protein kinase 1 and caspase-8 [J]. Curr Opin Cell Biol, 2020, 63: 186-193.
[31]
Ge X, Xi L, Wang Q, et al. Circular RNA circ_0000064 promotes the proliferation and fibrosis of mesangial cells via miR-143 in diabetic nephropathy [J]. Gene, 2020, 758: 144952.
[32]
Tang B, Li W, Ji TT, et al. Circ-AKT3 inhibits the accumulation of extracellular matrix of mesangial cells in diabetic nephropathy via modulating miR-296-3p/E-cadherin signals [J]. J Cell Mol Med, 2020, 24(15): 8779-8788.
[33]
Hu Y, Gu J, Shen H, et al. Circular RNA LARP4 correlates with decreased Enneking stage, better histological response, and prolonged survival profiles, and it elevates chemosensitivity to cisplatin and doxorubicin via sponging microRNA-424 in osteosarcoma [J]. J Clin Lab Anal, 2020, 34(2): e23045.
[34]
Zhuang L, Wang Z, Hu X, et al. CircHIPK3 alleviates high glucose toxicity to human renal tubular epithelial HK-2 cells through regulation of miR-326/miR-487a-3p/SIRT1 [J]. Diabetes Metab Syndr Obes, 2021, 14: 729-740.
[35]
An L, Ji D, Hu W, et al. Interference of Hsa_circ_0003928 alleviates high glucose-induced cell apoptosis and inflammation in HK-2 cells via miR-151-3p/Anxa2 [J]. Diabetes Metab Syndr Obes, 2020, 13: 3157-3168.
[36]
Lin J, Cheng A, Cheng K, et al. New insights into the mechanisms of pyroptosis and implications for diabetic kidney disease [J]. Int J Mol Sci, 2020, 21(19): 7057.
[37]
Wen S, Li S, Li L, et al. circACTR2: a novel mechanism regulating high glucose-induced fibrosis in renal tubular cells via pyroptosis [J]. Biol Pharm Bull, 2020, 43(3): 558-564.
[38]
Zhang H, Wang Z. Effect and regulation of the NLRP3 inflammasome during renal fibrosis [J]. Front Cell Dev Biol, 2020, 7: 379.
[39]
Wang J, Gao Y, Zhang N, et al. miR-21 overexpression enhances TGF-β1-induced epithelial-to-mesenchymal transition by target smad7 and aggravates renal damage in diabetic nephropathy [J]. Mol Cell Endocrinol, 2014, 392(1-2): 163-172.
[40]
Bartis D, Mise N, Mahida R, et al. Epithelial-mesenchymal transition in lung development and disease: does it exist and is it important? [J]. Thorax, 2014, 69(8): 760-765.
[41]
Liu B, Tang T, Lv L, et al. Renal tubule injury: a driving force toward chronic kidney disease [J]. Kidney Int, 2018, 93(3): 568-579.
[42]
Mou X, Chenv JW, Zhou DY, et al. A novel identified circular RNA, circ_0000491, aggravates the extracellular matrix of diabetic nephropathy glomerular mesangial cells through suppressing miR101b by targeting TGFβRI [J]. Mol Med Rep, 2020, 22(5): 3785-3794.
[43]
Ling L, Tan Z, Zhang C, et al. CircRNAs in exosomes from high glucose-treated glomerular endothelial cells activate mesangial cells [J]. Am J Transl Res, 2019, 11(8): 4667-4682.
[1] 孔莹莹, 谢璐涛, 卢晓驰, 徐杰丰, 周光居, 张茂. 丁酸钠对猪心脏骤停复苏后心脑损伤的保护作用及机制研究[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 355-362.
[2] 韩圣瑾, 周正武, 翁云龙, 黄鑫. 碳酸氢钠林格液联合连续性肾脏替代疗法对创伤合并急性肾损伤患者炎症水平及肾功能的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 376-381.
[3] 张晓燕, 肖东琼, 高沪, 陈琳, 唐发娟, 李熙鸿. 转录因子12过表达对脓毒症相关性脑病大鼠大脑皮质的保护作用及其机制[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 540-549.
[4] 陈大敏, 曹晓刚, 曹能琦. 肥胖对胃癌患者手术治疗效果的影响研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 651-653.
[5] 伍学成, 李远伟, 袁武雄, 王建松, 石泳中, 卢强, 李卓, 陈佳, 刘哲, 滕伊漓, 高智勇. 炎症介质谱联合降钙素原在尿源性脓毒血症中的诊断价值[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 476-480.
[6] 王可, 范彬, 李多富, 刘奎. 两种疝囊残端处理方法在经腹腹膜前腹股沟疝修补术中的疗效比较[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 692-696.
[7] 范博洋, 王宁, 张骞, 王贵玉. 结直肠癌转移调控的环状RNA分子机制研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(05): 426-430.
[8] 于迪, 于海波, 吴焕成, 李玉明, 苏彬, 陈馨. 发状分裂相关增强子1差异表达对胆固醇刺激下血管内皮细胞的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 264-270.
[9] 邹勇, 顾应江, 丁昊, 杨呈浩, 陈岷辉, 蔡昱. 基于Nrf2/HO-1及NF-κB信号通路探讨葛根素对大鼠脑出血后早期炎症反应及氧化应激反应的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 271-277.
[10] 屈霄, 王靓, 陆萍, 何斌, 孙敏. 外周血炎症因子及肠道菌群特征与活动性溃疡性结肠炎患者病情的相关性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 466-470.
[11] 朱风尚, 舍玲, 丁永年, 杨长青. 警惕炎症性肠病与少见肠道疾病的鉴别诊断[J]. 中华消化病与影像杂志(电子版), 2023, 13(05): 273-276.
[12] 邓世栋, 刘凌志, 郭大勇, 王超, 黄忠欣, 张晖辉. 沉默SNHG1基因对膀胱癌细胞增殖、凋亡、迁移和铁死亡的影响[J]. 中华临床医师杂志(电子版), 2023, 17(07): 804-811.
[13] 张敏洁, 张小杉, 段莎莎, 施依璐, 赵捷, 白天昊, 王雅晳. 氢气治疗心肌缺血再灌注损伤的作用机制及展望[J]. 中华临床医师杂志(电子版), 2023, 17(06): 744-748.
[14] 刘感哲, 艾芬. MiRNA-210通过抑制HIF-1α的表达改善大鼠血管性认知功能障碍[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 489-494.
[15] 邱甜, 杨苗娟, 胡波, 郭毅, 何奕涛. 亚低温治疗脑梗死机制的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 518-521.
阅读次数
全文


摘要